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ABSTRACT Low-dose CT is an effective solution to alleviate radiation risk to patients, it also introduces
additional noise and streak artifacts. In order to maintain a high image quality for low-dose scanned CT data,
we propose a post-processing method based on deep learning and using 2-D and 3-D residual convolutional
networks. Experimental results and comparisons with other competing methods show that the proposed
approach can effectively reduce the low-dose noise and artifacts while preserving tissue details. It is also
pointed out that the 3-D model can achieve better performance in both edge-preservation and noise-artifact
suppression. Factors that may influence the model performance, such as model width, depth, and dropout,

are also examined.

INDEX TERMS Low-dose CT, convolution neural network, residual learning, 3D convolution.

I. INTRODUCTION

X-ray Computed Tomography (CT) provides major anatom-
ical and pathological information of the human body for
medical diagnosis and treatment. However, repetitive clinical
CT examinations require reducing the radiation dose. This
issue has become an urgent and challengeable focus in the CT
research field. Three main approaches have been considered
to improve the quality of low-dose CT images: projection data
filtering, iterative reconstruction algorithms and CT images
post-processing. The easier access to Filtered Back Projec-
tion (FBP) reconstructed CT images and to the projection
data obtained from the manufacturers opens the way for post-
processing methods which offer good implementability and
expansibility to existing CT scanner equipment in hospi-
tals [1]. Chen et al. proposed a large-scale non-local mean
algorithm to remove the low-dose CT (LDCT) [2] artifacts
via a nonlinear large scale filter correction [2]. Loubele
et al. [2] reported an effective processing of abdomen LDCT
images based on a sparse representation using a pre-trained

dictionary. Deep learning techniques have recently been con-
sidered to tackle this problem. A  Multi-layer
Perceptron (MLP) machine based method was introduced
to learn the mapping from the noisy images to the corre-
sponding noise-free images and has shown an impressive
performance in image restoration [5]. However, the appli-
cation of MLP with fully connected layers is often limited
by the requirement of fixed input/output size and the weight
parameter explosion in network training. In [7], a residual
convolutional network architecture was designed to build the
relationship between the wavelet coefficients of low-dose
and high-dose CT images. Han et al. [7] proposed a U-net
structured architecture with residual learning to predict the
artifacts in sparse-angle reconstructed CT image. Although
the Convolutional Neural Networks (CNN)-based denoising
model has achieved desirable noise and artifact removal,
the limitation is that they are all based on two-dimensional
convolution operations and have ignored the 3D structure
continuity, leading so to tissue detail loss (vessel for instance).
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This paper explores the application of residual network
in LDCT image processing. The proposed residual net-
work (ResNet) performs noise-artifact removal by predicting
the residual component (mainly composed of noise-artifact
component) between the LDCT images and the correspond-
ing high-dose CT (HDCT) images included in the training
dataset. 2D and 3D ResNet versions are evaluated using these
clinical data. The structure of this paper goes as follows.
The residual network architecture is introduced in section II.
In section III, the 2D image-to-image residual network to
learn the mapping from the LDCT images to the residual
component containing noise and artifacts is explained in
detail. The factors that may influence the model perfor-
mance, such as network depth, width, dropout are analyzed.
In section III, the proposed model is extended to 3D. The
conducted experiments are described in section IV and their
results compared to other methods. The overall research is
summarized in section V.

Il. RESIDUAL NETWORK ARCHITECTURE

Commonly used network architectures include plain network,
with connections only between adjacent layers, and multi-
branch network structured as directed acyclic graph. Deep
network layers (i.e. deep CNN) provide an improved rep-
resentation accuracy of image features. Some examples of
plain networks are AlexNet [10] to VGGNet [10]. How-
ever, a gradient diffusion tends to occur when the depth is
increased, which might result in training failure. This gra-
dient diffusion problem can be solved by ReLU and Batch
Normalization (BN) [11] to some extent. Indeed, as the net-
work depth continues to increase, both the training error and
the testing error surprisingly increase. ResNet [12], a typical
representative of multi-branch networks, has been introduced
to solve this difficulty. ResNet tries to learn the local and
global features via skip connections combining different lev-
els, and so, to overcome the incapability of integrating differ-
ent level features found in plain networks. The most notable
difference between residual and plain networks is the residue
estimation strategy. They share however some basic elements
such as the convolution operator, the activation layer, the loss
function, and the optimization method.

A. RESIDUAL NETWORK

Compared to the plain network in Fig. 1(a), a residual net-
work [12] consists of an ensemble of basic residual unit, con-
taining two stacked convolution layers, as shown in Fig. 1(b).
Here x; and x;4 are the input and output of the /-th residual
unit respectively, F (x) denotes the residue mapping of the
stacked convolution layers. W, represents the convolution
weight of the /-th layer. If the dimensions of the input x; and
the mapping F (x;) match in the element-wise addition, their
relation can be expressed by

X1 =x+F (x1, {W;}) (D

Otherwise, a dimension mapping convolution layer is
needed in the skip connection, whose convolution kernel is
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FIGURE 1. Plain network and residual network: (a) plain network,
and (b) residual network.

represented as W, thus
X1 = F (g, {Wi}) + Wixg )
Recursively, from the 0-th layer to the L-th layer, Eq. (2)
L—1

can be expressed as x;, = xo+ Y F (x, {W;}). Such residual

network appears as a straightl_a(zldition operation between
layers except for the activation and BN layers.

He et al. [14] suggest that the form of residue should be
as simple as possible, with a shortcut connection minimum
train error and test error. But provided that the residue is 0.5x,
convolution or dropout will block the forward and backward
propagation, leading to an increased error [14]. Therefore,
this paper adopts the shortcut connection, and the convolu-
tion layer, which aims at realizing the dimension mapping,
is added only when the dimensions do not match.

Using ResNet with the skip connection, a simple identity
mapping directly connects the input and output layers. It has
the same computational complexity as the plain network
with the same depth because no extra parameters need to be
learned and the only computation required is the gradient of
loss with respect to the input.

B. BATCH NORMALIZATION

Batch Normalization [11] can be used to solve the internal
covariate shift, which is caused by the change of distribution
of each layer’s input after the convolution and activation
layers during training. With the batch normalization, the input
of each layer is normalized to zero mean and unit variance,
then scaled and shifted to restore the distribution. It was
pointed out in [11] that the dependence on dropout can be
reduced due to the regularization role of BN. Another merit
of BN is that it can significantly accelerate the CNN training
because the inputs of each layer have a similar distribution.

C. LOSS FUNCTION

The strategy of residual learning [7] is adopted to learn the
residue in the ResNet processing. The benefit of learning
residue is that it can avoid building complicated regression
model for mapping LDCT images to HDCT images due to
the inherently rich details in CT images. To measure the sim-
ilarity between the predicted residue N’ and the real residueN,
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which can be obtained by subtracting HDCT image Q from
LDCT image P in the training dataset, we can build the loss
function J (W, b) as follows:

1 <& o
TW.b) = |— J(W,b; 0} @)
(W, b) [m; x@y
m—1 s Si41

SEEEW) o

I=1 i=1 j=1

where m is the sample number in current batch, and
J (W, b) is the loss of these samples. (xi,yi) is the i-th
sample. J (W, b; x®, y(i)) is the mean square error (MSE)
of the i-th sample, which is defined as J (W, b; x©, y) =

C—1R-1

re L X IN'G0) =N G5
and]C are respectively the width and height of the sample.
The second term in Eq. (3) is the regularization term called
weight decay. n; is the number of convolution layers. s; is the
number of nodes in the [ — th layer, and s;41 is the number of
nodes in the [+ 1 — th layer. The weight can be constrained by
setting different weight decay parameter A. A smaller A will
lead to a wider weight range.

The Adam optimization method [15] can dynamically
update the learning rate of parameters using the unbiased
estimation of the gradient’s first moment m and the second
moment v during backward propagation. This Adam opti-
mization method is used to minimize the MSE in this study.

z,whereN = P—-—Q R

Ill. LOW-DOSE CT IMAGE POST-PROCESSING

In this paper, we construct 2D and 3D CNN residual convo-
lution network models with skip connection to process low-
dose CT images.

A. 2D NETWORK

The randomly sampled and cropped 128 x 128 low-dose CT
and the corresponding noise patches, obtained by subtracting
high-dose CT images from the corresponding low-dose CT
images, are used as the training set. We design an end-to-
end architecture as depicted in Fig. 2. Here the Adam method
is used to minimize the MSE between the output of the last
convolution layer and the actual residual images (low-dose
noise). In [14], it was pointed out that a simple zero padding
strategy does not generate boundary artifacts. This technique
was used here in order to ensure that the size of the output
image is equal to the original input size. For each layer, the
numbers of convolution kernels are set to 64, the size of the
convolution kernel are set as 3 x 3 and the convolution stride
to 1. Then, the entire CT slides are input into the trained
model to estimate the residual data contained in the LDCT
images, since our model is independent of the input size by
the fact that a fully convolution layer is used instead of a fully
connection layer. Experiments were conducted to explore
the factors that might influence the model performance, e.g.
model width, depth and dropout options. We analyzed three
different depths by setting n (the number of basic units for
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FIGURE 2. 2D ResNet based Low-dose CT post-processing architecture.

plain network or residual network), leading to a total of 12,
16, 24 convolution layers (the layer number is 2n + 6), in the
plain network and the residual network.

TABLE 1. 2D residual network with increased width.

. channel
layer kernel size
number
Cl _conv, Cl _bn, Cl _relu 3x3 32
C2 _conv, C2_bn, C2_relu 3x3 64
C3 _conv, C3 bn, C3 _relu 3x3 96
C4 _conv 3x3 96
resBlock1 bn, resBlockl relu
- - 128
resBlockl conv 3x3 <3
resBlock2 bn, resBlock2 relu 3x3 128
resBlock2 conv
res_sum
res_bn, res_relu
10
€10_conv 3x3 64
C10_bn, C10_relu
C11_conv 3x3 1

In order to study the influence of the convolution
kernel number in each network layer, we compared the
2D-Resnet-9 network with a broader network, whose param-
eters are listed in table 1. The cell across multiple step lines
of the table represents the skip connection in the residual
network. Here, the suffix of layer name ‘conv’ represents the
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TABLE 2. 3D residual network.

layer kernel size
Cl_conv 3x3x3
C2_conv 3x3x1
C3_conv 3x3x%3
C4 conv 3x3x1
resBlockl_conv 3x3x3
resBlock2 conv L x3x 1} .
res_sum
C10_conv 3x3x%3
Cl1_conv 3x3x1

convolution, besides, ‘bn’ is the BN and ‘relu’ represents
the ReLU activation function. The suffix ‘sum’ presents
the element-wise summation. The prefix ‘C# denotes the
#-th convolution layer. ‘res’ indicates the layer related to the
residual blocks. ‘resBlocki’ denotes the i-th convolution layer
in the residual network. 3 x 3 denotes the convolution kernel
size and the channel number is the number of kernels in the
current convolution layer.

B. 3D ARCHITECTURE

The 2D network model merely extracts features into single
slides and thus it does not take into account the spatial
continuity of the tissues and organs. Therefore, keeping the
same model, we extend our 2D architecture to 3D. The 3D
training blocks are so small that the layer-wise zero padding
may lead to a loss of the original details in CT blocks.
3D convolution is just applied in the valid respective field,
which represents image field without padding, of the former
input layer and, in such a way, the output size of the model
is smaller than the input. The LDCT images are randomly
sampled and cropped into 44 x 44 patch from the adjacent
24 CT slices. These 44 x 44 x 24 blocks constitute the residue
images used as the training set. The blocks is preprocessed
into zero mean and unit variance. The stride is equal to 1 and
the number of feature map is 64 in the convolution layer.
The considered kernel sizes are listed in table 2. A non-
padding convolution layer for dimension mapping is added
in the shortcut connection because the dimensions of the two
inputs of the element-wise summation are not identical. The
3D model is also independent of the input size, and the several
adjacent CT slices are directly fed into the network to obtain
the prediction.

IV. RESULTS AND EVALUATION

The data set for evaluation was provided by AAPM Low-
Dose CT Grand Challenge thanks to the Mayo Clinic [15]
which consists of low-dose and high-dose CT images from
10 patients, with 512 x 512 resolution. The utilization of
the real projection data is permitted with signed agreement
authorized by the Mayo clinic. The high-dose scanning
voltage is 100kV or 120kV and the X-ray tube current varies
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from 200 mA to 500mA. The slice thickness is 1 mm. Pois-
son noise was inserted into the high-dose projection data to
simulate the corresponding 25% of the high-dose data.
The reconstructed CT images using both the high-dose and
the low-dose projection data are provided in the challenge
dataset. We use 9 patient CT images as the training data set
(5,080 CT slices in total). The remaining patient data set is
used as the test data to validate the algorithm performance.
We randomly sample small patches over the whole training
set to allow more images to be included in the training process
in single batch. Mean value subtraction and variance nor-
malization were carried out on each patch to obtain training
samples with an approximate Gaussian distribution.

The computer platform was configured as follows: CPU
is Intel(R) Core(TM) i7-4790K 4.00GHz; GPU is NVIDIA
gtx1080 with 8G memory. We used the MatConvNet deep
learning framework [17], the Matlab version R2015b, and
the MSRA [18] method to initialize the weights of convo-
lution layers. The learning rate is set to 0.001 (halved every
40 epochs), the weight decay to 107, The moments for
the Adam algorithm were respectively set as default values
0.9 and 0.999. The batch size was set respectively to 64 and
2 for 2D and 3D networks to fully exploiting GPU memory.
Following the principle that stacked small convolution ker-
nels can achieve the same receptive field size as the large
kernels, whereas saving memory, we adopted the small con-
volution kernel size 3 x 3 for all networks. The model training
has last 150 epochs.

The final results are obtained by subtracting the LDCT
images to the residue components estimated using the trained
residual network, including the comparison with iterative
total-variation (TV) reconstruction [20]. They are illustrated
in Fig. 3. Sagittal views of the lung and liver are also depicted
in V and Fig. 5, respectively. It can be clearly seen in the
abdomen window illustrations (Fig. 3 and Fig. 4) that the 3D
ResNet model have the best performance in preserving the
inherent details and textures in CT images (see the red arrows
in Fig. 3 and Fig. 4). Similar results can be observed for the
results for the lung window illustrations (Fig. 5) for both the
2D and 3D ResNet models.

The average values of PSNR, SSIM, RMSE and MAE
(refer for definitions to [21]) for the different methods are
listed in Table 3. It can be seen in this table that 3D-Resnet-
3 model leads to the best results for all evaluation mea-
sures. The 2D-Resnet-3 model is slightly better than the
2D-plain-3. When compared to the BM3D [22], Non-Local
Means (NLM) [2], Dictionary Learning (DL) [4] and Dis-
criminative Feature Representation (DFR) [22], the Resnet-
based model provides better image quality. To give fair
comparisons, the parameters of these competing methods
were optimized to get the best results in terms of PSNR
values.

It can be visually observed in Fig. 3 the improvements
brought by the residual CNN model. The 3D model bet-
ter preserves the continuous structures like the vessels
and organ edges (see the features indicated by red arrows
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FIGURE 3. Selected axial views of the 2D and 3D post-processing results. The first column is original LDCT image; the second column is the reference
HDCT image; the third column is the iterative TV reconstruction results; the fourth and fifth columns are the 2D and 3D results, respectively.

in Fig.3-Fig.5). Table 3 shows that the 3D model has reached
substantially higher PSNR and SSIM and lower MSE values
than the 2D models. The computation time on a single GPU
for each CT image using the 2D model is 0.3s while for the 3D
model is 0.25s. The results in Table 3 also show that the resid-
ual networks have better performance than plain networks
when the same depth is used. It can be noted in Fig. 6 that
training error and testing error decrease in both plain net-
works and residual networks when the depth increases. The
extremely deep 2D-resnet_deep-20 model (n = 20, 46 layers
in total) performs also very well.

24702

Training MSE values of the original and the broaden net-
works (the cost is an increased computation time and more
memory resource) are depicted in Fig. 7. We can see that the
broader network with more convolution kernels at each layer
can lead to a better suppression of noise and artifacts in the
training phase while a worse performance is observed in the
testing phase due to the overfitting.

The BN operation can reduce the dependency with
dropout [23] due to its regularization effect. In order to
explore the influence of dropout on the CT post-processing
performance, the original 2D-Resnet-9 (only BN) and
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TABLE 3. Quantitative evaluation of 2D and 3D processing with the
residual network.

Quality Evaluation PSNR SSIM RMSE MAE
2D-plain-3 39.4846 09427  21.8932  13.3266
2D-plain-5 39.4928 09431  21.7116  13.2390
2D-plain-9 39.5220 09436  21.6387  13.1992

. 2D-resnet-3 39.4204 09430  21.7321  13.2589
Single 2D
el 2D-resnet-5 39.4950 09432  21.7061  13.2262
2D-resnet-9 395177 09437  21.6495  13.1690
2D-resnet_broaden-9  39.228 09413  22.3837 13.5412
2D-resnet_deep-20 395293 0.9432  21.6205  13.2049
2D-resnet dropout-9  39.5362  0.9435  21.6033  13.2083
2D-resnet-3 + 395236 09433 216347  13.2045
resnet-5
2D-plain-3 + resnet-3  39.5208  0.9433  21.6416  13.2113
Coupled D ¢ deen-20 +
2D models -resnet_ceep- 39.5902  0.9438 21.4695 13.1391
2D-resnet_dropout-9
2D-resnet_broden-9 +
2D-resnei_ dropout.9 395126 0.9434  21.6620 13.2217
Single 3D 3D-resnet-3 39.8320  0.9454 208779 12.9163
model
c ] BM3DP" 373669 09168 27.7319  16.5695
ompeting NLM®! 372040 09143  27.9660 16.9213
methods a1
DFR??" 37.7377  0.9274 265733 154111

(d) (e

FIGURE 5. Selected sagittal view of 2D and 3D post-processing results in
lung window. (b), (c), (d), (e) are the zoomed views of the original LDCT
images, the original HDCT images, and the corresponding results of 2D
resnet-3 and 3D resnet-3 networks. (a) The sagittal view. (b) LDCT.

(c) HDCT. (d) 2D resnet-3. (e) 3D resnet-3.

FIGURE 4. Selected sagittal view of 2D and 3D post-processing results in
abdomen window. (b), (c), (d), (e) are the zoomed views of the original
LDCT images, the original HDCT images, and the corresponding results
of 2D resnet-3 and 3D resnet-3 networks. (a) The sagittal view. (b) LDCT.
(c) HDCT. (d) 2D resnet-3. (e) 3D resnet-3.

2D-Resnet_dropout-9 (containing BN+-dropout) networks
are compared in Fig. 8. It appears that the network with
dropout added before the last convolution layer has improved
convergence. However, we can see that the Resnet-9 with the
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FIGURE 6. Solid lines denote training loss, and dashed lines are testing
loss. Left: plain networks. Right: Residual networks. (the legend is
formatted ‘A-B-n’, ‘A" denotes the training and testing phase; ‘B’ is the

network type, ‘plain’ means the plain networks, ‘resnet’ is the residual
networks; ‘n’ represents the number of basic element blocks, here n is

selected from the values in {3, 5, 9}).

dropout operation leads to lower convergence loss in the test-
ing stage, indicating that the dropout boosts the generalization
ability.
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8
train-resnet-2
7.5 train-resnet_broden-9
7
1]
5.5
=
E_
R
5 i i i I I i
20 40 60 80 100 120 140
epoch

FIGURE 7. Training error of original 2D-resnet-9 and broaden
2D-resnet-9. (the legend is formatted ‘A-B-9', ‘A’ denotes the training
phase; ‘B’ is the network type, ‘resnet’ is the original residual networks,
‘resnet_broden’ is the residual networks with increased width; ‘9’
represents the number of basic element blocks is 9, namely n=9.

10
i Lest-resnet-9
Sk train-resnet-9
== | meeevrenem test-resnet_dropout-9
8 -."‘".\,.ﬁ train-resnet_dropout-9
a T = d
& =L"‘-1:'-11L'-."'*\:.-_-'-.u'*ﬂ*;_...-.a,....,,......'-...r.a..-
b
7
i k\x___
5
50 100 150
epoch

FIGURE 8. Training and testing error of original BN only 2D-resnet-9 and
2D BN+dropout 2D-resnet-9.(the legend is formatted ‘A-B-9', ‘A’ denotes
the training and testing phase; ‘B’ is the network type, ‘resnet’ is the only
BN resnet, ‘resnet_dropout’ is the resnet with dropout added; ‘9"
represents the the number of basic element blocks is 9, namely n = 9).

The effect of jointly trained 2D denoising models has also
been explored. As illustrated in Table 3, the two coupled mod-
els can improve slightly the post-processing performance.
As an example, the association of 2D-Resnet_deep-20 with
2D-Resnet_dropout-9 shows better results than any other
single 2D models.

V. CONCLUSIONS AND PERSPECTIVES
Deep learning approaches have made breakthrough in many
applications in the field of visual vision due to their powerful
capability on feature representation. This work addressed
low-dose CT post-processing based on residual network.
Experimental results have shown that the proposed 2D or 3D
networks have good performance on preserving image details
and removing noise-artifact structure as well. Especially,
it has been also found that the 3D network architecture is able
to yield better results than the equivalent 2D model due to its
ability to account for the three-dimensional tissue structures.
The 2D model is thus suggested for CT scans with sick
thickness, which implies poor structure continuity between
neighboring slices.

Our work in progress will focus on methodologi-
cal issues (such as compensating the contrast loss after
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processing) and extended clinical assessment. Further work
will also include incorporating the deep learning strategy into
iterative reconstruction framework to obtain reconstruction
with higher image quality.
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