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ABSTRACT In this paper, an integrated fault diagnosis method is proposed to deal with fault location
and propagation path identification. A causality graph is first constructed for the system according to
the a priori knowledge. Afterward, a correlation index (CI) based on the partial correlation coefficient is
proposed to analyze the correlation of variables in causality graph quantitatively. To achieve accurate fault
detection results, the proposed CI is monitored by probability principal component analysis. Moreover, the
concept of weighted average value is introduced to identify fault propagation path based on reconstruction-
based contribution and causality graph after detecting a fault. Finally, the new proposed scheme would be
practiced with real industrial HSMP data, where the individual steps as well as the complete framework were
extensively tested.

INDEX TERMS Joint data-driven, fault location, propagation path identification, causality graph, PPCA.

I. INTRODUCTION
Fault diagnosis is essential to modern industrial processes to
keep the process within a controllable safety operating region.
Thanks to the development of new networked instruments
and sensor technology, a large amount of process data can
be collected and stored. Consequently, the data-driven based
fault diagnosis methods become mainstream technology in
process monitoring [1]–[5]. Multivariate statistical process
monitoring (MSPM) techniques have been developed to
extract useful information from a large number of highly cor-
related process variables. Probabilistic principal component
analysis (PPCA) [6] is one of the most widely used meth-
ods in the MSPM field. It can handle incomplete data well,
even data with some missing values by using the conditional
probability density of the variables [7]. Simultaneously, the
probabilistic model can be determined by the expectation
maximization (EM) algorithm, which is easy to combine with
other methods as a mixture model [8]–[10]. However, lacking
analysis of the relationships between process variables, the
propagation paths of faults cannot be identified.

For online fault diagnosis, contribution plot and its
improved methods have become popular diagnostic tools

to identify faulty variables [11]. The contribution plot has
been firstly presented to isolate fault variables by comparing
the contribution of each process variable to the monitoring
statistics [12], [13]. However, contribution plots suffer from
the smearing effect in many situations, which leads to erro-
neous results. Therefore, some further discussion has been
made on the application and development of contribution
plots [14], [15]. The so-called reconstruction-based contri-
bution (RBC) method has been put forward [16], which
combines contribution analysis and reconstruction based
identification together. In addition, the method has been
extended to general process faults, which is proposed to
diagnose the fault type for output-relevant faults [17], [18].
Furthermore, the weighted RBC has been presented to reduce
fault smearing and improve diagnosis accuracy [19].

To obtain a complete fault propagation path, causality
analysis is introduced. Causality is the relation between the
cause and the effect [20], [21]. Many researches on causality
analysis have been studied [22]. Among the most commonly
used methods are the Granger causality (GC) [23], [24],
the transfer entropy [25], [26], cross-correlation analysis [27]
and the dynamic Bayesian networks (DBN) [28], [29], which
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are all based on historical process data and does not require
prior information on the intrinsic system. Typically, the out-
come of causal analysis is a causal model representing pro-
cess variables as nodes and causal relationships as arrows.
Causality graph is an uncertainty reasoning method proposed
by Zhang [30]. The causality of process variables is expressed
clearly and intuitively in the graph [31]. Causality graph
can be developed using mathematical equations describing
the system or directly from piping and instrumentation dia-
grams (P&IDs). The method has rapid development in the
late years and has many expansions, such as multi value
causality graph [32], continuous causality graph [33], etc.
Owing to its advantages and development, the casuality
graph method has been highly applied in fault diagnosis
field [34], [35].

Generally, three kinds of methods, namely, graph theory,
expert system and qualitative simulation are used for fault
diagnosis due to the combination of process knowledge, espe-
cially the fault knowledge and related deductions. The graph
theory with a simple modeling procedure can get compre-
hensible diagnosis results with the utilization of sign directed
graph (SDG) [29], causality graph [36], [37], bond graph [38]
and fault tree analysis [39], etc. However, for complex sys-
tems, the search process is complicated with low accuracy,
which leads to invalid fault diagnosis results. In a way, the
knowledge based fault diagnosis methods can be regarded as
the extension of data-driven methods, thus belonging to the
field of data-driven fault diagnosis [40], mainly because large
amount of historical and real-time data is needed for real-
timemonitoring and fault diagnosis. Additionally, themethod
can realize fault diagnosis through various information such
as expert or process knowledge, abnormal conditions, fault
features and system operation constraints based on causality
analysis, fault tree analysis, rules or case-based reasoning,
etc. Consequently, on the basis of data and knowledge, more
complete fault diagnosis results from quantitative and quali-
tative analysis can be acquired with the joint data-driven fault
diagnosis methods.

In this paper, the knowledge based fault diagnosis method
is combined with data-driven method to identify a complete
fault propagation path. More concretely, based on causal-
ity graph and PPCA method, an integrated fault diagnosis
method using RBC is proposed. The main contribution of this
paper is summarized as follows. 1) The proposed correlation
index (CI) can quantitatively measure correlation of vari-
ables. With the combination with causality graph, the causal-
ity, connectivity and correlation are all captured. 2) Based
on RBC, the weighted average value of vector is introduced
to obtain the most possible fault propagation path among all
possible paths.

The remainder of this paper is organized as follows.
In Section II, the calculation procedure of CI and related
definitions are provided. The process monitoring of CI based
on PPCA fault detection method is given in Section III.
The proposed integrated fault diagnosis method is stated in
Section IV. To demonstrate the validity of our approach, fault

diagnosis of industrial HSMP are considered in Section V.
Finally, the conclusions are given in Section VI.

II. CORRELATION ANALYSIS OF PROCESS VARIABLES
A. CORRELATION ANALYSIS AND RELEVANT DEFINITIONS
Correlation analysis is a statistical method expressing the
relationship of process variables. It means that a variable
will change as others change. The statistics to measure cor-
relation is called the correlation coefficient. The degree of
correlation is represented by the number ranging from 0 to 1.
‘0’ represents un-correlation while ‘1’ stands for full-
correlation. The larger value means the stronger correlation.

In correlation analysis, one of the most impressive study
is Pearson correlation coefficient [41]. It has been proven
to be efficient and widely used into practice. Nevertheless,
there are still some drawbacks. Deviations from normal con-
ditions may be quite large if the variables do not follow
Gaussian distribution. In addition, the calculation results can
be easily affected by abnormal points and the effect is usually
significant.

Generally, Pearson correlation coefficient describes the
correlation between two variables, while the variables in
systems are always correlative with more than two vari-
ables. Therefore, multivariate correlation coefficient should
be taken into consideration. It consists of the following
three concepts : partial correlation coefficient between two
variables regardless of the influence of the others, multiple
correlation coefficient of a variable to multiple variables
and canonical correlation coefficient of multiple variables
to multi variables. In this paper, based on causality graph,
the correlation between two variables in the graph should
be studied. Obviously, partial correlation coefficient is more
appropriate, which can express the essential relation between
variables more accurately and reliably.

B. THE EXTRACTION OF CORRELATION INDEX
For the purpose of more intuitive and accurate relationships
between variables, namely a quantitative description of corre-
lation, the correlation index (CI) is presented based on partial
correlation coefficient [42] in this paper. Specifically, for
the variables x and y, the correlation coefficient rxy can be
calculated as

rxy =
cov(x, y)
σxσy

=
E
[
(x − ux)(y− uy)

]
σxσy

(1)

where ux , uy, σx , σy are the mean and standard deviation of
variables, respectively. To analyze the correlation between
two specific variables, Eq.1 can be extended to the matrix

r =
[
r11 r12
r21 r22

]
(2)

Then the inverse matrix c is

c = r−1 =
[
c11 c12
c21 c22

]
(3)
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The partial correlation coefficient between two variables
can be expressed as

pij = −
cij

√
cii × cij

(4)

whose corresponding partial correlation coefficient matrix is

P =
[
p11 p12
p21 p22

]
(5)

Based on Eq.5, we propose a correlation index CI

CI = (v− v̄)TP−1 (v− v̄) (6)

where v =
[
x y
]T , v̄ is the mean value of v, P−1 is the inverse

matrix of the partial correlation coefficient matrix P.
CI is presented to incorporate multivariate statistics with

correlation information. The basic idea of CI is to mea-
sure deviation of the correlation from real-time abnor-
mal conditions and historical normal conditions. Besides a
quantitative description of correlation, another property of
CI is improving the monitoring effect. It is said that better
fault monitoring results are achieved for features that are
more application-dependent [43]. In terms of application-
dependence of the feature generation, features that measure
the linkages between process variables are more appropriate
than features directly using the process variables themselves
for the monitoring of process correlation structures [35].

III. MONITORING OF CI BY USING PPCA FOR
FAULT DETECTION
Probabilistic principal component analysis (PPCA) is one of
the topical issues in process monitoring. It treats those non
principal components as Gaussian noise to further estimate.
In addition, both principal components and noise variables
in PPCA are monitored via Mahalanobis norm, which over-
comes the flaw that two different statistics may cause incon-
sistent monitoring results in PCA. In this paper, PPCA is
applied to monitor CI for fault detection.

A. PRE-PROCESSING OF DATA
In PPCA, data is required to follow or approximately follow
Gaussian distribution. However, CI in Eq.6 does not follow
Gaussian distribution and its solutions are positive. Thus, it
is necessary to preprocess data with data transformation con-
version methods, such as Box-Cox transformation [44]. It is
actually a family of power transformations that incorporates
and extends the traditional options to find the optimal normal-
izing transformation for each variable. The transformation
formula is as follows

X (λ) =

{
Xλ−1
λ

λ 6= 0
lnX λ = 0.

(7)

The determination of λ is the key to data transformation
with two commonly used methods, maximum likelihood esti-
mation and Bayes method. Also, the Box-Cox transformation
function in Minitab software can obtain a right λ. The paper

briefs maximum likelihood estimation method here. The for-
mula is written as

Lmax = −
1
2
ln ê2 + ln J (λ,X)

= −
1
2
ln ê2 + (λ− 1)

n∑
i=1

lnXi (8)

where for all λ, J (λ,X) =
n∏
i=1

∂Wi
∂Xi
=

n∏
i=1

Xλ−1i . For each

λ, ê2 which can be obtained from ê2 = 1
2

n∑
i=1

(
X (λ)i − X̄

(λ)
)2

is the maximum likelihood estimation of X (λ). On this basis,
L(λ)max can be calculated and λ∗ corresponding to the largest

L(
λ∗)

max is the solution.

B. CONSTRUCTION OF PPCA MODEL
For observation vector x ∈ Rm, it can be expressed as the
following equation:

x = Wt + u+ ε (9)

where t ∈ RA is the principal component variable.
W ∈ Rm×A (A < m) is the load matrix. u is the mean
value of x and ε is the noise following Gaussian distribution.
In general, t ∼ N (0, I ), ε ∼ N

(
0, σ 2I

)
, where σ 2 is the

variance of the noise. Based on the characters of Gaussian
distribution, there exists

x|t ∼ N
(
Wt + u, σ 2I

)
(10)

According to Bayes’ theorem, the observation vector x
follows

x ∼ N (u,C) (11)

where C = WW T
+ σ 2I , C ∈ Rm×m, W , σ 2 are parameters

to be determined. The probability distribution function of
principal component variable t can be written as

p (t) = (2π)−A/2e−
1
2 t
T t (12)

The conditional probability distribution function of x under
condition t is

p (x|t) =
(
2πσ 2

)−m/2
e−

1
2σ2
‖x−Wt−u‖2 (13)

Accordingly, the probability distribution function of x is

p (x) =
∫
p (x|t) p (t)dt=(2π)−m/2|C|−1/2eζ

ζ = −
1
2
(t − u)TC−1 (t − u) . (14)

On the basis of Bayes probability formula, the posterior
distribution of t on x is

p (t|x) = (2π)−
A
2

∣∣∣σ−2M ∣∣∣1/2e− 1
2 η
(
σ−2M

)
ξ

η = t −M−1W T (x − u)T

ξ = t −M−1W T (x − u) (15)

VOLUME 5, 2017 25219



J. Dong et al.: Joint Data-Driven Fault Diagnosis Integrating Causality Graph

where M = W TW + σ 2I , M ∈ RA×A. So far, the
PPCA model has been established.

Parameters in PPCA model can be solved by expectation
maximization (EM). Latent variable ti is taken as ‘incom-
plete’ data. The complete data consists of observation vector
and latent variables [8]. Firstly, the posterior distribution
of latent variable ti on observation variable xi, p (ti|xi) is
calculated in E-step. In M-step, W and σ 2 are obtained by
maximizing the expectation of its log function of ‘complete’
data. Finally, the parameters are estimated to be

W̃ = SW
(
σ 2I +M−1W T SW

)−1
(16)

σ̃ 2
=

1
m
tr
(
S − SWM−1W̃ T

)
(17)

where S is the covariance matrix of samples. The equations
above should be iterated till convergence and the parameters
are obtained.

C. CONSTRUCTION OF PPCA MODEL
For a new sample xnew, its latent variable can be calculated
by

tnew = Qxnew = W T
(
WW T

+ σ 2I
)−1

xnew (18)

where Q = W T
(
WW T

+ σ 2I
)−1

. The variance of latent
variable is var (tnew) = Q

(
WW T

+ σ 2I
)
QT , which indi-

cates that it has no connection with the current sample.
So the T 2 statistics in principle subspace can be extended as

GT 2
new = tTnew var (tnew)

−1tnew ≤ GT 2
lim. (19)

Similar to PCA, the SPE statistics is solved as GSPEnew =
eTnew

(
σ 2I

)−1
enew ≤ GSPElim in noise subspace, where

enew = xnew − Wtnew = (I −WQ) xnew is the error of
the new sample. The two statistics follow χ2 distribution of
appropriate freedom:

GT 2
lim = χ

2
1−α (A)

GSPElim = χ2
1−α (m) (20)

whereα is the significance and 1−α represents the credibility.
A and m are the freedom, respectively, which can be adjusted
in practice for a better detection results.
In PPCA, the statistics in principle subspace and noise

subspace can be integrated by using the Mahalanobis
norm. A comprehensive monitoring index ST is given by
Ghahramani et al. [8], which can be used independently in
process monitoring and defined as

ST =
∥∥∥C− 1

2 xnew
∥∥∥2 = xTnewC

−1xnew ≤ STlim (21)

where STlim = χ2
1−α (m).

D. MONITORING OF CI VIA PPCA
As mentioned earlier, CI is a quantitative description of the
correlation which measures the linkages between process

variables. Once the linkages are broken, namely, CI exceed-
ing the predefined threshold, there may be some faults in
the system under consideration. To achieve successful fault
detection of industrial processes, the proposed CI is mon-
itored with the utilization of PPCA based fault detection
method. According to the two previous sections, CI index can
be written as

x = Wt + u+ ε. (22)

Similarly, the parameters of PPCA based on the training
CIs are able to be solved using EM algorithm.
For a new CI obtained under real-time condition CInew, its

latent variable is

tCInew = QCInew = W T
(
WW T

+ σ 2I
)−1

CInew. (23)

Thus, the T 2 statistics GT 2
CInew and SPE statistics

GSPECInew can be calculated. The so called ST statistics is
expressed as

ST =
∥∥∥C− 1

2CInew
∥∥∥2 = CITnewC

−1CInew. (24)

The correlation of the process is considered normal if the
monitoring statistics are below the thresholds, i.e.,GT 2

CInew ≤

GT 2
CI lim and GSPECInew ≤ GSPECI lim, STCI ≤ STCI lim.

Otherwise, a fault is thought to occur.

IV. INTEGRATED FAULT DIAGNOSIS BASED ON
CASUALITY GRAPH AND STATISTICAL PROCESS
MONITORING
A. PRELIMINARIES OF CAUSALITY GRAPH
Causality graph theory is a methodology to deal with knowl-
edge representation and reasoning of uncertain causalities
based on belief networks proposed by Zhang [30]. At present,
it has been developed into a hybrid causality diagram which
is capable for discrete variables and continuous variables.
Causality graph has the following advantages. 1) It is com-
pletely based on probability theory with good theoretical
basis. 2) It is able to deal with loop structure. 3) The
direct causal intensity rather than probability makes it easy
to acquire expert knowledge and experience. 4) Due to its
dynamic characteristics, the causal structure is able to change
as the information accepted online. 5) Is has flexible modes of
reasoning: from causes to consequence, Pr {X |Causes}; from
consequence to causes, Pr {X |Consequence}; hybrid causes
and consequence, Pr {X |Causes & Consequence}.
The directional and structural relationships between vari-

ables are described clearly in the graph with nodes repre-
senting events or variables. A directed edge stands for a
causal relationship with its strength of connection indicating
the strength of causality. This graphical representation of
knowledge is very intuitive and natural, which is easy to
express explicit knowledge and give expert knowledge.

From the characteristics of causality graph, the knowledge
expression of causality graph has a good correspondence with
fault features of the system. It can effectively express the
fault knowledge of complex system and has valid reasoning
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algorithm. Consequently, the utilization of causality graph in
fault diagnosis is of great significance to reduce the time of
fault judgement, improve fault detection accuracy and save
maintenance costs. In this paper, the qualitative causality
graph is firstly acquired from the priori knowledge. The
quantitative analysis will be made based on CI, which is the
foundation of fault propagation path identification.

B. THE RBC BASED FAULT DIAGNOSIS
The basic idea of contribution plot is to identify faults by the
contribution of each variable to SPE and T 2 statistics. Vari-
ables with large contribution are the possible fault variables.
Nevertheless, the cause of faults needs to be further analyzed
and identified by the relevant process knowledge.

In PPCA, the contribution of variables to ST statistics is
defined as

ContSTi =
(
ξTi C

−1/2 x
)2

(25)

where C = WW T
+ σ 2I , ξi is the direction vector of vari-

ables. When a fault occurs, x can be written as x = x∗ + fiξi,
where x∗ is the fault free part and fiξi is the fault part with fi
denoting the fault amplitude.

Reconstruct the fault variable as zi = x − fiξi, so the
monitoring index of zi is Index (zi) = zTi C

−1zi. By minimiz-
ing the index with partial least squares (PLS), fi is solved as
fi =

(
ξTi C

−1ξi
)−1

ξTi C
−1x.

In RBCmethod, variables with large reconstruction contri-
bution are likely to have faults. The equation of reconstruction
contribution is

ContRBCi = xTC−1ξi
(
ξTi C

−1ξi

)−1
ξTi C

−1x

=

(
ξTi C

−1x
)2

ξTi C
−1ξi

=

(
ξTi C

−1x
)2

cii
(26)

where cii is the elements of ith principal diagonal in
matrix C−1.

C. FAULT PROPAGATION PATH IDENTIFICATION BASED
ON WEIGHTED AVERAGE VALUE
The fault diagnosis method based on causality graph and
RBC may get multiple fault propagation paths, which is
inconvenient for fault identification, fault isolation and main-
tenance. To this end, weighted average value of vector is
adopted in this paper. The weighted average value of recon-
struction contribution in each path is calculated to determine
themost possible fault propagation path and achieve the target
of fault location.

For a set of data consisting of a single variable, the
weighted average value is

L =
n∑
i=1

kiCi/
n∑
i=1

ki (27)

where ki is the weighted coefficient. Similarly, for a set of
data consisting of vectors, the weighted average value of
vector [45] is defined as: s set of m-dimensional observation

vectors is given as L1, L2, · · ·, Li, · · ·, Ln and the
corresponding weighted matrix is K1, K2, · · ·, Ki, · · ·, Kn,
(i = 1, 2, · · ·, n). So the weighted average value of the
observation vectors is

L̄=(K1+K2 · · ·+Kn)−1 (K1L1+K2L2 · · ·+KnLn) . (28)

Obviously, L̄ is also a vector, which means the weighted
average value of vector is the extension of general weighted
average value. In order to identify the most possible fault
propagation path, the weighted average value of each
fault propagation path needs to be calculated. Furthermore,
its 2-norm can be acquired. The larger the 2-norm, the greater
the possibility of fault propagation.

D. FAULT DIAGNOSIS INTEGRATING CAUSALITY GRAPH
WITH STATISTICAL PROCESS MONITORING
In this article, the causality between process variables are first
analyzed based on causality graph. In addition, the innovative
correlation index CI is proposed to measure the correlation
quantitatively, thus capturing causality and correlation simul-
taneously. PPCA is then adopted to monitor CI and detect
faults. After a fault has been detected, the RBC is combined
with causality graph and CI to get the possible fault propa-
gation paths. Finally, the weighted average value of vector is
introduced to find a most possible one, which attains the goal
of fault location and identification.
According to the discussion above, the whole scheme is

summarized in Fig.1.

FIGURE 1. Fault diagnosis scheme based on causality graph and
statistical process monitoring.

V. APPLICATION IN INDUSTRIAL HOT STRIP MILL
Hot strip mill process is a complex industrial production
process, mainly including reheating furnaces, rough rolling,
finishing rolling, laminar cooling and coiling etc., as shown
in Fig.2. The reheating furnace ensures that the rolling tem-
perature can reach 1200 degrees Celsius when beginning
rough rolling. Generally, the strip steel can be rolled into the
transfer bar of 28-45mm in the rough rolling zone. Then, it
will be sent to the finishing rolling which consists of 6 or 7
stands. The finishing rolling gives further and more precise
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FIGURE 2. The equipment layout of HSMP.

TABLE 1. Variables of hot strip rolling process.

FIGURE 3. Causality graph of variables in HSMP.

FIGURE 4. Fault detection results of HSMP.

gauge reduction to achieve an accurate needed thickness,
which will serve as a background process in this section. Each
stand is mainly composed of a machine frame arch, a pair of
working rolls, a pair of supporting rolls and the correspond-
ing hydraulic screw-down devices and bending rolls, etc..
The rolling force testing device is installed under the lower
supporting rolls. Roll gap between upper and lower working
rollers is mainly controlled by the hydraulic servo system in
order to meet the requirements of exit thickness of the strip
steels. The thickness gauge, thermometric indicator, width

FIGURE 5. RBC of variables in HSMP.

gauge and shape meter etc. are arranged at the finishing mill
exit. The rolling mill control system is generally equipped
with automatic gauge control (AGC), finishing temperature
control (FTC), automatic shape control (ASC) and so on,
in order to achieve the corresponding requirements of strip
thickness, temperature and shape. Eventually, after laminar
cooling, the strip steels are coiled as final products.

In HSMP, thickness, width, shape and exit temperature
can affect the quality of products. In this paper, 1700mm
strip hot rolling production line of Ansteel Corporation in
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FIGURE 6. Fault location and propagation path identification in HSMP.

Liaoning Province China is applied to the achieved results.
20 process variables including average roll gap, rolling force
and bending force (except the first stand) of 7 stands are taken
into consideration. The shape of finishing mill is regarded
as quality variable. The specific variable information in the
process is listed in Table 1. As the shape is required to
fluctuate within a range. Thus, the output is similar to fol-
low Guassian distribution. Consequently, based on the his-
torical data set, the PPCA model could be established with
20 measured process variables and one quality variable. The
causality graph of variables in HSMP is given in Fig.3 based
on the process mechanism. In this case, an actuator failure of
cooling water control valve occurs between the fifth and sixth
stand. Thus the rolling force of the bracket behind the sixth
stand is changed. With the feedback regulation of AGC, the
bending force of the seventh stand is influenced, which results
in the change of strip shape. For case study, the sampling
interval is set to be 10ms. 2000 normal historic data are used
for modeling, and 1500 real-time sampling data are used for
the testing step. Accordingly, the fault detection results are
shown in Fig.4. The statistics exceed control limit evidently
at 550th sample, which indicates a fault has occurred.

The RBC of variables in HSMP is provided in Fig.5.
According to the contribution and causality graph, the fault
location and possible fault propagation paths can be deter-
mined. With the utilization of weighted average value of
vectors, the most possible propagation path is acquired and
shown in Fig.6. It can be seen that the rolling force of 6th
stand has been changed, which influences the bending force
of 7th stand and further affects the shape of strip steel. The
diagnostic result is consistent with the practical situation,
which verifies the validity of the proposed method. The
timely maintenance can be implemented, thus reducing the
costs.

VI. CONCLUSION
In the paper, an integrated fault diagnosis method based on
causality graph and statistical process monitoring is pro-
posed. First of all, a causality graph is constructed on the basis
of the priori knowledge. Subsequently, a correlation index
CI is put forward to quantitatively analyze the relationship of
variables in the causality graph. With this combination, the
causality, connectivity and correlation between variables are

all captured. To improve the effect of fault detection, the Box-
Cox transformation is implemented on CI. After a detecting
a fault, the possible fault propagation paths are identified
with the utilization of RBC and causality graph. Finally,
the weighted average value of vector is introduced to get a
most possible fault propagation path. The effectiveness of our
proposed method is verified by HSMP. Compared with the
practical situations, the achieved results is helpful for opera-
tors to implement maintenance in time. For future research
works, the fault propagation of quality related variables in
complex industrial processes will be studied.
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