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ABSTRACT Effective signal processing methods are essential for machinery fault diagnosis. Most
conventional signal processing methods lack adaptability, thus being unable to well extract the embedded
meaningful information. Adaptive mode decomposition methods have excellent adaptability and high flexi-
bility in describing arbitrary complicated signals, and are free from the limitations imposed by conventional
basis expansion, thus being able to adapt to the signal characteristics, extract rich characteristic information,
and therefore reveal the underlying physical nature. This paper presents a systematic and up-to-date review
on adaptive mode decomposition in two major topics, i.e., mono-component decomposition algorithms
(such as empirical mode composition, local mean decomposition, intrinsic time-scale decomposition, local
characteristic scale decomposition, Hilbert vibration decomposition, empirical wavelet transform, variational
mode decomposition, nonlinearmode decomposition, and adaptive local iterative filtering) and instantaneous
frequency estimation approaches (including Hilbert-transform-based analytic signal, direct quadrature, and
normalized Hilbert transform based on empirical AM-FM decomposition, as well as generalized zero-
crossing and energy separation) reported in more than 80 representative articles published since 1998. Their
fundamental principles, advantages and disadvantages, and applications to signal analysis in machinery fault
diagnosis, are examined. Examples are provided to illustrate their performance.

INDEX TERMS Adaptivemode decomposition, mono-component, instantaneous frequency, time-frequency
representation, fault diagnosis.

I. INTRODUCTION
Signal analysis is a key step in machinery fault diagnosis.
Effective extraction of signal features is helpful to well reveal
the underlying physical nature of a phenomenon, thoroughly
understand the dynamic characteristics of a system, and to
evaluate its health condition, thereby providing convincing
evidences for fault diagnosis. However, in both academic
researches and engineering practices, real signals are usually
highly intricate, because many sorts of modern machinery are
often composed of mechanical, electrical and hydraulic sys-
tems. Their dynamic responses are a complex mixture of var-
ious dynamic phenomena, including mechanical vibrations,

electrical oscillations, hydraulic fluctuations, their coupling
effects, and the dynamic responses to external environmen-
tal excitations. As a consequence, their dynamic responses
feature multi-components, high degree of complexity and
various types of morphology. Such complicated dynamic
responses contain rich information about the running condi-
tion and health status of machinery. Therefore, complicated
signal analysis is a key research topic and plays an important
role in machinery fault diagnosis.

To date, various signal analysis methods have been pro-
posed for machinery fault diagnosis [1]–[5]. These include
Fourier, wavelet (packet), lifting wavelet and multi-wavelet
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transforms, as well as various time–frequency analysis meth-
ods such as Cohen and affine class distributions, atomic
decomposition, time varying higher order spectra, and
Hilbert-Huang transform [1]–[5]. Most of them are based
on basis expansion. For example, Fourier series expansion
lays a foundation for most spectral analysis methods, and
wavelet basis expansion is the core of wavelet analysis. Tra-
ditional basis expansion methods have good merits, such as
simplicity, uniqueness and symmetry, but they suffer from
inflexibility and lack degree of freedom, because a priori
knowledge on signals is needed to construct explicit bases and
these bases are subject to orthogonality constraint. As such,
traditional basis expansion methods are not adaptive enough
for arbitrary complicated signal analysis.

Adaptive mode decomposition methods provide an effec-
tive approach to arbitrary complicated signal analysis. Such
decomposition methods are truly data-driven and posterior.
They neither need to construct any a priori basis to match
the signal characteristic structure nor impose any constraints
on the way to represent signals in time, frequency and joint
time–frequency domains. They adapt to the transient feature,
and highlight the local characteristics of signals. Therefore,
they can adaptively extract the constituent oscillation modes
of mono-component nature (without an explicit expression in
closed form) which reflect the underlying oscillation prop-
erty, from an arbitrary signal, and represent the signal as a
superposition of several mono-components (and a residue).
This mono-component decomposition nature enables accu-
rate estimation of both the instantaneous frequency and
the instantaneous amplitude of each constituent component.
These instantaneous parameters provide insight into the fre-
quency composition and time variability of signals. Based
on the instantaneous frequency and instantaneous ampli-
tude, a quality time–frequency representation can be con-
structed as a linear superposition of constituent components’
time–frequency representations, which has high time–
frequency resolution and is free from both inner and outer
interferences, thus being effective in resolving the frequency
contents and their time–frequency structure of arbitrary non-
stationary complicated signals [6]–[26]. Thanks to the above
merits, adaptive mode decomposition methods are highly
adaptive to the complicated and various morphological con-
tents, thus being effective in separating harmonic, impulsive
and modulated components, and in extracting the dynamic
features of a system as well, through analysis of the amplitude
and frequency of each resultant mono-component and the
time–frequency representation of the signal.

Machinery fault diagnosis usually relies on detecting the
presence of certain fault frequencies and/or monitoring their
time variability in terms of both frequency and amplitude.
Therefore, it is necessary to accurately calculate the instan-
taneous frequency of target components. Adaptive mode
decomposition can decompose an arbitrary complicated
signal into its constituent components, thus meeting the
mono-component requirement by instantaneous frequency
calculation. The derived time–frequency representation can

effectively identify the frequency contents of a signal and
exhibit their time variability, for example, the rotating fre-
quency and its harmonics in rotating machinery vibration
signals. In particular, for gearboxes and rolling bearings,
fault information is mainly carried bymono-components with
instantaneous frequency fluctuates around the signal carrier
frequency (gear meshing frequency and its harmonics in
gearbox case, and resonance frequency in rolling bearing
case). In-depth analysis of such sensitive mono-components
(Fourier spectra of their instantaneous amplitude and instan-
taneous frequency) may reveal fault features in details, such
as amplitude and frequency modulations characteristic of
gear and rolling bearing faults.

In summary, adaptive mode decomposition methods can
analyze arbitrary complicated multi-component signal more
flexibly, and give insights into the signal nature from vari-
ous perspectives, thus better extracting the rich information.
They break through the limitations inherent with basis expan-
sion based methods, and overcome the shortcomings of con-
ventional methods, thus providing an effective approach to
complicated signal analysis in machinery fault diagnosis.

Since Huang et al. [6] proposed the Hilbert-Huang trans-
form (HHT) in 1998, adaptive mode decomposition has
attracted more and more researchers’ attention, and some
fundamental outcomes have been obtained. Although the
empirical mode decomposition (EMD) is effective in mono-
component decomposition, it has some shortcomings, such
as lack of mathematic formulation, susceptibility to mode
mixing under singularities, instability under noise interfer-
ences, over/under fitting due to cubic spline interpolation.
Inspired by the idea of adaptive mode decomposition, some
new methods have been proposed to address the issues exist-
ing with EMD, such as: the local mean decomposition (LMD)
by Smith [13] in 2006, the intrinsic time scale decomposi-
tion (ITD) by Frei and Osorio [14] in 2007, the local char-
acteristic scale decomposition (LCD) by Zheng et al. [15]
in 2013, for solving the mode mixing and over/under fit-
ting problems, which follow the same mono-component
sifting framework of EMD; as well as the Hilbert vibra-
tion decomposition (HVD) by Feldman [16]–[21] in 2006,
the empirical wavelet transform (EWT) by Gilles [22]
in 2013, the variational mode decomposition (VMD) by
Dragomiretskiy and Zosso [23] in 2014, the nonlinear mode
decomposition (NMD) by Iatsenko et al. [24] in 2015, and the
adaptive local iterative filtering (ALIF) by Cicone et al. [25]
in 2016, for a rigorous mathematic formulation and better
robustness to noise, which separate mono-components by
exploiting their amplitude modulation and frequency modu-
lation (AM-FM) property or the filtration nature of EMD.

Instantaneous frequency is a key parameter to describe
the physical nature of each mono-component obtained
from aforementioned adaptive mode decomposition algo-
rithms. The most widely used instantaneous frequency esti-
mation approach is based on analytic signal via Hilbert
transform (HT). However, it suffers from some draw-
backs such as negative frequency values and frequency
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fluctuation [27], [28]. To overcome these drawbacks, some
approaches have also been proposed, such as energy sep-
aration (ES) [29], [30], generalized zero-crossings (GZC),
empirical AM-FM decomposition, direct quadrature (DQ),
and normalized Hilbert transform (NHT) [28].

To date, many articles on adaptive mode decomposition
have been published. Investigations on these methods and
their applications are still ongoing. Many new research
results, in terms of both adaptive mode decomposition algo-
rithms, instantaneous frequency estimation approaches, and
their applications, are being reported from various fields
every year. They have also been applied to analysis of
complicated signals in machinery fault diagnosis [31]–[93].
A systematic review on adaptive mode decomposition
methodology and its application in machinery fault diag-
nosis would benefit researchers in this field. However,
reported review papers [1]–[4] do not fully cover this topic.
Lei et al. [5] made a review towards this direction, but they
focused on EMD and its ensemble version only. There lacks
an extensive review on all adaptive mode decomposition
methods (including EMD, LMD, ITD, LCD, HVD, EWT,
VMD, NMD, and ALIF) and instantaneous frequency esti-
mation approaches (such as HT, ES, GZC, DQ, and NHT).
Moreover, regarding the characteristics of intricate signals
encountered in machinery fault diagnosis, how to exploit the
merits of these methods, and effectively extract the meaning-
ful features, still deserves further investigation in-depth.

This paper aims to provide a comprehensive study
and a systematic review of adaptive mode decomposition
methods, thus offering guidance for researchers who are inter-
ested in this methodology. Extensive state-of-the-art adap-
tive mode decomposition methods are summarized, including
their ideas, algorithms, and applications in machinery fault
diagnosis. An up-to-date review of the existing literature
and some insights into studies of the latest adaptive mode
decomposition methods are presented. For readers to quickly
understand the underlying idea and/or mathematic rationale
of adaptive mode decomposition, we divide these methods
into two major classes: one is adaptive mode decomposi-
tion algorithms, and the other is instantaneous frequency
estimation approaches. For each method, we introduce its
mathematical principles, illustrate its merits via analysis of a
representative synthetic signal, summarize its pros and cons,
review its applications inmachinery fault diagnosis, and point
out future research directions. Such a review would guide
engineers to select properly an adaptive mode decomposi-
tion method according to its suitability, signal characteristics
and analysis demand, and motivate or inspire researchers to
improve the existing signal feature extraction methods and
explore new ones, thus addressing the complicated signal
analysis issue in machinery fault diagnosis. The existence of
large body of literature developed over the past two decades
makes it unrealistic to review each and every article published
in this field. Therefore, we will focus on recent key advances
in adaptive mode decomposition methods and their typical
applications in machinery fault diagnosis.

Hereafter, this paper is organized as follows. Firstly, the
fundamentals of adaptivemode decomposition are introduced
in Section II. Then, adaptive mode decomposition algo-
rithms and instantaneous frequency estimation approaches
are reviewed in Sections III and IV respectively. In Section V,
some application examples are presented to illustrate the
potential of typical adaptive mode decomposition methods
in machinery fault diagnosis. Finally, in Section VI, the pros
and cons of these adaptive mode decomposition methods are
summarized, and some application prospects and remaining
research issues in machinery fault diagnosis are pointed out.

II. GENERAL PRINCIPLE
Complicated signals are usually composed of multi-
components, and in many cases, they are nonstationary
and nonlinear, i.e. each constituent component exhibit time
variability, in terms of amplitude, phase and/or frequency.
Each component can be considered as an amplitude mod-
ulation and frequency modulation (AM-FM) oscillatory
mode. Hence, an arbitrary complicated multi-component
signal can be modeled as a superposition of several
AM-FM components

x(t) =
N∑
i=1

ci(t) =
N∑
i=1

ai(t) cos[φi(t)]

=

N∑
i=1

ai(t) cos
[
ωct +

∫
ωi(t)dt

]
, (1)

where ai(t) is the instantaneous amplitude, φi(t) the instan-
taneous phase, ωc the carrier frequency, and ωc + ωi(t) =
φ̇i(t) the instantaneous frequency. In this paper, the instanta-
neous amplitude ai(t) and instantaneous frequency ωc+ωi(t)
are assumed to be slowly varying compared to the carrier
frequency ωc.
To study the properties of such nonstationary signals, it is

necessary to access the instantaneous parameter of each con-
stituent component, including the instantaneous amplitude
and instantaneous frequency. However, the instantaneous fre-
quency is meaningful for single frequency component only,
and thus is defined based on mono-component. Hence, an
arbitrary multi-component signal is not automatically ready
to calculate the instantaneous frequency, and it has to be
decomposed into mono-components, i.e. individual oscil-
latory modes are separated from each other, each with a
physically meaningful instantaneous frequency. In order to
enable the instantaneous frequency estimation, conditions are
defined to guarantee the separated individual component be
a mono-component. According to the conditions, adaptive
mode decomposition algorithm can be designed, and an arbi-
trary complicated signal can then be decomposed into several
mono-components (and a residue)

x(t) =
n∑
i=1

ci(t)+ rn(t), (2)
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where ci(t) is the mono-component, and rn(t) is the residue
and can be either a mean trend or a constant.

Once mono-components are obtained, their instantaneous
amplitude, instantaneous phase and instantaneous frequency
can be estimated, see Section IV. Given these instanta-
neous parameters, the signal time variability can be studied
in-depth. For example, transient events can be detected via
studying the local changes in these parameters, and the
AM and/or FM properties can be revealed by analyzing
the instantaneous amplitude and instantaneous frequency
respectively.

Meanwhile, the frequency contents of a given nonstation-
ary signal and the time variability of each constituent com-
ponent can also be extracted via time–frequency analysis.
Given the instantaneous amplitude ai(t) and instantaneous
frequency ωc + ωi(t) of each mono-component ci(t), the
time–frequency representation can be derived as

TFR(t, ω) =
n∑
i=1

ai(t)δ{ω − [ωc + ωi(t)]}, (3)

where δ(·) is Dirac delta function. Such time–frequency
representation is free from both outer and inner interfer-
ences. More importantly, it has fine time–frequency resolu-
tion and good readability, because: it is a linear superposition
of the time–frequency representation of constituent mono-
components rather than a double integral involving quadratic
terms of multiple components, and the instantaneous fre-
quency is defined as the local derivative of instantaneous
phase which emphasizes the local properties of signals.

Since mono-component decomposition is a key to suc-
cess in instantaneous frequency estimation, and accurate
instantaneous frequency estimation is essentially important
to reveal the frequency contents and their time variability of
nonstationary complicated signals, we review the adaptive
mode decomposition algorithms and instantaneous frequency
estimation approaches in the following Sections III and IV
respectively.

III. ADAPTIVE MODE DECOMPOSITION ALGORITHMS
For effective analysis of complicated signals, inspired by
the idea of EMD, various adaptive mode decomposition
algorithms have been proposed to decompose intricate multi-
component signals into constituent mono-components. Typi-
cal algorithms include EMD, LMD, ITD, LCD, HVD, EWT,
VMD, NMD and ALIF, to be reviewed in this section.

A. EMPIRICAL MODE DECOMPOSITION AND ENSEMBLE
EMPIRICAL MODE DECOMPOSITION
1) PRINCIPLE
The EMD proposed by Huang et al. [6], [7] can adap-
tively decompose a complicated multi-component signal
into constituent mono-components. This algorithm recur-
sively detects local minima and maxima in a signal, data
fits the lower and upper envelopes by interpolation of
these extrema in local characteristic time scale, removes the

instantaneous mean of the lower and upper envelopes as a
‘‘low-pass’’ centerline, thus separating the high-frequency
components as intrinsic mode functions (IMFs, mono-
component in nature), and continues recursively on the
remaining ‘‘low-pass’’ centerline. Via such iterative sifting,
any signal can be decomposed into a series of IMFs which
satisfy the mono-component requirements by instantaneous
frequency calculation: (1) in the whole time span, the number
of extrema and the number of zero crossings must either
equal or differ at most by one; and (2) at any time, the
instantaneous mean of the upper and lower envelopes is zero.
The first condition is similar to the traditional narrow band
requirements for a stationary Gaussian process. The second
condition modifies the classical global requirement to a local
one, and makes the instantaneous frequency avoid the unde-
sired fluctuations induced by asymmetric waveforms.

For a real signal x(t), the EMD procedure is detailed as
follows.
Step 1: Find the local minima and the local maxima of x(t).
Step 2: Construct the lower envelope L(t) and the upper

envelope U (t) of x(t) respectively, by cubic spline interpola-
tion to the local minima and the local maxima.
Step 3: Calculate the instantaneous mean of the lower and

upper envelopes m(t) = [L(t)+ U (t)]/2.
Step 4: Construct a prototype IMF h(t) = x(t)− m(t).
Step 5: If h(t) satisfies the stop criteria for IMF sifting,

then set it as an IMF c(t) = h(t). Otherwise, repeat steps 1-5
on h(t).
Step 6: Construct a residual signal r(t) = x(t)− c(t).
Step 7: If r(t) satisfies the stop criteria for EMD, then

set r(t) as the final residual signal, and terminate the
EMD process. Otherwise, repeat steps 1-7 on r(t).
The IMF sifting procedure, steps 1-5, eliminates riding

waves and makes the profile of prototype IMFs more sym-
metric with respect to zero. However, over-sifting may lead
to loss of amplitude variation and physical meaning. In order
to guarantee proper sifting and meaningful IMF, several stop
criteria for IMF sifting have been proposed. To name a few
for example, a Cauchy-type criteria is set according to the
standard deviation of two consecutive prototype IMFs

σ =
‖hi+1(t)− hi(t)‖2
‖hi(t)‖2

. (4)

When the standard deviation reaches a predefined threshold
usually set between 0.2 and 0.3, stop the inner sifting loop
steps 1-5 [6].

An S-number criterion is based on the numbers of extreme
and zero-crossings. For a prototype IMF, when the number of
extrema equals the number of zero-crossings for predefined
(usually between 3 and 5) steps of successive sifting, the inner
sifting loop can be stopped [7], [8].

A combined global–local criterion guarantees globally
small fluctuations in the instantaneous mean while consid-
ering locally large excursions. It evaluates the amplitude of
instantaneous mean m(t) in comparison with the amplitude
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of corresponding prototype IMF a(t) = U (t)− L(t)

σ (t) =
m(t)
a(t)

. (5)

If σ (t) < θ1 for some prescribed fraction (1− α) of the total
duration, and σ (t) < θ2 for the remaining fraction, stop the
sifting procedure. A default setting is α = 0.05, θ1 = 0.05
and θ2 = 10θ1 [9].

A local stop criterion fixes the sifting number, thus avoid-
ing pseudo local extrema due to over-sifting in case of local
wiggles in prototype IMFs. The optimal sifting number is
often set to 10 [10], [11].

For the whole EMD procedure, when the residual r(t)
becomes a trend, i.e. it has one local extremum at most, stop
the outer iteration loop steps 1-7.

The EMD essentially projects a signal onto the time-
frequency plane, makes each projection a mono-component,
and preserves the time-varying characteristics of each compo-
nent, thus being able to calculate the instantaneous frequency.
It separates IMFs in a frequency order from high to low,
and the result has a dyadic frequency band decomposition
property when applied to white noise. The decomposition
by EMD is complete, adaptive, and almost orthogonal in
applications [6].

Although the EMD is well known and widely used, it
suffers from a major drawback of possible mode mixing
(a phenomenon that disparate scales appear in one IMF, or
a coherent component of a similar scale resides in more than
one IMFs), which is often caused by intermittences in signals.
In order to overcome this drawback, a noise assisted EMD,
the ensemble empirical mode decomposition (EEMD), was
proposed [11].

The EEMD is inspired by the dyadic filter bank nature
of the EMD when applied to white noise [10], [11]. White
noise of finite amplitude is added to the signal to provide a
uniform reference frame in the time–frequency space, perturb
the signal in the neighborhood of its true solutions, thereby
force the ensemble to exhaust all possible solutions in the
EMD sifting process, and enable the signal components of
different scales to collate in proper IMFs. In the ensemble
mean of sufficient trials, the noise will be averaged out since
it is different in separate trials. The EEMD involves the
following steps:
Step 1: Add a white noise series to the signal.
Step 2: Decompose the signal with added white noise into

IMFs using the traditional EMD.
Step 3: Return to step1 and redo steps 1-2 for a predefined

number of iterations, but with different white noise series
each time.
Step 4:Obtain the ensemble means of corresponding IMFs

as the final result.
In the EEMD, the number of trials N in the ensemble and

the amplitude of the added noise a are two key parameters
to be carefully selected. When the number of ensembles
approaches infinity, the EEMD produces true decomposition.
In practice, the number of ensembles is limited. Therefore, the

resultant IMFs are inevitably contaminated by added noise.
The standard deviation of error is given below

e =
a
√
N
. (6)

To reduce the error, small noise amplitude is preferred.
However, if the noise amplitude is too small, it may not
introduce sufficient change of extrema that EMD relies on.
Hence the noise amplitude should not be too small. Under
this condition, the noise effect can be reduced to a negligi-
ble level with the increased number of trials. To make the
EEMD effective, the amplitude of noise is suggested to be 0.2
times the standard deviation of the signal, and the number of
trials in an order of a few hundreds [11].

To address the issue of residual noise in resultant IMFs,
a complementary EEMD was developed. For a white noise,
both its positive and negative versions are added to data
as complementary trials. The residue of added noise can
be cancelled out by averaging complementary ensemble
IMFs [12].

2) ILLUSTRATION
To illustrate the performance of adaptive mode decomposi-
tion algorithms, we generate a synthetic signal according to
the following equation

x (t) = cos[2π fcarrier1t + 125 cos(2π fFMt)]

+ [2+ cos(2π fAMt)] cos(2π fcarrier2t)+ n(t). (7)

It consists of two true components and a white Gaussian
noise n(t) at a signal-to-noise ratio of 20 dB. One true compo-
nent is a sinusoidal frequency modulation (FM) component
at a modulating frequency of fFM = 0.5 Hz and riding on
a carrier frequency of fcarrier1 = 137.5 Hz, and the other
is a sinusoidal amplitude modulation (AM) component at a
modulating frequency of fAM = 0.5Hz and riding on a carrier
frequency of fcarrier2 = 30 Hz. The instantaneous frequency
of the sinusoidal FM component changes over time nonlin-
early. This signal is simple, but is representative because of
its multi-component nature and nonstationarity. More impor-
tantly, it simulates the common yet typical phenomena often
encountered in machinery fault diagnosis, for example, the
modulation features characteristic of rolling bearing and gear
faults, and the time variability of major frequency compo-
nents in rotating machinery vibration signals during variable
speed conditions. It will be used to illustrate each adaptive
mode decomposition algorithm in the following sections.

Fig. 1 (a) shows the IMFs obtained from the EMD. We use
the combined global–local stop criterion for IMF sifting, and
set α = 0.05, θ1 = 0.05 and θ2 = 10θ1, according to the
recommendation in [9]. The two constituent components are
well separated and clearly identified. The first two correspond
to the sinusoidal FM and AM components respectively. The
rest are not the true constituent components of the signals.
They are possibly caused by the approximation error of cubic
spline fitting and the end effect, but their amplitudes are
small and thus are negligible. The instantaneous frequency
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FIGURE 1. EMD analysis result. (a) IMFs and residue; (b) Hilbert energy
spectrum.

of each IMF is calculated using the Hilbert transform based
analytic signal approach (the same in Part Illustration for
other adaptive mode decomposition algorithms if not stated
specifically). Fig. 1 (b) shows the Hilbert energy spectrum
of synthetic signal. The true components are resolved in fine
details. The sinusoidal FM component with highly nonlinear
instantaneous frequency but constant amplitude is clearly

exhibited as a sinusoidal curve on the time–frequency plane.
The time-variant amplitude of sinusoidal AM component is
also revealed by time–frequency energy distribution magni-
tude (represented by color) of the associated constant carrier
frequency. Their instantaneous frequency trajectories exactly
follow the theoretical ones, and their amplitudes also match
with the true ones.

Fig. 2 shows the EEMD analysis result. In the EEMD, we
set the amplitude of noise to be 0.2 times the signal standard
deviation, and the number of trials to be 100, according to the
suggestions in [11]. The two constituent components are well
separated. In Fig. 2 (a), IMF 1 and 2 link to the sinusoidal
FM and AM components respectively. Some irrelevant
IMFs 3-8 are also generated due to EMD error and added
assisting noise, but their amplitude is small and can be
neglected. Accordingly, in the Hilbert energy spectrum,
Fig. 2 (b), the two frequency components and their time
variability are clearly exhibited.

3) APPLICATION REVIEW
Many research papers on the application of the EMD
and EEMD to machinery fault diagnosis have been
published since 2000. To name a few for example,
Cheng et al. [31]–[33] applied the EMD to fault diagnosis
of rolling bearings, gears and rotors. They proposed a rolling
bearing fault diagnosis method based on marginal Hilbert
spectrum of the envelope signal obtained from wavelet
decomposition. They found that impulses caused by gear
fault could be detected in the instantaneous energy, and
showed that the EMD was useful to separate the modulation
components due to rotor-stator rub-impact. To avoid mode
mixing and reduce computational cost, Zheng et al. [34]
developed a partly EEMD based on complementary EEMD
and by merits of permutation entropy in detecting random
noises and intermittences. The signal is decomposed via com-
plementary EEMD until the permutation entropy of residue
is higher than a predefined threshold. Then the residue is
further decomposed through EMD. They detected rotor-stator
rubbing using the partly EEMD. Peng et al. [35], [36] pro-
posed an improved Hilbert-Huang transform and extracted
fault symptoms of rolling bearings and rotors in time–
frequency domain. They used the wavelet packet transform
as a preprocessor to decompose a signal into a set of narrow
band signals, thus avoiding the deficiency of wide ranging
frequency band of the first IMFs. The IMFs were selected
via correlation analysis of the IMF with the raw signal, thus
eliminating pseudo IMFs due to end effects. Loutridis [37]
used the EMD to examine gear vibration signals, and found
that the IMF energy and instantaneous frequency can be
used to detect the gear root crack. Liu et al. [38] revised
the EMD by B-spline fitting, and applied it to gearbox fault
diagnosis. Ricci and Pennacchi [39] proposed an index for
automatic IMF selection, which is a linear combination of
the periodicity degree and absolute skewness of the IMF.
They illustrated its effectiveness by applying it to gearbox
fault diagnosis. Georgoulas et al. [40] extracted features from
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FIGURE 2. EEMD analysis result. (a) IMFs and residue; (b) Hilbert energy
spectrum.

EMD based IMFs with highest kurtosis values, including
the instantaneous frequency level and the spread of IMF,
for rolling bearing anormaly detection. Feng et al. [41]
exploited the mono-component decomposition capability

of EMD, and proposed a demodulation analysismethod based
on sensitive IMFs, thus addressing the spectral complexity
issue due to multiple modulation sources in planet bearing
fault diagnosis. Lei et al. [42]–[44] proposed a correlation-
based criterion for sensitive IMF selection to improve EEMD
based Hilbert-Huang transform, and further presented an
algorithm to adaptively select the sifting number for each IMF
and to determine the magnitude of added noise according
to the sensitivity of components to noise. Stronger noise
and larger sifting number are adopted to extract higher
frequency IMFs, while weaker noise and smaller sifting
number are employed for lower frequency IMFs. They val-
idated the algorithm using simulation data, and applied it
to rotating machinery fault diagnosis. Zhang et al. [45]
improved the computational efficiency of EEMD by adding
band limited noise and applied it to bearing fault diagnosis.
Žvokelj et al. [46] applied the EEMD and principal compo-
nent analysis to bearing fault diagnosis. To avoid the intricate
sidebands in Fourier spectra, Feng et al. [47] proposed a
joint amplitude and frequency demodulation analysis idea for
wind turbine planetary gearbox fault diagnosis, by exploiting
the merits of EEMD in mono-component decomposition and
the advantages of energy separation algorithm in instanta-
neous amplitude and instantaneous frequency estimation.
Wang et al. [48] presented an enhanced EEMD and applied
it to rolling bearing fault diagnosis. They fused succes-
sive IMFs with higher spectral coherence similar charac-
teristics into a new IMF, thereby addressing the possible
mode mixing issue with EEMD. Lei et al. [5] conducted
a systematic review on EMD and EEMD, together with
their applications in rotating machinery fault diagnosis,
including rolling bearings, gears, and rotors. Readers can
refer to [5] for a comprehensive summary of pertinent
references.

4) REMARKS
EMD and EEMD do not need any priori basis to match
the signal characteristic, but extracts adaptively the intrinsic
fluctuation modes inherent in signals by means of numeri-
cal approximation. The derived time–frequency representa-
tion offers fine time–frequency resolution and is free from
both inner and outer interferences. These advantages make
it effective in resolving the time varying structure of signal
components. However, the EMD and EEMD lack rigorous
mathematical formulation. A higher sampling frequency is
preferred. EMD and EEMDfit the upper and lower envelopes
based on extrema, and hence they need a fair amount of over-
sampling to correctly identify extrema for fine interpolation.
For signals with instantaneous frequency trajectory crossings,
mode mixing is inevitable. The EMD and EEMD usually
generate more than one IMF. Some researchers proposed
methods to select a subset of relevant IMFs [35], [36], [39],
[49], [50], whereas others combined IMFs together in order
to ease the comparison of signal contents over repeated acqui-
sitions [51]–[53]. How to effectively select IMFs sensitive to
fault still lacks a generally effective criterion.
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B. LOCAL MEAN DECOMPOSITION
1) PRINCIPLE
Smith [13] proposed the local mean decomposition (LMD)
to estimate the instantaneous frequency and instantaneous
amplitude of signals. It decomposes a signal into the prod-
uct of amplitude modulation and frequency modulation
(mono-component in essence), and then separates itera-
tively the frequency modulation from amplitude modulation.
LMD obtains mono-components via data smoothing meth-
ods, rather than cubic spline fitting used in EMD. Unlike
the IMFs obtained from EMD which do not contain oscil-
lations without zero-crossings between successive extrema,
the product functions (PFs) derived from LMD may well
contain oscillations which do not cross zero. Therefore, it
may retain more of the frequency and amplitude variations in
signals than the EMD does. For a signal x(t), the procedure of
LMD is detailed as follows.
Step 1: Find the local minima and the local maxima of x(t),

and denote them as n(ki), where ki = k1, k2, · · · is the time
index of extrema.
Step 2: Calculate the local mean of successive maxima and

minima

m(t) =
1
2
[n(ki)+ n(ki+1)], (8)

and the local magnitude of successive maxima and minima

a(t) =
1
2
|n(ki)− n(ki+1)|, (9)

where t ∈ [ki, ki+1).
Step 3: Interpolate the local mean and local magnitude

values between successive extrema with straight lines.
Step 4: Construct a continuous local mean function m̂(t)

and an amplitude function â(t) by smoothing the interpolated
local mean and local magnitude via moving average weighted
by the time-lapse between successive extrema.
Step 5: Construct a prototype PF

h(t) = x(t)− m̂(t), (10)

and an FM signal

s(t) =
h(t)
m̂(t)

. (11)

Step 6: If m̂(t) is close to 1, set s(t) as a purely normal-
ized FM. Otherwise, let h(t) = s(t), and repeat steps (1)
through (6) on h(t).
Step 7: Calculate the instantaneous amplitude of PF

a(t) =
∏

â(t), (12)

and construct the PF

c(t) = a(t)s(t). (13)

Step 8: Construct the residual signal

r(t) = x(t)− c(t). (14)

If r(t) becomesmonotonic, then LMD terminates. Otherwise,
repeat steps 1-8 on r(t).

FIGURE 3. LMD analysis result. (a) PFs; (b) Time-frequency distribution.

The LMD share similar properties as the EMD, i.e. it
separates the PFs in a frequency order from high to low,
and exhibits a dyadic frequency band decomposition property
when applied to white noise [54].

2) ILLUSTRATION
We apply the LMD to the synthetic signal in Section 3.1.
Fig. 3 (a) shows the first four PFs obtained from the LMD.
The first two correspond to the sinusoidal FM and AM com-
ponents respectively. The other two likely result from the
decomposition error. Their magnitudes are small, thus being
negligible. Fig. 3 (b) shows the time–frequency distribution.
It identifies the time–frequency structure of the sinusoidal
AM component in a fine time–frequency resolution. For the
sinusoidal FM component, when its instantaneous frequency
is almost linear around 1 s, the time–frequency distribu-
tion concentrates around the true instantaneous frequency.
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However, when its instantaneous frequency exhibits highly
nonlinearity around 0.5 s and 1.5 s, the time–frequency dis-
tribution deviates from the true one. In particular, when the
instantaneous frequencies of the two components are close,
around 0.5 s, distortion occurs to the waveform of PF1. These
flaws may mislead further analysis.

3) APPLICATION REVIEW
Although the LMD is a relatively new method, it has
been applied to fault diagnosis of machinery. For example,
Yang et al. [54] found the wavelet like frequency decom-
position property of LMD, thereby proposed an ensem-
ble improvement version to address the mode mixing
issue of the LMD, and applied it to rotor fault diagnosis.
Cheng et al. [55] used the LMD to diagnose bearing and gear
faults. Wang et al. [56], [57] used the extrema on the ends
to predict the local mean function and local amplitude on the
ends, thus alleviating end effects. They accordingly proposed
a new strategy to select the step size in moving average
for estimating the local mean function and the amplitude
function. They applied the improved local mean decompo-
sition method to fault diagnosis of rotors and gearboxes.
Liu et al. [58] applied LMD to analyze wind turbine gearbox
vibration signals, and selected the impulsive PFs for further
analysis and fixed-shaft gear fault diagnosis. Considering
the AM-FM feature of planetary gearbox vibration signals,
Feng et al. [59] utilized LMD to decompose signals into PFs,
and selected sensitive PFs with an instantaneous frequency
around the gear meshing frequency or harmonics, for quality
joint amplitude and frequency demodulation analysis and
further gear fault feature extraction. Zheng et al. [60] selected
the meaningful PF obtained from LMD based on mutual
information entropy, and used the generalized morphologi-
cal fractal dimensions of selected PF to detect gear faults.
Liu et al. [61] used second generation wavelet transform for
signal denoising, and then decomposed the denoised signal
into PFs to select a sensitive component. Through spectrum
analysis of the selected PF, they detected gearbox and loco-
motive rolling bearing faults. These works imply the potential
of LMD in vibration feature extraction for machinery fault
diagnosis.

4) REMARKS
The LMD suffers the same shortcomings of possible mode
mixing as the EMD does in resolving the time–frequency
structure of signals with close instantaneous frequency tra-
jectories and instantaneous frequency trajectory crossings.
Moreover, the smoothing and step size have a signifi-
cant effect on the decomposition, thus it is necessary to
properly select these two parameters according to signal
characteristics. Nevertheless, LMD provides a new way to
decompose multi-component signals into mono-components.
With the LMD, the mono-components are obtained via data
smoothing methods, rather than through cubic spline fitting
used in the EMD. Therefore the LMD may retain more of
the frequency and amplitude variations in signals than the

EMDdoes. The instantaneous frequency estimation approach
based on the normalized frequency modulated signal can
effectively avoid the possible distortion error caused by the
amplitude modulation effect, and ensure a positive instanta-
neous frequency.

C. INTRINSIC TIME-SCALE DECOMPOSITION
1) PRINCIPLE
Frei and Osorio [14] proposed a mono-component decompo-
sition method for complicated signal analysis, called intrin-
sic time–scale decomposition (ITD). The extrema in signal
waveforms imply the existence of oscillations. The con-
stituent mono-component is termed proper rotation compo-
nent (PRC) in ITD, which has strictly positive values at all
local maxima and strictly negative values at all local minima,
and is suitable to calculate the instantaneous frequency and
instantaneous amplitude. A PRC is actually a riding wave
with highest frequency on a baseline. In order to meet the
necessary requirement on PRCs, i.e. preserving the mono-
tonicity of the residual signal between adjacent extrema, the
baseline is constructed via linear transform based on extrema,
so that the characteristics of the raw signal can be transferred
to the baseline and the residual signal, and the temporal
information of critical points is precisely preserved, with a
temporal resolution equal to the time scale of the occur-
rence of extrema. In each decomposition, given the baseline,
a PRC can be obtained directly and immediately by subtract-
ing the baseline from the input signal.

For a signal x(t), define a baseline extraction operator L
to separate the lower frequency baseline signal, i.e.
Lx(t) represents the instantaneous mean of the signal, written
as L(t). Define Hx(t) = x(t) − L(t) the proper rotation
component, written as H (t). Then the signal can be decom-
posed as x(t) = L(t)+H (t). Based on above definitions, the
ITD algorithm is detailed as follows.
Step 1: Find the extrema of the signal x(t), written as xk ,

and the corresponding occurrence time instant τk , where
k = 0, 1, 2, · · · . Without loss of generality, let τ0 = 0.
Step 2: Suppose the operators L(t) and H (t) are given over

the interval [0, τk ], and the signal x(t) exists on the interval
[0, τk+2], then on the interval (τk , τk+1] between adjacent
extrema xk and xk+1, the piecewise baseline extraction oper-
ator is defined as

Lx(t)=L(t)=Lk+
Lk+1−Lk
Lk+2−Lk

[x(t)−xk ], t ∈ (τk , τk+1],

(15)

where

Lk+1=α[xk+
τk+1−τk

τk+2−τk
(xk+2−xk )]+(1−α)xk+1,

(16)

and 0 < α < 1, usually α = 0.5.
Step 3: The operator for extracting PRC is defined as

H (t) = Hx(t) = x(t)− Lx(t) = x(t)− L(t). (17)
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FIGURE 4. Definition of single wave, half wave and amplitude.

Take the baseline L(t) as the input signal x(t), and repeat
steps 1-3, until the baseline becomes a monotonic function
or a constant. Eventually, the raw signal can be decomposed
into PRCs and a trend

x(t) =
p∑
i=1

Hi(t)+ Lp(t), (18)

where p is the number of the obtained PRCs.
Given a mono-component PRC, its instantaneous ampli-

tude and frequency/phase can be extracted using a single
wave based method piecewise. Take Fig. 4 as an example
to introduce the definitions on single wave, half wave, and
amplitude. Zero up-crossing refers to the zero crossings when
the signal magnitude is increasing, see the points correspond-
ing to time instants t1 and t5. Zero down-crossing stands for
the zero crossings when the signal magnitude is decreasing,
for example the point at time t3. A single wave means the
waveform between two adjacent zero up/down-crossings, for
instance the one between time instants t1 and t5. A half wave
denotes the signal waveform between any two adjacent zero
crossings, for example the waveform between time instants
t1 and t3. t2 corresponds to the maximum of the positive half
wave A1. t4 is the time when the minimum of the negative
wave−A2 occurs. A monotonic interval refers to the duration
between any two adjacent extrema, for example [t2, t4].
Instantaneous amplitude is defined based on the half wave.

It is the signal amplitude at the extrema between two adjacent
zero crossings, and is constant for a half wave

A1(t) = A2(t) =

{
A1, t ∈ [t1, t3)
−A2, t ∈ [t3, t5).

(19)

Instantaneous phase is defined based on the single wave,
so as to guarantee the monotonicity of PRCs

ϕ(t) =



arcsin
[x(t)
A1

]
, t ∈ [t1, t2)

π -arcsin
[x(t)
A1

]
, t ∈ [t2, t3)

π -arcsin
[x(t)
A2

]
, t ∈ [t3, t4)

2π + sin
[x(t)
A2

]
, t ∈ [t4, t5).

(20)

FIGURE 5. ITD analysis results. (a) PRCs; (b) Time-frequency distribution.

In order to avoid the arcsin function, and improve the
computational efficiency, the instantaneous phase can be
estimated via linear interpolation to the phase values at the
extrema and zero crossings

ϕ(t) =



x(t)
A1

π

2
, t ∈ [t1, t2)

x(t)
A1

π

2
+

[
1− x(t)

A1

]
π, t ∈ [t2, t3)

−
x(t)
A2

3π
2
+

[
1+ x(t)

A2

]
π, t ∈ [t3, t4)

−
x(t)
A2

3π
2
+

[
1+ x(t)

A2

]
2π, t ∈ [t4, t5).

(21)

Given the instantaneous phase, the instantaneous
frequency can be calculated as the time derivative of the
instantaneous phase.

2) ILLUSTRATION
Fig. 5 shows the ITD analysis results. The first two PRCs
correspond to the sinusoidal FM and AM components respec-
tively. Other PRCs have small magnitudes, thus being negligi-
ble. When the instantaneous frequency of the FM component
approaches the constant carrier frequency of the sinusoidal
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AM component, around 0.5 s, both of them show distor-
tion in their time–frequency distributions, see Fig. 5 (b).
The time–frequency distribution resolves the frequency con-
tents and their time-varying profiles. However, it shows small
ripples around the true instantaneous frequency. In particular,
when the two instantaneous frequency trajectories are close
at 0.5 s, severe distortion happens to the waveform of PRC1.
This is possibly due to the low time resolution of the instan-
taneous amplitude and instantaneous frequency estimation
approach in ITD.

3) APPLICATION REVIEW
ITD has been tested in the field of machinery fault diagnosis.
An and Jiang [62], [63] used ITD to decompose bearing
vibration signal into PRCs, and selected the component with
dominant energy to construct feature vector for fault pat-
tern identification. Hu et al. [64] combined ensemble ITD,
wavelet packet transform and correlation dimension for wind
turbine fixed-shaft gearbox fault diagnosis. These studies
demonstrate that ITD has potential in analyzing complicated
and multi-component machinery vibration signals.

4) REMARKS
ITD separates the PRC in a frequency order from high to
low. It does not use spline to fit local extrema. As such, it
is free from the overshoot and undershoot errors in spline
interpolation to the signal envelope, works better in sup-
pressing the end effect and mode mixing, and thereby avoids
possible generation of spurious extrema and shift in or exag-
geration of the existing ones. Moreover, it does not involve
complicated sifting process in PRC separation, thus having a
low computational complexity, and avoids the smoothing of
transients and time–scale smearing due to repetitive sifting.
In terms of instantaneous parameter estimation, it defines
the instantaneous amplitude and instantaneous frequency of
PRC based on single wave analysis, thus being able to over-
come the drawbacks of traditional Hilbert transform based
methods, such as end effects, spikes in instantaneous fre-
quency and negative frequency values. However, ITD uses
linear transform to define the local mean baseline. This may
lead to distortion in the obtained components. In addition, the
instantaneous parameters are derived from single wave based
on local extrema, and they are constant between any two
adjacent extrema. Therefore, the time resolution is limited to
the interval between consecutive extrema.

D. LOCAL CHARACTERISTIC SCALE DECOMPOSITION
1) PRINCIPLE
For a mono-component waveform, if we connect the local
maxima and minima with lines respectively, then the upper
and lower lines are almost symmetric about the instantaneous
mean of the waveform. Inspired by this idea and the base-
line extraction approach in ITD, Cheng et al. [15] recently
proposed the local characteristic scale decomposition (LCD)
algorithm. Supposes any complicated signal consists of

several different intrinsic scale components (ISCs), and any
two ISCs are independent of each other. To guarantee the
instantaneous frequency be physically meaningful, based
on the local characteristic scale parameters of extrema, the
ISC is defined to meet the following two conditions:
Condition 1: In the whole data set, all the local maxima are

positive, all the local minima are negative, and the signal is
monotonic between any two adjacent extrema.
Condition 2: Among the whole data, denote the

extremaXk , and the corresponding occurrence time instant τk ,
where k = 0, 1, · · · ,K and K + 1 is the number of
extrema. Connecting adjacent maxima (minima) (τk ,Xk ) and
(τk+2,Xk+2), yields a line

lk (t) = (Xk+2 − Xk )
t − τk

τk+2 − τk
+ Xk . (22)

Suppose the line magnitudeAk+1, at the occurrence time τk+1
of minimum (maximum) Xk+1. Then, the ratio of mirror mag-
nitude Ak+1 to Xk+1 is constant, i.e. aAk+1+(1−a)Xk+1 = 0,
by default a = 0.5.

Condition 1 eliminates riding waves and guarantees the
ISC be mono-component. Condition 2 ensures the smooth-
ness and symmetry of the ISC waveform about the local
median. These two conditions make the ISC component a sin-
gle mode between two adjacent extrema and be a sinusoidal
curve locally, thus guaranteeing its instantaneous frequency
be physically meaningful.

Following the definition of ISC, a signal x(t) can be
decomposed into several mono-component ISCs through
LCD method:
Step 1: Find the local extrema (including both local minima

and local maxima) of x(t), and denote them as (τk ,Xk ).
Step 2: Calculate the mirror magnitude

Ak = (Xk+1 − Xk−1)
τk − τk−1

τk+1 − τk−1
+ Xk−1, (23)

and the center Lk = (Xk + Ak )/2. Note the index of Ak
and Lk is k = 2, · · · ,K − 1. By boundary extension meth-
ods, we can obtain (τ0,X0) and (τK+1,XK+1), and thereby
L1 and LK+1.
Step 3:Construct a centerlinem(t) bymeans of cubic spline

interpolation to all the center points (τk ,Lk ).
Step 4: Construct a prototype ISC h(t) = x(t)− m(t).
Step 5: If h(t) satisfies the ISC conditions, then set the

ISC c(t) = h(t). Otherwise, repeat steps 1-5 on h(t).
Step 6: Construct the residual signal r(t) = x(t)− c(t).
Step 7: If r(t) satisfies the stop criterion for LCD, then

set r(t) as the final residual signal, and terminate the
LCD process. Otherwise, repeat steps 1-7 on r(t).
The stop criterion is defined based on the standard devi-

ation between two consecutive sifting results for an ISC,
see (4). If the standard deviation is smaller than a given
threshold, for example 0.01, then stop the sifting.
LCD also separates ISCs in an order from higher frequency

to lower one. Its higher computational efficiency and better
performance in suppressing mode mixing and pseudo modes
have been demonstrated [15].

VOLUME 5, 2017 24311



Z. Feng et al.: Adaptive Mode Decomposition Methods and Their Applications

FIGURE 6. LCD analysis results. (a) ISCs; (b) Time-frequency distribution.

2) ILLUSTRATION
Fig. 6 displays the LCD analysis results. We apply the
Cauchy-type stop criteria for ISC sifting, and set the stan-
dard deviation to 0.01 following the suggestion in [15]. The
first two ISCs link to the sinusoidal FM and AM com-
ponents respectively. In terms of waveforms, the distortion
around 0.5 s, when the instantaneous frequencies of the
two components are close to each other, is alleviated. The
FM component has an almost constant amplitude, consistent
to the theoretical expectation. The time–frequency distribu-
tion, Fig. 6 (b), has good readability, and well resolves the
instantaneous frequency profile of the sinusoidal FM com-
ponent and the instantaneous amplitude variability of the
sinusoidal AM component.

3) APPLICATION REVIEW
A few works on application of LCD in complicated signal
analysis for machinery fault diagnosis have been reported.

In order to extract the intrinsic oscillations of rolling bear-
ing fault, Zheng et al. [15] decomposed signals using the
LCD, and extracted fault feature from the first a few ISCs.
Liu et al. [65] used LCD to decompose signals and further
extracted features for rolling bearing fault detection. These
works show the possibility of LCD in effectively separating
the oscillation component sensitive to fault from complicated
signals.

4) REMARKS
The LCD follows the same framework as EMD. The only
difference lies in the instantaneous mean extraction. It outper-
forms EMD in computational efficiency as well as mitigating
mode mixing and pseudo modes. However, it still uses cubic
spline interpolation to fit the instantaneous mean. Therefore,
it also suffers from end effects and mode mixing somehow.
How to address such issues deserves further investigation.

E. HILBERT VIBRATION DECOMPOSITION
1) PRINCIPLE
Inspired by the idea of EMD, Feldman [16] proposed
the Hilbert vibration decomposition algorithm for time-
varying complicated mechanical vibration signal analysis.
HVD applies Hilbert transform and synchronous detection
demodulation to estimate the instantaneous frequency and
instantaneous amplitude of signals. It decomposes a compli-
cated multi-component signal into mono-components in an
order from larger instantaneous amplitude to smaller ones.
This method is implemented via Hilbert transform only, but
does not involve other complicated techniques, therefore its
algorithm is simple [16].

HVD assumes the signal satisfies the following three
conditions:
Condition 1: The signal is a superposition of several quasi-

harmonic waves.
Condition 2: The instantaneous amplitude of each con-

stituent component differs.
Condition 3: The signal duration covers more than one

cycles of the slowest component.
For multi-component signals, both the instantaneous

frequency estimated via Hilbert transform and the in-
phase/phase shift quadrature signals include the slowly vary-
ing part corresponding to the largest amplitude and the
rapidly varying part of other components. The integral of
rapidly varying parts over time approaches to zero. There-
fore, the instantaneous amplitude, instantaneous phase and
instantaneous frequency of the slowly varying component
with the largest amplitude can be estimated through low pass
filter. Inspired by this idea, HVD method is designed as
below:
Step 1: For a signal x(t), construct its analytic signal via

Hilbert transform, and estimate the corresponding instanta-
neous amplitude a(t) and instantaneous frequency ω(t).
Step 2: Low pass filter the instantaneous frequency ω(t),

yielding the instantaneous frequency ω1(t) of the largest
amplitude component.
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Step 3: With the instantaneous frequency ω1(t) as the
frequency of reference signal, estimate the instantaneous
amplitude a1(t) and instantaneous phase ϕ1(t) of the largest
amplitude component, via synchronous detection and low
pass filtering. The synchronous detection method extracts the
amplitude details about a vibration component with a known
frequency by multiplying the initial vibration composition
by two reference signals exactly 90◦ out of phase with one
another. The in-phase part

xl=r (t) =
∑
l

Al(t) cos
[ ∫

ωl(t)dt + ϕl
]
cos

[ ∫
ω1(t)dt

]
=

1
2
Al(t)

(
cosϕl + cos

{ ∫
[ωl(t)+ ω1(t)]dt + ϕl

})
,

(24)

and the phase shifted quadrature part

x̂l=r (t) =
1
2
Al(t)

(
sinϕl + sin

{ ∫
[ωl(t)+ ω1(t)]dt + ϕl

})
,

(25)

where Al(t), ωl(t) and ϕl are the instantaneous amplitude,
frequency and phase of the lth component. Both the in-phase
and the quadrature part consists of a slowly function which
includes the amplitude and the phase, and a fast varying one
which includes the double frequency harmonics. In such a
case, it is possible to remove the oscillating part again by low
pass filtration, and thus obtaining the instantaneous amplitude
and instantaneous phase

〈xl=r (t)〉 =


1
2
Al(t) cosϕl, ωl = ω1

0, other,

〈
x̂l=r (t)

〉
=


1
2
Al(t) sinϕl, ωl = ω1

0, other,
, (26a)

Al(t) = 2
√
〈xl=r (t)〉2 +

〈
x̂l=r (t)

〉2
,

ϕl = arctan

〈
x̂l=r (t)

〉
〈xl=r (t)〉

. (26b)

Then, reconstruct the largest amplitude component as
x1(t) = a1(t) cos[

∫
ω1(t)dt].

Step 4: Subtract the largest amplitude component from the
original signal, yielding a new signal xl−1(t) = x(t) − x1(t).
Let x(t) = xl−1(t), and repeat steps 1-4, until the standard
error between two consecutive iterations becomes less than a
predefined threshold.

In each iteration, the instantaneous amplitude and instan-
taneous frequency are obtained from low pass filters. The
cut-off frequency of low pass filter determines the frequency
resolution of HVD. The smaller the cut-off frequency, the
better, when the accuracy and performance of low pass filter
are satisfied.

2) ILLUSTRATION
Fig. 7 shows the HVD analysis results of the synthetic
signal. We set the cut-off frequency of low pass filter

FIGURE 7. HVD analysis results. (a) Components; (b) Time-frequency
distribution.

to 0.03 times the Nyquist frequency based on the recom-
mendation in [16]. In Fig. 7 (a), the first two components
correspond to the sinusoidal AM component and FM com-
ponents respectively. They almost perfectly match the true
components, except minor distortion near boundaries due to
the end effect. The other component has minor magnitude
and is negligible. The time–frequency distribution has fine
resolution and good readability, see Fig. 7 (b). This helps
discern the time variability in both the FM instantaneous
frequency and the AM instantaneous amplitude.

3) APPLICATION REVIEW
Feldman [16]–[21] proposed the HVD for time-variant vibra-
tion signal analysis, and applied it to dynamic system identi-
fication, including moving load identification and vibration
modes separation. Braun and Feldman [19] also extended
the HVD to fault diagnosis of rolling bearings, gearboxes
and rotors. Qin et al. [66] constructed time-frequency rep-
resentation via HVD, and extracted the shaft misalignment
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features of a gas turbine. However, wide application
of HVD in machinery fault diagnosis has not been
reported.

4) REMARKS
HVD is primarily suited to analysis of quasi and almost
periodic signals. However, in machinery fault diagnosis,
we often focus on detection of impulses and transients.
Moreover, under time variant speed and loading condi-
tions, the vibration and acoustic signals exhibit strong non-
stationarity. Therefore, how to improve HVD, and extend
it to transient event detection, and aperiodicity and time
variability analysis, is still worth of further investigation
in-depth.

F. EMPIRICAL WAVELET TRANSFORM
1) PRINCIPLE
In order to construct an adaptive signal decomposition
with rigorous mathematical formulation, Gilles [22] pro-
posed empirical wavelet transform (EWT). This algorithm
builds adaptive wavelets capable of extracting AM-FM com-
ponents of a signal. It is motivated by a key idea that
such constituent AM-FM components have a compact sup-
port Fourier spectrum. Separating the different modes is
equivalent to segment the Fourier spectrum and to apply
some filtering corresponding to each detected Fourier sup-
port. The dilation factors in such wavelet do not fol-
low a prescribed scheme such as dyadic discretization but
are detected empirically according to the characteristics
of signal Fourier spectrum, thus termed empirical wavelet
transform.

Suppose the Fourier spectrum is separated into N con-
tinuous segments, each corresponds to a mode which cen-
ters around a specific frequency and has compact sup-
port. Assume K local maxima found in the spectrum, they
are sorted in a decreasing order (0 and π are excluded).
If K ≥ N , then keep only the first N − 1 maxima;
if K < N , then keep all the maxima and reset N to an
appropriate value.

Based on this set of maxima plus 0 and π , the bound-
aries of each segment are defined as the center between two
consecutive maxima. Let ωn denote the limit between each
segment, where ω0 = 0 and ωN = π , then each segment
is denoted as 3n = [ωn−1, ωn], and the Fourier support
[0, π] = ∪Nn=13n.
On each segment, the empirical scaling function and empir-

ical wavelet can be defined as band pass filters

φ̂n(ω) =



1,
|ω| ≤ ωn − τn

cos
{π
2
β
[ 1
2τn

(|ω| − ωn + τn)
]}
,

ωn − τn ≤ |ω| ≤ ωn + τn

0,
other

(27a)

ψ̂n(ω) =



1,
ωn + τn ≤ |ω| ≤ ωn+1 − τn+1,

cos
{π
2
β
[ 1
2τn+1

(|ω| − ωn+1 + τn+1)
]}
,

ωn+1 − τn+1 ≤ |ω| ≤ ωn+1 + τn+1

sin
{π
2
β
[ 1
2τn

(|ω| − ωn + τn)
]}
,

ωn − τn ≤ |ω| ≤ ωn + τn

0,
other

(27b)

respectively, where τn = γwn, when γ < min
n
[(ωn+1 −

ωn)/(ωn+1 + ωn), the set {φ1(t), {ψn(t)}Nn=1} is a tight frame
on space L2(R), β(x) is an arbitrary Ck ([0, 1]) function, and
in this paper

β(x) = x4(35− 84x + 70x2 − 20x3). (28)

Given the scaling and wavelet functions, EWT can be
defined. The detail coefficients are given by the inner prod-
ucts with the empirical wavelets

W (n, t) =
∫
x(τ )ψn(τ − t)dτ , (29)

and the approximation coefficients (we adopt the convention
to denote them) by the inner product with the scaling function

W (0, t) =
∫
x(τ )φ1(τ − t)dτ . (30)

The signal can be reconstructed by inverse empirical
wavelet transform

x(t) = W (0, t) ∗ φ1(t)+
N∑
n=1

W (n, t) ∗ ψn(t), (31)

where ∗ denotes convolution operator. According to this for-
malism, the empirical modes are defined as

x0(t) = W (0, t) ∗ φ1(t), (32a)

xk (t) = W (k, t) ∗ ψk (t). (32b)

Similar to wavelet transform, the EWT separate the empiri-
cal mode in a frequency order from low to high, but the band-
width is not dyadic since the frequency band is segmented
empirically.

The number of modes to be separated is a key parameter in
EWT. Gilles [22] proposed an empirical method to determine
the number. Let {Mk}

K
k=1 denote the set of K local maxima

in the signal Fourier spectrum. Assume this set is sorted in
a decreasing order (M1 ≥ M2 ≥ · · ·MK ) and normalized
in [0, 1]. Usually, the most important maxima are signifi-
cantly larger than the other maxima, i.e. the meaningful max-
ima are greater than some amount of the difference between
the biggest maximum M1 and the smallest maximum MK .
In practice, we can keep all maxima larger than a predefined
threshold MK + α(M1 −MK ), where the relative magnitude
ratio α around 0.3 and 0.4, which corresponds to a tradeoff
between too much detection and a good separation of the
information in the Fourier spectrum.
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FIGURE 8. EWT analysis results. (a) Components; (b) Time-frequency
distribution.

2) ILLUSTRATION
Fig. 8 shows the EWT analysis results of the synthetic signal.
Following the recommended spectrum segmentation method
in [22], the spectrum is divided into five subbands, therefore
five components are obtained, as shown in Fig. 8 (a). Unfor-
tunately, the EWT result does not preserve the integrity of
each constituent component, and they are split in frequency
domain. The first two together correspond to the sinusoidal
AM component, and the third through fifth together link to
the sinusoidal FM component. Anyway, the time-frequency
distribution of raw signal is a superposition of all the empiri-
cal modes’ time-frequency representation, thus may alleviate
the spectral splitting effect. The time-frequency distribution,

Fig. 8 (b), recovers the frequency contents and their time
variability almost perfectly, even though some distortions
exist at the instants when the constituent components are split
around 0.1 s, 0.9 s and 1.5 s, and small ripples emerge when
the two instantaneous frequency trajectories are close.

3) APPLICATION REVIEW
EWT has also been tried in signature extraction for machin-
ery fault diagnosis. Kedadouche et al. [67], [68] defined
the support boundaries of empirical wavelet filters based on
operational modal analysis, proposed a kurtosis based index
for selecting sensitive empirical modes, and detected rolling
bearing fault via envelope spectrum analysis of selected
empirical modes. Pan et al. [69] used EWT to separate impul-
sive components, and thereby detectedwind turbine generator
bearing fault. Chen et al. [70] proposed an adaptive spectrum
segmentation approach based on the local minima of scale
representation for EWT, and extracted the inherent modula-
tion feature of rolling bearing faults. Cao et al. [71] detected
the transient impulses by EWT, and thereby diagnosed train
wheel bearing faults. In order for decoupling diagnosis of
rolling bearing compound fault, Jiang et al. [72] proposed an
approach based on EWT and Duffing oscillator. They estab-
lished the fault isolator by incorporating each single fault fre-
quency with Duffing oscillator, separated fault signature into
empirical modes via EWT, fed the empirical modes into the
fault isolator, and identified each single fault by studying the
chaotic motion in Poincare mapping of fault isolator outputs.
These works have demonstrated the attractive capabilities of
EWT in machinery fault feature extraction.

4) REMARKS
EWT differs from conventional wavelet transform mainly
in non-dyadic partition of frequency band. How to segment
signal spectrum is necessary to well extract the constituent
empirical modes, and still needs further investigation in-
depth. This involves the number of modes to be seprated
and the frequency boundaries of each mode. To accurately
determine the number of modes, it could be interesting to use
the concept of best basis in the wavelet packets transform.
Usually, the center between two adjacent local maxima is
taken as frequency boundaries, but this does not use the
information of the spectrum shape and returns ‘‘perturbed’’
modes. A clustering viewpoint could provide a solution to
both problems.

G. VARIATIONAL MODE DECOMPOSITION
1) PRINCIPLE
Recently, Dragomiretskiy and Zosso [23] proposed the
variational mode decomposition (VMD). This algorithm can
non-recursively decompose a complicated multi-component
signal into constituent AM-FM components, and it is robust
to noise. VMD is an entirely non-recursive decomposition
method, and it extracts the constituent AM-FM components
of a complicated multi-component signal adaptively and
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concurrently. It defines IMFs as explicit AM-FMmodels, and
relates the parameters of AM-FM models to the bandwidth
of IMFs. According to the narrow-band property of IMFs, the
AM-FM parameters can be found by minimizing the band-
width, thus obtaining IMFs. This algorithm has good merits
over other available mode decomposition methods, such as
theoretical rationale and robustness to noise and sampling.

In essence, IMFs are AM-FM signals, and they have a
limited bandwidth. VMD decomposes a signal x(t) into an
ensemble of IMFs ck (t) that are band-limited about their
respective center frequency ωk , while reconstructing the sig-
nal optimally. It iteratively updates each IMF ck (t) in the
frequency domain, and then estimates the center frequency
ωk as the center of gravity of the IMF power spectrum.

Motivated by the narrow-band properties of the AM-FM
IMF definition, each IMF ck (t) is assumed to be mostly com-
pact around a center frequency ωk , i.e. it has specific sparsity
properties. The sparsity prior of each IMF is described by
its bandwidth. For each IMF ck (t), in order to assess its
bandwidth, its analytic signal is firstly computed by means
of Hilbert transform to obtain a spectrum of unilateral non-
negative frequency. Then, its spectrum is shifted to baseband
by multiplying with an exponential harmonic tuned to the
respective center frequency. Finally, the bandwidth can be
estimated through the squared l2 norm of the gradient. The
resulting constrained variational optimization problem is

min
{ck (t)},{ωk }

∑
k

∥∥∥∥ ∂∂t {[δ(t)+ j 1π t ] ∗ ck (t) exp }(−jωk t)
∥∥∥∥2
2
,

s.t.
K∑
k=1

ck (t) = x(t), (33)

where δ(·) is the Dirac delta function, the symbol ∗ denotes
the convolution operator, and K is the number of IMFs to be
extracted.

In order to render the optimization problem, (33), into
an unconstrained form, a quadratic penalty term and a
Lagrangian multiplier are introduced, for quick convergence
and strict enforcement of the constraint. Then the objective
function to be minimized becomes an augmented Lagrangian

L[{ck (t)}, {ωk}, λ(t)]

= α
∑
k

∥∥∥∥ ∂∂t {[δ(t)+ j 1π t ] ∗ ck (t) exp }(−jωk t)
∥∥∥∥2
2

+

∥∥∥∥∥x(t)−∑
k

ck (t)

∥∥∥∥∥
2

2

+

〈
λ(t), x(t)−

∑
k

ck (t)

〉
, (34)

where λ(t) is the Lagrange multiplier, α is the balancing
parameter of the data-fidelity constraint, and 〈·, ·〉 stands for
inner product.

The solution to the minimization problem, (33) can now be
found as the saddle point of the augmented Lagrangian (34),
in a sequence of iterative sub-optimizations [23].

Each IMF ck (t) can be updated as a solution to a minimiza-
tion problem equivalent to (34)

ck (t)

= argmin
ck

L({ck (t)}, {ωk}, λ(t)]

= argmin
ck

(
α
∑
k

∥∥∥∥ ∂∂t {[δ(t)+j 1π t ] ∗ ck (t) exp }(−jωk t)
∥∥∥∥2
2

+

∥∥∥∥∥x(t)−∑
k

ck (t)+
λ(t)
2

∥∥∥∥∥
2

2

. (35)

In the frequency domain, the solution to (35) can be found
as [23]

ĉk (ω) =

x̂(ω)−
∑
i6=k

ĉi(ω)+ 1
2 λ̂(ω)

1+ 2α(ω − ωk )2
. (36)

Then, the IMF in the time domain ck (t) can be obtained by
inverse Fourier transforming (36) and taking the real part.

The center frequency ωk associated with each IMF
ck (t) can also be updated as a solution to a minimization
problem equivalent to (34)

ωk = arg min
ωk

L({ck (t)}, {ωk}, λ(t)]

= arg min
ωk

∑
k

∥∥∥∥ ∂∂t {[δ(t)+ j 1π t ] ∗ ck (t) exp }(−jωk t)
∥∥∥∥2
2
.

(37)

It can be found as the center of gravity of the associated
IMF’s power spectrum [23]

ωk =

∫
∞

0 ω
∣∣ĉk (ω)∣∣2dω∫

∞

0

∣∣ĉk (ω)∣∣2 dω . (38)

The complete algorithm of VMD is summarized as
follows:
Step 1: Initialization: Let {ĉ0k (t)}, {ω̂

0
k }, λ̂

0(t), n be 0,
and predefine convergence threshold ε and the number
of IMFs K to be separated.
Step 2: Update each IMF ck (t) and its associated center

frequency ωk , for k = 1 : K and all ω ≥ 0

ĉn+1k (ω) =

x̂(ω)−
∑
i<k

ĉn+1i (ω)−
∑
i>k

ĉni (ω)+
1
2 λ̂

n(ω)

1+2α(ω−ωnk )
2 , (39)

ωn+1k =

∫
∞

0 ω

∣∣∣ĉn+1k (ω)
∣∣∣2dω∫

∞

0

∣∣∣ĉn+1k (ω)
∣∣∣2 dω . (40)

Step 3: Update the Lagrangian multiplier, for all ω ≥ 0

λ̂n+1(ω) = λ̂n(ω)+ τ
[
x̂(ω)−

∑
k

ĉn+1k (ω)
]
, (41)

where τ is the Lagrangian multiplier update parameter.
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Step 4:Check the convergence condition

∑
k

∥∥∥ĉn+1k (t)− ĉnk (t)
∥∥∥2
2∥∥ĉnk (t)∥∥22 < ε. (42)

If it is met, let ck (t) = ĉn+1k (t) and ωk = ω
n+1
k , and terminate

the decomposition. Otherwise, let n = n+ 1, return to step 2.
VMD decomposes a complicated signal into a specific

number of IMFs. These IMFs are AM-FM in nature, thus
we can estimate their instantaneous amplitude and instan-
taneous frequency. More importantly, the non-recursive and
concurrent decomposition nature of VMD effectively avoids
the shortcoming of recursive decomposition algorithms, such
as sensitivity to noise and sampling, over-shooting or under-
shooting of upper and lower envelope via interpolation to
extrema.

2) ILLUSTRATION
Fig. 9 shows the VMD analysis results of the synthetic sig-
nal. We set the number of IMFs and the tolerance to 4 and
1E-5 respectively, following the suggestions in [23]. The
sinusoidal AM component is well separated to be IMF1, as
shown in Fig. 9 (a), but the sinusoidal FM component is split
and distributed over IMF2-4. This defect is also caused by the
spectrum splitting effect, and harms the integrity of sinusoidal
FM component, but it can be alleviated in the time-frequency
distribution by superposing all IMFs’ time-frequency repre-
sentation. Fig. 9 (b) recovers the time-frequency structure of
the synthetic signal, despite some small ripples around the
true instantaneous frequencies.

3) APPLICATION REVIEW
Wang and his colleagues [73]–[75] discovered the wavelet
packet like frequency band decomposition property of VMD
based on fractal Gaussian noise simulations, and applied
VMD to extract the fundamental, sub-harmonics, super-
harmonics, and impacts of a gas turbine rotor-stator rubbing
fault, as well as impulsive components of rolling bearing
fault. An and Zeng [76] utilized VMD to analyze the nonsta-
tionary pressure fluctuation signal of a hydraulic turbine draft
tube. They showed that VMD is better than EMD in suppress-
ing mode mixing and improving time-frequency readability.
Tang et al. [77] proposed to decompose signals into multiple
components, and then use independent component analysis to
solve the underdetermined blind source separation problem.
They detected the compound fault of rolling bearings with
the proposed method. Lv et al. [78] extracted features from
the VMDbased time-frequency representation, and identified
rolling bearing faults. Yi et al. [79] improved the robustness
of VMD to sampling and noise via particle swarm opti-
mization, and utilized the proposed method to detect rolling
bearing faults.Mahgoun et al. [80] usedVMD to detect defect
impulses under variable speeds and loads, and verified the
feasibility via analysis of gear transmission dynamics simu-
lated signals. These studies have demonstrated that VMD can

FIGURE 9. VMD analysis results. (a) IMFs; (b) Time-frequency distribution.

effectively decompose complicated multi-component signals
into AM-FM components, and suppress noise interferences,
thus enhancing fault features.

4) REMARKS
VMD shares the same nature as EWT, because they are all
based on spectrum segmentation, but VMD goes further since
it considers the spectral shape and takes the gravity center of
spectrum as the center frequency of each IMF. However, how
to determine the number of IMFs to be separated is a key issue
in VMD.

H. NONLINEAR MODE DECOMPOSITION PRINCIPLE
1) PRINCIPLE
More recently, Iatsenko et al. [24] proposed the nonlinear
mode decomposition (NMD) for nonlinear and nonstationary
signal analysis. NMD decomposes an arbitrary complicated
signal into a set of physically meaningful modes for any
waveform, and in the meantime removes noise. It is designed
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based on a combination of time-frequency analysis, surrogate
data tests and harmonic identification, thus being robust to
noise and able to identify interdependent oscillations and dis-
tinguish deterministic from random activity. ‘‘Nonlinear’’ in
NMD is irrelevant to classical nonlinear analysis, but comes
from the fact that the resultant modes from the decomposition
method have complicated waveforms which are commonly
due to nonlinearities in either the generating system or the
measurement.

Signals generated from complicated systems are usually
composed of a mixture of different oscillations. They are
rarely purely sinusoidal, but show more complicated wave
shapes due to nonlinearities in the generating system and/or
the measurement apparatus, and are often characterized by
time-varying amplitudes and frequencies. To better consider
the complexity of such wave shape, nonlinear modes (NMs)
are defined as a sum of all AM-FM components correspond-
ing to the same activity,

c(t) = A(t)h[φ(t)] = A(t)
∑
i

ai cos[iφ(t)+ ϕi], (43)

where the wave shape function h[φ(t)] = h[φ(t) + 2π ] is
a periodic function of phase, which can be expanded as a
Fourier series due to its periodicity.

An arbitrary signal is assumed to consist of several NMs
cm(t) plus some noise n(t)

x(t) =
∑
m

cm(t)+ n(t). (44)

The ultimate goal of NMD is to extract all the constituent
NMs, and to find their characteristic parameters including
amplitudes A(t), phases φ(t), and frequencies f (t), as well
as the amplitude scaling factors ai and phase shifts ϕi of the
harmonics. The NMD algorithm is summarized as follows.
Step 1: Calculate the time-frequency representation of the

given signal based on the log-normal wavelet

ψ̂(ω) = exp[(−π f0 lnω)2], ωψ = 1, (45)

where f0 is the resolution parameter determining the trade-off
between time and frequency resolution (by default, it is set to
f0 = 1).
Step 2: Extract the dominant component (reference com-

ponent) from the time–frequency representation, and recon-
struct its characteristic parameters (including instantaneous
amplitude, instantaneous phase and instantaneous frequency)
through direct or ridge method Direct:

A(t) exp[jφ(t)] = C−1ψ

∫ ω+(t)

ω−(t)
WT(t, ω)

dω
ω
,

Cψ =
1
2

∫
∞

0
ψ̂(ω)

dω
ω
, (46a)

ω(t) = Re
[D−1ψ ∫ ω+(t)

ω−(t)
ωWT(t, ω) dω

ω

C−1ψ
∫ ω+(t)
ω−(t)

WT(t, ω) dω
ω

]
,

Dψ =
ωψ

2

∫
∞

0

1
ω
ψ̂∗(ω)

dω
ω
, (46b)

where [ω−(t), ω+(t)] is estimated as the widest region
of unimodal and nonzero time–frequency representation
amplitude around the time–frequency ridge ωp(t) =

argmax
ω
|TFR(t, ω)| at each time t , and ∗ denotes complex

conjugate.
Ridge:

ω(t) = ωp(t) exp{δ ln[ωd (t)]}, (47a)

A(t) exp[jφ(t)] =
2WT[t, ωp(t)]

ψ̂∗[ωψω(t)/ωp(t)]
, (47b)

where ωp(t) is the time–frequency ridge curve, and
δ ln[ωd (t)] is the correction for discretization effects found
by parabolic interpolation.

Usually, the direct method better recovers the time varia-
tions of amplitude and frequency but is less robust to noise
and interferences than the ridge method.
Step 3: Test the reference component against noise using

surrogates test method. The surrogates test criterion is moti-
vated by the following idea: if a component is true (and not
just formed from noise peaks picked in the time–frequency
plane), then it is expected to have more deterministic ampli-
tude modulation and frequencymodulation than the surrogate
components, which should be more stochastic; otherwise,
there will be no difference.

Construct the surrogates via Fourier transform, by inverse
Fourier transforming the Fourier transform of the compo-
nent with randomized phases of the Fourier coefficients. The
degree of order can be quantified by spectral entropy. So the
discriminating statistics for the surrogate test can be taken
as a combination of the spectral entropies of the extracted
amplitude A(t) and frequency f (t)

D(αA, αf ) = αAQ[Â(ω)]+ αfQ[f̂ (ω)], (48)

where the spectral entropy

Q[h(x)] = −
∫
|h(x)|2∫
|h(x)|2dx

ln
|h(x)|2∫
|h(x)|2dx

dx. (49)

Calculate D(1, 0), D(0, 1) and D(1, 1), and select the signifi-
cance as the maximum among them.

By default, generate Ns = 40 surrogates and set a signifi-
cance level to λ = 95%, rejecting the tested null hypothesis
of noise if the number of surrogates with Ds > D0 (where
D0 is the significance of the original component) is equal or
higher than Ns × λ = 0.95× 40 = 38.
If at least for one of them the null hypothesis is rejected, we

regard the component as true one but not noise, and continue
the decomposition. Stop the decomposition if it does not pass
this test.
Step 4: Check whether the subharmonics of the extracted

reference component is the fundamental harmonic. For
i = 1

2 ,
1
3 ,, do the following.

4.1To alleviate the computational burden, calculate the sig-
nal time-frequency representation within the time-frequency
support

ω
(i)
∓ = i

〈
ω(1)
p (t)

〉
+max(1, i)[ω(1)

∓ −

〈
ω(1)
p (t)

〉
], (50)
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using different resolution parameter f (i)0 ,

f (i)0 =


1
i
f (1)0 min(1, i), for STFT

f (1)0 min(1, i), for WT,
(51)

for each of which:
(i) Extract the ith harmonic of the reference component

from the time–frequency representation, and reconstruct its
amplitude, phase, and frequency. Given the fundamental
frequency ω(1)

p (t), the time–frequency ridge of ith harmonic
ω
(i)
p (t) is expected to lie in the same time–frequency support

as iω(1)
p (t). According to equations in step 2, the parameters

of ith harmonic can be reconstructed.
(ii)Check whether the current harmonic is a true one, using

surrogate data method to test against the null hypothesis of
independence between the first harmonic and the extracted
harmonic candidate. The following measures quantify the
degree of consistency between the first harmonic and the
extracted harmonic candidate, in terms of amplitude, phase
and frequency respectively

q(i)A = exp
{
−

√〈
[A(i)(t)

〈
A(1)(t)

〉
−[A(1)(t)

〈
A(i)(t)

〉
]2
〉〈

A(1)(t)A(i)(t)
〉 }

,(52a)

q(i)φ = a
∣∣∣〈exp {j[φ(i)(t)− iφ(1)(t)]}〉∣∣∣ , (52b)

q(i)f = exp
{
−

√〈
[f (i)(t)− if (1)(t)]2

〉〈
f (i)(t)

〉 }
. (52c)

An overall measure of interdependence between the harmon-
ics is constructed as

ρ(i)(βA, βφ, βf ) = [q(i)A ]βA [q(i)φ ]βφ [q(i)f ]βf , (53)

where parameters βA,φ,f defines weights to each of the con-
sistencies q(i)A,φ,f , and ρ

(i)
= ρ(i)(1, 1, 0) by default.

To eliminate the noise interference on the consistency,
we employ the idea of time-shifted surrogate, and calcu-
late the consistency ρ

(i)
d=1,··· ,Nd

(1, 1, 0) from time-shifted
time–frequency representations.

The probability for the extracted ith harmonic curve being
a true harmonic of the main one is quantified by the sig-
nificance of the surrogate test, i.e., by the ratio of number
of surrogates for which ρ(i)d < ρ

(i)
0 to the total number of

surrogates. A harmonic is regarded as true if the probability
is equal to or greater than 95%.

To eliminate the pseudo harmonics, a threshold ρmin =

0.5(βA+βφ ) (by default ρmin = 0.25) is imposed on the
probability, i.e. ρ(i) ≥ ρmin.

Then, a harmonic regarded as true if and only if it both
passes the surrogate test and satisfies the threshold condition.

4.2 If for some f (i)0 , the harmonic is true, then set
its characteristic parameters to those reconstructed for the
f (i)0 that is characterized by the highest consistency (52) with
the reference component among f (i)0 for which the harmonic
is identified as true.

4.3 Stop when a predefined number (default 3) of
consequent harmonics are identified as false for all
tested f (i)0 .
Step 5: If some harmonic is identified as true, take the

true harmonic with the smallest i as the reference component,
which is guaranteed to be the first harmonic of the corre-
sponding NM.
Step 6: Perform step4 for i = 2, 3, · · · , and store the

reconstructed parameters of the harmonics.
Step 7: Based on the parameters of the true harmonics,

reconstruct the full NM. The parameters of each harmonic
are refined by weighted averaging over the parameters of all
harmonics

Â(i)(t) =
〈
A(i)(t)

〉 ∑
i′ A

(i′)(t)∑
i′
〈
A(i′)(t)

〉 , (54a)

φ̂(i)(t) = arg
(∑

i′
min

(
1,
i′

i

) 〈
A(i
′)(t)

〉
exp

[
j
iφ(i

′)(t)−1φi′,i
i′

]

×exp
{
− j

2π
i′
round

[iφ(i′)(t)−i′φ(i)(t)−1φi′,i
2π

]})
,

(54b)

ω̂(i)(t) =

∑
i′ min(1, i

′

i )A
(i′)(t)iω(i′)/i′∑

i′ min(1, i
′

i )
〈
A(i′)(t)

〉 , (54c)

where 1φi′,i = arg(exp{j[iφ(i
′)(t)− i′φ(i)(t)]}).

Step 8: Subtract the reconstructed NM from the signal, and
repeat steps 1-7 on the residual.

Through NMD method, the full underlying oscillation
modes of any wave form can be recovered. It is highly adap-
tive, because most of its settings are automatically adapted
to the signal characteristics. Meanwhile, it is robust to noise,
and outputs physically meaningful modes, with a residue as
noise.

2) ILLUSTRATION
Fig. 10 shows the NMD analysis results. We utilize
direct method to estimate instantaneous parameters, and
set all NMD parameters to default values recommended
in [24]. The first two NMs exactly represent the sinusoidal
AM and FM components respectively, and their waveforms
perfectly reflect the temporal behavior of the true com-
ponents, as shown in Fig. 10 (a). Even though a third
NM is also extracted, its magnitude is so small that can
be neglected. The fine mono-component decomposition of
NMD helps well reveal the feature of each component,
and construct a high quality time–frequency representa-
tion, as shown in Fig. 10 (b). The time–frequency distri-
bution has a high time–frequency resolution, is free from
both inner and outer interferences, thus featuring a bet-
ter readability. These merits benefit identification of the
frequency contents and their time variability. As such,
the time–frequency structure of the two components is
well extracted, exactly consistent with the true theoretical
settings.
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FIGURE 10. NMD analysis results. (a) NMs; (b) Time-frequency
distribution.

3) APPLICATION REVIEW
Although NMD has excellent merits, it has not been widely
applied in machinery fault diagnosis. Only a few relevant
researches have been reported so far. Clemson et al. [81]
highlighted the advantages of NMD in complicated oscil-
latory mode separation, and suggested it for characterizing
the underlying time-dependent dynamics of living systems.
Zhang et al. [82] exploited the noise resistance and mono-
component decomposition capabilities of NMD to improve
the performance of adaptive optimal kernel time–frequency
representation, and applied it to extraction of time–frequency
structure of underwater acoustic signals.

4) REMARKS
Although NMD has good merits such as robustness to noise
and fine recovery of each individual complicated oscilla-
tion mode, it suffers from high computational complexity
due to the heavy burden in time–frequency ridge extrac-
tion and reconstruction, and surrogate data test as well.

In addition, its performance still essentially relies on tradi-
tional time–frequency analysis. Therefore, how to alleviate
the computational burden and further improve its time–
frequency resolving capability through appropriate time–
frequency representation methods still need investigation.

I. ADAPTIVE LOCAL ITERATIVE FILTERING
1) PRINCIPLE
In EMD, the instantaneous mean is defined as the mean
function of upper and lower envelopes. It is unstable under
perturbations, because cubic splines, which are susceptible
to singularities, are used to fit the upper and lower envelopes
by connecting local maxima and local minima respectively.

To overcome this drawback, Lin et al. [26] proposed an
iterative filtering algorithm. It follows the same algorithm
framework as EMD, but instead derives the instantaneous
mean by low pass filtering the signal. To guarantee the sta-
bility under perturbation and convergence, uniform double
average filter of fixed length is used.

However, to effectively analyze non-linear and non-
stationary signals, filters with compact support and flex-
ible length along time is highly desirable. To this end,
Cicone et al. [25] proposed an adaptive local iterative fil-
tering (ALIF) algorithm. It generalizes the existing iterative
filtering algorithm using non-uniform filters.

For signal filtration, long support filters are unsuitable
for transients detection, because they may mix features that
are far apart in a signal and contaminates the true event.
However, compact support low pass filters, such as the double
average filters, are not smooth enough, resulting in pseudo
oscillations in subsequent IMFs. To overcome this drawback,
filters are designed as the solution to the Fokker–Planck (FP)
equation,

∂

∂t
g(x, t) = −α

∂

∂x
[p(x, t)g(x, t)]

+β
∂2

∂x2
[q2(x, t)g(x, t)], α, β > 0, (55)

inspired by the diffusion process in partial differential equa-
tions. These FP filters have compactly support, and are
infinitely differentiable and smoothly vanishing to zero at
both ends. Such properties avoid the pseudo oscillations dur-
ing the iterative filtering process.

To capture the changes in a non-stationary signal, the filter
length must be adapted along time accordingly. Given a sig-
nal, the interval between consecutive local extrema reflects
the local average period of the highest frequency compo-
nent. Based on this idea, the adaptive filter length is set as
a multiple of the interval between consecutive local mini-
mum and maximum. To guarantee a smooth and continuous
filter length over time, the local extrema series is interpo-
lated, and then low pass filtered to remove high frequency
oscillations.

For a signal x(t), based on the above adaptive local
filter design approach, ALIF algorithm is summarized as
below:
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Step 1: Design an adaptive local FP filter g(t, τ ), and find
its time-varying filter length l(t).
Step 2: Calculate the instantaneous mean

m(t) =
∫ l(t)

−l(t)
x(t + τ )g(t, τ )dτ . (56)

Step 3: Construct a prototype IMF h(t) = x(t)− m(t).
Step 4: If h(t) satisfies the IMF conditions, then set the

IMF c(t) = h(t). Otherwise, repeat steps 1-4 on h(t).
Step 5: Construct a residual signal r(t) = x(t)− c(t).
Step 6: If r(t) satisfies the stop criterion for ALIF,

then set r(t) as the final residual signal, and terminate the
ALIF process. Otherwise, repeat steps 1-6 on r(t).

The stop criterion for the sifting process in step4 can
be set according to the standard deviation of two consec-
utive sifted results, see (4). When the standard deviation
reaches a predefined threshold, the sifting process stops. The
ALIF algorithm stops when the residual signal r(t)
becomes a trend, i.e. it has one local extremum at
most.

2) ILLUSTRATION
Fig. 11 shows the ALIF decomposition analysis results.
We apply the Cauchy-type stop criteria for IMF sifting, and
set the standard deviation to 6E-5 following the suggestion
in [25]. The first two IMFs represent the sinusoidal FM and
AM components respectively, and the residue has a small
magnitude so that can be neglected, as shown in Fig. 11 (a).
In the time–frequency distribution, Fig. 11 (b), some rip-
ples appear around 0.5 s for the sinusoidal FM compo-
nent. Meanwhile, the instantaneous frequency of sinusoidal
AM component fluctuates in the duration from 0.5 s to 1.5 s,
even it has a constant carrier frequency. This is mainly caused
by the error of instantaneous frequency calculation.

3) APPLICATION REVIEW
Application of the ALIF algorithm in machinery fault diag-
nosis or in other signal analysis relevant fields has been
very limited, because it is one of the most recently pro-
posed algorithms. An et al. [83] utilized ALIF to decompose
rolling bearing vibration signals, and extracted fault features
from the envelope spectrum of AM-FM mono-component.
An et al. [84] further applied ALIF to multi-scale analysis
of vibration signals, and constructed feature vector based on
the selected IMF by singular vector decomposition for wind
turbine roller bearing fault diagnosis.

4) REMARKS
The local filter is a key factor in theALIF algorithm. The filter
form is set as a solution to the FP equation, and the support
length in time domain is adapted to the interval between
consecutive local extrema. The cut-off frequency of low pass
filter is another important parameter for the local filter to
effectively separate the instantaneous mean. How to set this
parameter has not been well studied.

FIGURE 11. ALIF analysis results. (a) IMFs and residue;
(b) Time-frequency distribution.

IV. INSTANTANEOUS FREQUENCY ESTIMATION
APPROACHES
A. PRINCIPLE
Instantaneous frequency is necessary for revealing the fre-
quency contents and their time variability of nonstationary
signals, and thereby understanding the detailed generating
mechanisms and the true physical nature reflected by signals.
To finely estimate the instantaneous frequency of a mono-
component, various approaches have been proposed, includ-
ing analytic signal, direct quadrature, normalized Hilbert
transform, energy separation and generalized zero-crossing
approaches.

1) HILBERT TRANSFORM BASED ANALYTIC SIGNAL
The most well-known instantaneous frequency estimation
approach is based on analytic signal via Hilbert transform.
Given a real signal x(t), its analytic signal is defined as

z(t) = x(t)+ jHT[x(t)] = a(t) exp[jφ(t)], (57)
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where, the Hilbert transform

HT[x(t)] =
p
π

∫
∞

−∞

x(τ )
t − τ

dτ , (58)

p is the Cauchy principal value, the instantaneous amplitude

a(t) = {x2(t)+ HT2[x(t)]}
1
2 , (59)

the instantaneous phase

φ(t) = arctan
{
HT[x(t)]
x(t)

}
. (60)

The instantaneous frequency can be estimated as the local
derivative of the instantaneous phase

ω(t) =
dφ(t)
dt

. (61)

For this approach to generate a physically meaningful
instantaneous frequency, the signal is required to satisfy some
crucial necessary conditions: the signal is monocomponent,
zero mean locally, and the waveform is symmetric about the
local zero mean. Usually, the aforementioned adaptive mode
decomposition algorithms in Section 3 can separate a signal
into such mono-components [6]–[26].

In addition, Bedrosian and Nuttall theorems impose a
furhter constraint: the Fourier spectra of the instantaneous
amplitude a(t) and the carrier signal exp[jφ(t)] do not overlap.
Otherwise, the AM variations will contaminate the FM part,
and the instantaneous frequency is subject to the influence by
the AM variations, resulting in occasional negative frequency
values [27], [28].

2) EMPIRICAL AM-FM DECOMPOSITION
The mono-components obtained from adaptive mode decom-
position algorithms do not satisfy the Bedrosian and
Nuttall theorems automatically. To address this issue,
Maragos et al. [29] proposed empirical AM-FM decompo-
sition method.

The empirical AM-FM decomposition is based on iterative
applications of cubic spline fitting to the local maxima of
the signal absolute value, and separates the AM and FM
parts of any IMF signal uniquely but empirically through a
normalization scheme:
Step 1: Initialization: Given an IMF c(t), set iteration index

i = 1, residual signal r0(t) = c(t).
Step 2: For the residual signal ri−1(t), identify all the local

maxima of its absolute value.
Step 3: Fit to the local maxima using a cubic spline, obtain-

ing the empirical envelope ei(t).
Step 4: Normalize the residual signal ri−1(t) using the

empirical envelope ei(t), obtaining the normalized residual
ri(t) =

ri−1(t)
ei(t)

. Through the absolute value data fitting, the
normalized signal is guaranteed symmetric about the zero
mean.
Step 5: Check the stop criterion, if ri(t) ≤ 1 for all t , termi-

nate the normalization, and designate the empirical FM part
F(t) = ri(t) = cos[φ(t)], which is a purely FM function with

unity amplitude, and the AM part a(t) = c(t)
F(t) =

i∏
k=1

ek (t).

Otherwise, let i = i+ 1, go to step1 and repeat steps 2-5.
After empirical AM-FM decomposition, the IMF can be

written as

c(t) = a(t)F(t) = a(t) cos[φ(t)]. (62)

It separates any IMF empirically and uniquely into the
corresponding instantaneous amplitude (AM) and the carrier
signal (FM) parts. The obtained normalized carrier signal has
unity amplitude, thus satisfying the Bedrosian and Nuttall
theorem automatically, and enabling us to compute the direct
quadrature.

The cubic spline fitted envelope serves as a better approach
to the normalization operation. As a result, the empirical
AM is smooth, and is devoid of the higher frequency fluctu-
ation and overshoots. On the contrary, for the instantaneous
amplitude obtained from the modulus of analytic signals, any
nonlinear distortion in the raw signal waveform could cause
even worse waveform deformation in the normalized signal.

The normalization process could cause some deformation
of the raw signal waveform, but it is negligible, because:
for a pure FM signal, its periodicity is mainly controled by
the zero-crossings in addition to the extrema, and the zero-
crossings are not altered in the normalization process.

3) DIRECT QUADRATURE
Direct quadrature avoids the Hilbert transform, which
involves integral over time and is affected by neighboring
data, thus enabling an exact estimation of instantaneous fre-
quency [28]. The empirical FM signal derived from empirical
AM-FMdecomposition, is the carrier signal of the raw signal,
and contains the instantaneous frequency informaiton. Sup-
pose it is a cosine function F(t) = cos[φ(t)], its quadrature
can be derived as

sin[φ(t)] =
√
1− F2(t). (63)

There are two approaches to calculate the instantaneous
phase based on the empirical FM signal: by taking the inverse
cosine

φ(t) = arccos[F(t)], (64)

or by taking the inverse tangent

φ(t) = arctan
[√

1− F2(t)
F(t)

]
. (65)

Both approaches are based on differentiation only, and do
not involve integral, thus preserving finely the instantaneous
phase information of arbitrary form. As such, the resultant
instantaneous phase is truly local, free from influences by
any neighboring points. However, the former inverse cosine
approach sometimes is unstable around the local extrema.
The latter inverse tangent approach improves the computa-
tional stability. In addition, it uses all the four quadrants to
uniquely calculate the phase angle, which is critical for proper
phase unwrapping. To improve the stability at some possible
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irregularities, the inverse tangent approach is modified with a
median filter.

4) NORMALIZED HILBERT TRANSFORM
The empirical FM signal has identical unity amplitude, auto-
matically satisfying the Bedrosian and Nuttall theorems.
So the instantaneous phase can be calculated using the Hilbert
transform based analytic signal method.

φ(t) = arctan
{
HT[F(t)]
F(t)

}
. (66)

The results from this approach are almost the same as the
direct quadrature one, but they are different from those by
the latter where the signal waveform has distortions. Such
distortions are usually caused by changes in the instantaneous
phase, violating the conditions imposed by the Bedrosian
and Nuttall theorems. As such, only an approximate instanta-
neous frequency can be obtained via the normalized Hilbert
transform (NHT) [28].

5) GENERALIZED ZERO-CROSSING
Zero-crossing approach estimates local frequency as half the
inverse of interval between consecutive zero-crossings. It is
the most fundamental one for local frequency estimation, but
the result is constant over the period between zero-crossings,
leading to a crude temporal resolution. To improve the perfor-
mance, Huang et al. [28] took both the zero-crossings and the
local extrema as the critical control points, and proposed the
generalized zero-crossing (GZC) approach. This can improve
the temporal resolution to a quarter wave period.

In the generalized scenario, we can obtain seven frequency
values in three different classes. For the first class, the
time interval between two consecutive critical control points
of exactly the same type is considered as an entire wave
period. For example, the interval between two consecutive up
(or down) zero-crossings or two consecutive maxima
(or minima) can be counted as one whole period. Such
defined whole wave periods exactly cover a combination
of all the four types of critical control point. As such, we
may have four different period values at each time, when we
consider a whole period with different critical control point
as the starting point. We denote such whole periods as T4i,
where i = 1, · · · 4.

For the second class, the interval between any two con-
secutive zero-crossings (from an up zero-crossing to next
down one, or from a down zero-crossing to next up one),
or any two consecutive extrema (from a maximum to next
minimum, or from a minimum to next maximum), can be
counted as a half period. Such defined half wave periods
exactly cover two critical control points of the same kind,
either the zero-crossings or local extrema. Therefore, we
may have two different half period values at any time, when
we take different critical control point as the starting point.
We write such half periods as T2i, where i = 1, 2.
For the third class, the interval between any two con-

secutive critical control points (from an extreme to next

zero-crossing, or from a zero-crossing to next extreme) is
considered as a quarter period. Such defined quarter wave
periods exactly cover a combination of both extrema and
zero-crossings yet only one from each type. Thus, we can
have only one quarter period value at any instant, when we
view different critical control point as the starting point. We
express such quarter period as T1.

At a given time, we calculate the mean frequency based on
a weighted sum of the above three classes of period as

ω̄ =
2π

w1 + 2w2 + 4w4

(
w1

4T1
+

2∑
i=1

w2

2T2i
+

4∑
i=1

w4

T4i

)

=
π

6

(
1
T1
+

2∑
i=1

1
T2i
+

4∑
i=1

1
T4i

)
, (67)

where the quarter period T1 has the best time localization,
thus being assigned a weight ofw1 = 4. The half period T2i is
given a weight ofw2 = 2 because of its less time localization.
The whole period T4i is set a weight of w4 = 1 for its least
time localization.

The GZC approach is derived from fundamental frequency
definition based on wave period, yet does not involve any
transform or differentiation. Thus it is direct and robust,
and produces the most physically meaningful mean local
frequency. In terms of algorithm, it is easy to implement,
once the mono-components are available. However, its time
localization is crude, being local down to a quarter period
at most. It is also unable to represent waveform distortions,
because it does not admit harmonics and intra-frequency
modulations.

6) ENERGY SEPARATION
The energy separation (ES) approach is effective in esti-
mating both the instantaneous frequency and the instanta-
neous amplitude of arbitrary time-varying modulated signals.
It does not need to construct any basis functions, and is a
completely data-driven algorithm adaptive to the local struc-
ture of a signal. It has attractive features such as high time–
frequency resolution, adaptability to instantaneous feature,
and low computational complexity [29], [30].

Teager energy operator is a nonlinear differential operator.
It can estimate the energy required to generate a signal by
means of nonlinear combination of the instantaneous signal
values and its derivatives [29], [30]. For any signal x(t), the
Teager energy operator 9 is defined as

9[x(t)] = [ẋ(t)]2 − x(t)ẍ(t), (68)

where ẋ(t) and ẍ(t) are the first and the second derivatives of
x(t) with respect to time t, respectively. Actually, the output
of energy operator tracks the energy required to generate the
signal x(t). Its counterpart for discrete time signals is defined
as

9[x(n)] = [x(n)]2 − x(n− 1)x(n+ 1). (69)

Equation (69) shows that the Teager energy operator only
needs three samples to calculate the signal source energy at
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TABLE 1. Root mean squared error (RMSE) of instantaneous frequency
estimation.

any time and thus it has a good adaptability to the instanta-
neous changes in signals and an excellent ability to resolve
transient events.

For signals of slowly time-varying or constant ampli-
tude and frequency, the absolute value of instantaneous
amplitude a(t) and the instantaneous frequency ω(t) can be
estimated as

|a(t)| =
9[x(t)]
√
9[ẋ(t)]

, (70a)

ω(t) =

√
9[ẋ(t)]
9[x(t)]

. (70b)

B. ILLUSTRATION
To illustrate the aforementioned instantaneous frequency esti-
mation approaches, we generate an AM-FM signal

x(t) = [1+ 0.9 cos(2π fAMt + π/3)]

× cos[2π fcarriert + cos(2π fFMt)], (71)

where the signal carrier frequency fcarrier = 1000 Hz,
the modulating frequency of AM and FM parts fAM =

fFM = 80 Hz, and the sampling frequency is 80000 Hz. This
AM-FM signal is representative, because both its instan-
taneous amplitude and instantaneous frequency vary with
time.

Fig. 12 shows the instantaneous frequency estimation
results of the synthetic AM-FM signal, using the HT, DQ,
NHT, GZC and ES approaches respectively, and Table 1 lists
their estimation error. All the approaches identify the profile
of the instantaneous frequency curve. HT has a small root
mean squared error, but it suffers from some spikes, as shown
in Fig. 12 (b). GZC shows some steps due to its low time
resolution, as presented in Fig. 12 (e), resulting in the largest
error. Fig. 12 (f) displays the ES result, it has some ripples,
and its error is larger than that of HT. The imperfection,
for example spikes, steps and ripples, in approximation to
the instantaneous frequency would mislead further analy-
sis, such as time–frequency representation and frequency
demodulation. DQ generates a better result. Although its
error is larger than that of HT, it perfectly approximates the
true instantaneous frequency curve, as shown in Fig. 12 (c).
NHT produce the best result in terms of both approximation
error and fitting consistence with the true instantaneous fre-
quency curve, as presented in Fig. 12 (d).

C. APPLICATION REVIEW
The instantaneous frequency estimation approaches have
been applied in machinery fault diagnosis. Liang and
Bozchalooi [85], [86] exploited the capability of the

FIGURE 12. Instantaneous frequency estimation results. (a) Signal
waveform; (b) HT; (c) DQ; (d) NHT; (e) GZC; (f) ES.

Teager energy operator in tracking transient changes in sig-
nals to detect impulses and thereby to diagnose bearing and
gear faults. Ghazali et al. [87] compared the instantaneous
frequency estimation approaches, including HT, NHT, DQ,
energy separation and cepstrum approaches, and found that
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the NHT, DQ and energy separation approaches are useful
for leak detection of pipeline networks via pressure transient
analysis. Wu et al. [88] proposed an instantaneous dimen-
sionless frequency normalization method to characterize gear
fault under variable running speed. They calculated instanta-
neous frequency based on NHT, GZC and DQ approaches,
and then normalized the instantaneous frequency by the shaft
rotating frequency to remove the effect of variable rotat-
ing speed. Furthermore, they extracted gear fault feature in
joint time-dimensionless frequency distribution and marginal
dimensionless frequency spectrum. Later, Wu et al. [89]
extended the idea to rolling bearing fault diagnosis under
variable speeds. Chen and Lin [90] calculated the instanta-
neous frequency and mean local frequency of IMFs obtained
from EEMD based on DQ and GZC approaches respec-
tively, and used the deviation of the instantaneous frequency
from the mean local frequency to quantify the nonlinearity
and nonstationarity of vehicle-track coupling systems for
vehicle health monitoring. They showed the capability by
case studies of wheels out-of-roundness and yaw damper
failure.

D. REMARKS
All the above instantaneous frequency estimation approaches
are based on mono-components. To satisfy the mono-
component requirement, a multi-component signal should
be decomposed into its constituent mono-components firstly.
Usually, GZC provides the most stable local mean frequency,
but cannot accurately track the instantaneous frequency of
intrawave FM process due to the lower time resolution. The
energy separation algorithm is also subject to a constraint that
the instantaneous amplitude and instantaneous frequency of
signals do not vary too fast or too greatly with time compared
to the carrier frequency. Hilbert transform based analytic
signal approach is widely used, but it requires the mono-
component meet the Bedrosian and Nuttall theorems. The
empirical AM-FM helps satisfy this condition, and make so
derivedNHT andDQ perform better. NHT ismore stable than
DQ, but DQ is more accurate than NHT.

V. APPLICATION EXAMPLES
In this section, we aim to demonstrate the performance
of adaptive mode decomposition with some representative
application examples using some typical methods. Consid-
ering the complexity issue existing with machinery dynamic
signals due to the multi-component nature, strong nonsta-
tionarity and time-varying modulation, we have focused
on adaptive mode decomposition algorithms like EEMD,
ITD and VMD, as well as instantaneous frequency estima-
tion approaches such as Hilbert transform and energy sep-
aration. We concentrate on both rotors, gears and rolling
bearings as representative research targets, because their
signals feature morphological diversity, such as harmonics,
modulations and impulses. For each case, we select one
appropriate method to demonstrate its performance in real
applications.

A. ROTOR VIBRATION SIGNAL ANALYSIS VIA ENHANCED
VMD BY ITERATIVE GENERALIZED DEMODULATION
Effective extracting rotating frequency harmonic compo-
nents, and tracking their frequency and amplitude changes,
are a key to success in rotating machinery condition moni-
toring and fault diagnosis, since these frequency components
contain key information about a rotating machinery health.
Under time variant conditions, particularly variable speed
conditions, rotating frequency and its harmonic components
exhibit modulation features and even overlap in frequency
domain, because they change over time following the profile
of variable speed yet at different changing rates. VMD can
effectively separate modulation mono-components from a
signal, and provides a potential approach for nonstationry
rotating machinery vibration signal analysis. However, it is
limited to signals without spectral overlaps only, because
it is based on narrow-band properties of the AM-FM IMF
definition and thereby requires all components separable
in frequency domain. To address such a limitation issue
with VMD, and generalize VMD to more general signals
with spectral overlaps, we propose to improve VMD via
iterative generalized demodulation [91]. Step 1: Through
generalized demodulation, transform a target component into
a component of an almost constant frequencywithout spectral
overlaps with and thus separable from others. Step 2: Separate
the target constant frequency component via VMD, and select
it according to its center frequency. Step 3: By applying
inverse generalized demodulation on the target constant fre-
quency component, recover the original target component.
Through iterative application of steps 1-3, each time with a
demodulation phase function specially designed for a spe-
cific target component, all the constituent mono-component
can be separated. Given mono-components, their respective
instantaneous frequency can be calculated based on empirical
AM-FM decomposition and NHT, and the time–frequency
distribution of original signal can be constructed accordingly.
Through time–frequency analysis, the frequency contents of
a rotating machinery vibration signal and their time variabil-
ity can be revealed effectively. We validated the proposed
method by applying it to the rotor vibration signal of a real
hydroturbine in a hydraulic power station during a shut-down
transient process.

Fig. 13 shows the analysis results. In the time–frequency
distribution derived from enhanced VMD via iterative gen-
eralized demodulation, Fig. 13 (a), all the prominent com-
ponents are clearly identified, and the time variability of
each component is well tracked, by virtue of good time–
frequency readability. The rotating frequency and its harmon-
ics up to the fourth order can be clearly seen throughout
the shut-down process. Additionally, transient components
appear around 4.5 Hz during the whole process. However, in
the time-frequency distribution derived from original VMD,
Figure 13 (b), only the rotating frequency is roughly dis-
cerned, against some surrounding noisy speckles. Its har-
monics are severely twisted and even lost. For example,
from 10 s to 20 s, the second to fourth harmonics are lost.
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FIGURE 13. Time–frequency distribution of a hydroturbine vibration
signal. (a) Enhanced VMD; (b) Original VMD.

From 20 s on, even though two rippling time-frequency ridges
are coarsely revealed around the second and fourth harmon-
ics, they deviate largely from the true ones and even cross
each other. Additionally, transient components around 4.5 Hz
are not discovered at all. This comparison demonstrates
the outperformance of enhanced VMD over original VMD
in processing nonstationary signals with spectral overlaps
between constituent components.

B. PLANETARY GEAR FAULT DIAGNOSIS BASED ON ITD
Planetary gearbox vibration signals feature complicatedmod-
ulations, thus leading to intricate sideband structure and
resulting in difficulty in fault characteristic frequency identi-
fication. Intrinsic time–scale decomposition has unique mer-
its, such as high adaptability to changes in signals, low
computational complexity, good capability to suppress mode
mixing and to preserve temporal information of transients,
and excellent suitability for mono-component decomposition
of complicated multi-component signals. In order to address

the issue with planetary gearbox fault diagnosis due to the
multiple modulation sources, a joint amplitude and frequency
demodulation analysis method is proposed, by exploiting the
merits of intrinsic time–scale decomposition. The signal is
firstly decomposed into a series of mono-component proper
rotational components, and the instantaneous frequency of
eachmono-component is calculated via the single wave based
method, see Part C in Section III. Then the one with its
instantaneous frequency fluctuating around the gear mesh-
ing frequency or its harmonics is selected as the sensitive
component. Next, Fourier transformation is applied to the
instantaneous amplitude and instantaneous frequency of the
sensitive component to obtain the amplitude and frequency
demodulated spectra respectively. Finally, a planetary gear-
box fault is diagnosed by matching the peaks in the ampli-
tude and frequency demodulated spectra with the theoretical
gear fault characteristic frequencies. We validated the pro-
posed method by analyzing the lab experimental signals of
a planetary gearbox [92]. The localized faults of sun, planet
and ring gears are diagnosed, showing the effectiveness of
the method. Take the planet gear fault case as an example.
Fig. 14 displays the analysis result. In the envelope spec-
trum of selected sensitive PRC and the Fourier spectrum of
corresponding instantaneous frequency, Fig. 14 (b) and (c),
prominent peaks emerge at the planet gear fault character-
istic frequency and its harmonics mfp, as well as their sum
and difference combination with the planet carrier rotating
frequency mfp ± fc. Moreover, some peaks exist at the planet
carrier rotating frequency and its harmonics nfc, as well as the
sun gear rotating frequency f (r)s . This is because the planet
gear fault will result in an uneven load distribution among
planet gears and thereby will magnify the AM effect of planet
carrier rotation on gear meshing vibrations. These features
accord with the planet gear fault symptom in amplitude and
frequency demodulated spectra, thus implying the planet gear
fault.

C. ROLLING BEARING FAULT DIAGNOSIS USING EEMD
AND TEAGER ENERGY OPERATOR
Periodic impulses in vibration signals and their repeating
frequency are the key indicators for rolling bearing localized
defect detection. Teager energy operator is effective in detect-
ing and highlighting impulsive components, while it requires
the signal to be mono-component. EEMD has capability
to decompose an intricate signal into mono-components.
By virtue of EEMD and Teager energy operator, a new
method is proposed to extract the characteristic frequency of
rolling bearing fault. The signal is firstly decomposed into
mono-components by means of EEMD to satisfy the mono-
component requirement by Teager energy operator. Then the
IMF of interest is selected according to strong correlation
with the original signal and higher kurtosis value. Next Teager
energy operator is applied to the selected IMF to detect fault
induced impulses, by virtue of its good ability to highlight
and detect transients. Finally Fourier transform is applied to
the obtained Teager energy series to identify the repeating
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FIGURE 14. Planet gear fault signal. (a) Waveform; (b) Envelope
spectrum; (c) Fourier spectrum of instantaneous frequency.

frequency of fault induced periodic impulses, and thereby
to diagnose rolling bearing faults. The proposed method has
an excellent capability to finely detect transient impulses
induced by localized defects, and thereby to resolve the
periodicity of the impulse train. The resultant Teager energy
spectrum is free of intricate sidebands, and can directly reveal
the repeating frequency of periodic impulses characteristic
of bearing faults, thus enabling easy interpretation of fault
symptoms. We validated the proposed method by signal anal-
yses of seeded fault experiments [93]. Fig. 15 shows the
analysis results of a rolling bearing of compound faults with
localized defect on its outer race, inner race and ball. In the
Teager energy spectrum, Fig. 15 (c), prominent peaks are
present, and the first most significant ones appear at the outer
race characteristic frequency fo, its harmonics minus the cage
rotating frequency 2fo − fc and 3fo − fc, the ball characteris-
tic frequency and its harmonic plus/minus the cage rotating
frequency fb ± fc and 3fb + fc, and inner race characteristic
frequency fi, in addition to the shaft rotating frequency fs.
These frequencies relate to all the key component of rolling

FIGURE 15. Rolling bearing compound fault signal. (a) Waveform;
(b) Selected sensitive IMF waveform; (c) Teager energy spectrum
of sensitive IMF.

bearings, hence they indicate fault existence on the outer,
inner races and ball, being consistent with the actual com-
pound fault experimental settings.

VI. SUMMARY AND PROSPECTS
Adaptive mode decomposition is inspired by the idea behind
EMD initiated in 1998. It is a remarkable conceptual progress
from conventional orthogonal basis expansion to data-driven
signal representation adaptive to arbitrary complicated sig-
nals. After nearly two decades of development, important
achievements have been made on this method. Various adap-
tive mode decomposition algorithms and instantaneous fre-
quency estimation approaches have been proposed, and their
feasibility and capability in processing nonstationary com-
plicated signals have been demonstrated in many reported
studies from various fields.

This paper presents a systematic review of both adaptive
mode decomposition algorithms and instantaneous frequency
estimation approaches. These methods have their respective
pros and cons, as summarized in Table 2 In real applications,
one should select a proper method according to the specific
characteristics of signals.
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TABLE 2. Comparison of various adaptive mode decomposition methods.

At present, adaptive mode decomposition has become an
important research topic, and is attracting more and more
researchers’ attention. However, for real world complicated
signal analysis in the field of machinery fault diagnosis, there
are still some important issues to be investigated in-depth.

Except NMD, all the other adaptive mode decomposition
methods are unable to effectively separate closely spaced
frequency components. For signals composed of highly time-
varying instantaneous frequencies and with spectral overlaps,
particularly with instantaneous frequency crossings, nearly
all the methods are unable to separate the constituent mono-
components. Therefore, these methods are mostly effective
for signal analysis under constant running conditions. They
are also applicable to some certain nonstationary cases where
running conditions change monotonically and slowly. How
to generalize these methods to more general cases under
arbitrary nonstationary running conditions is a key research
topic, since machinery often works under variable speeds and
the dominant rotating frequency and harmonics have spectral
overlaps or even frequency crossings.

In mechanical engineering, signals are often contaminated
by noise. This may lead to mode mixing in adaptive mode
decomposition. Noise assistance has been demonstrated an

effective approach to address the mode mixing issue in
EEMDand ELMD. It would be an interesting and useful topic
to study the effect of all kinds of noise on adaptive mode
decomposition algorithms, and further develop correspond-
ing noise assisted ensemble versions, to address the mode
mixing issue.

It would be helpful to develop multivariate algorithms of
adaptive mode decomposition. Usually, the number of modes
obtained from an adaptive mode decomposition algorithm
varies among different signals. As such, it is difficult to select
a specific mode for comparison study among different sig-
nals, because of the incomparability among modes even with
the same mode label. If multiple channel signals are treated
as a multivariate signal, then the same number of modes can
be produced via multivariate adaptive mode decomposition.
This is useful to conduct some specific analyses by combin-
ing the modes with the same mode label, for example, full
spectrum and even holo spectrum. Hence, extension of exist-
ing adaptive mode decomposition algorithms to multivariate
version is an important research direction.

Regarding the characteristics of specific signals, how
to select proper and true constituent components for fur-
ther analysis is another important topic. Adaptive mode
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decomposition usually produces more than one mode.
Among all the obtained modes, some are true and contain
the main information of interest, while the others might be
pseudo and misleading. There still lacks a universal criterion
to figure out the true and key modes of interest. In terms of
signal feature extraction for machinery fault diagnosis, cor-
relation of modes with original signal helps identify the true
constituent ones, but cannot guarantee the selected one con-
tain fault information. The instantaneous frequency of each
mode is useful to assist mode selection, because fault signa-
ture is usually carried or manifested by specific frequencies.
For example, gear damage information is often carried by the
gear meshing frequency and its harmonics, rolling bearing
defect feature is usually conveyed by the resonance frequen-
cies, and rotor fault characteristics are commonly manifested
by the rotating frequency and its harmonics. Therefore, it
is suggested to include the instantaneous frequency as an
additional index to select key and sensitive modes for further
analysis.

Adaptive mode decomposition based time–frequency
analysis is a better approach to nonstationarity analysis, tran-
sient detection, and time variability examination. For com-
plicated multi-component signals, a quality time–frequency
representation relies on finemono-component decomposition
and accurate instantaneous frequency estimation. Most of
the current publications focus on early reported methods,
such as the EMD and LMD decomposition algorithms and
the HT estimation approach. Other methods have not been
extensively studied. Therefore, it is necessary to investigate
in-depth and exploit well the capabilities of both adaptive
mode decomposition algorithms and instantaneous frequency
estimation approaches, and construct quality time-frequency
representations for complicated signal analysis in machinery
fault diagnosis field.

Complicated signal analysis is a common yet key issue
for machinery fault diagnosis. Appropriate signal analysis is
important to identify the constituent components of signals
and extract their features. Adaptive mode decomposition is
highly adaptive and flexible in describing arbitrary signals,
thus provides an effective approach to complicated signal
analysis in machinery fault diagnosis.
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