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ABSTRACT The health of a complex electromechanical system is dynamic and is accompanied by a full
life cycle. Due to the complexity and coupling of complex electromechanical systems, the establishment of
a dynamic and accurate model for the health state is difficult. A belief rule base (BRB) shows outstanding
performance in modeling complex systems because it can combine both quantitative information and expert
knowledge. In this paper, a double-layer BRB model is proposed to predict the health state of a complex
electromechanical system. The two layers achieve different functions: BRB_layer1 is used to establish the
dynamic change of the time series of features, BRB_layer2 is employed to combine the features for predicting
the health state of the complex electromechanical system. During this process, the infinite irrelevancemethod
is utilized for feature selection in reducing the scale of the BRB model. Considering the initial parameters
are given by experts, which may have boundedness and may not be appropriate for engineering practice,
the projection covariance matrix adaption evolution strategy (P-CMA-ES) is chosen as the optimization
algorithm to train the initial parameters. To verify the rationality and effectiveness of the proposed model,
the low-frequency vibration fault of a certain aero-engine is taken as an example. The results show that the
proposed method can predict the health state of a complex electromechanical system precisely according to
current and historical data.

INDEX TERMS Belief rule base (BRB), complex electromechanical system, double layer BRB, health
prognostics, projection covariance matrix adaption evolution strategy (P-CMA-ES).

I. INTRODUCTION
Complex electromechanical systems are integrated sys-
tems whose features consist of the mechanics, electronics,
hydraulics and controls, such as those found in aero-engines,
rail vehicles and CNCmachine tools. They play an important
role in national development. The health of a complex elec-
tromechanical system is necessary to be predicted because
it is also regarded as a dominant basis for safety, reliability
and economy [1], [2]. A reasonable health prognostic can
achieve optimum maintenance decision-making and effec-
tively reduce the casualties and economic losses caused by
system failure [3], [4].

The methods of health prognostics for complex elec-
tromechanical systems can be divided into three categories:

analytical-based models, data-driven-based intelligent learn-
ing models, and qualitative knowledge-based models [5]–[7].
In a complex system with an accurate mathematical model,
the analytical-based model has been widely used, such
as Kalman Filter and improved Kalman Filter [8], [9].
However, the results of these methods are less accurate
because they depend on the modeling of the analytic model
for complex electromechanical systems, and the establish-
ment of the analytic model is very difficult. In addition, for
a complex electromechanical system, such as aero-engine
gas path system, the prognostic is not completely reliable
because the measurable parameters are less than the param-
eters to be estimated in this system [10]. Recently, data-
driven-based intelligent learning models have been rapidly
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developed and extensively applied [11]–[13]. These intel-
ligent methods can address nonlinear models for complex
systems and predict the health state based on a large amount
of data. Researches that are recently appeared in using data-
driven approach give effective results. For example, the lit-
erature [14] studied a nonlinear process monitoring based
on data-driven approach. In this work, the locally weighted
projection regression is used to improve test statistics. The
literature [15] researched an improved incremental learning
approach for prognosis of dynamic fuel cell system. This
method has a high accuracy by using an overlapped algorithm
which combines locally weighted projection regression with
partial least squares. However, their principle in processing is
called ‘‘black boxes’’, which means that the parameter setting
of the model lacks reasonable explanation. Thus, it inevitably
causes fuzzy descriptions for the mechanism connection in
the prognostic results during the dynamic changes. The expert
system method is the most employed as a typical qualita-
tive knowledge-based model. Due to the lack of quantita-
tive knowledge on the basis of the qualitative knowledge,
the traditional expert system brings less precise prediction
results [16]. Therefore, it is difficult to make highly accurate
prognostics for a complex electromechanical system using no
more than a simple expert system method.

For most complex electromechanical systems, accurate
analytic models are difficult to be constructed. Due to the
characteristics of complexity and coupling with the system,
it is also hard to establish an accurate health predictive
model to reflect the dynamic change of the future behav-
ior. Moreover, considering the failure data with small-scale
in engineering practice, it is hard to get enough effective
data to ensure the accuracy of prediction by using the data-
driven method. Furthermore, to address the limitation that the
existing methods only consider single knowledge of infor-
mation, it is necessary to combine the data-driven method
with qualitative knowledge to improve the accuracy of health
prognostics in complex electromechanical systems. The BRB
model is a nonlinear model based on semi-quantitative infor-
mation proposed by Yang et al. [17]. It can address both qual-
itative knowledge and quantitative information. This model
can make full use of the quantitative knowledge especially
combinedwith expert knowledge to reflect the behavior of the
complex system [18], [19]. After taking the expert knowledge
into account, this method shows excellent performance in
dealing with problems with small-scale samples [20], [21].
It is also has the effectiveness on nonlinear dynamic model-
ing [22]. In this paper, the BRB model is employed to predict
the health state for a complex electromechanical system.
A double-layer BRB model is proposed to dynamically pre-
dict the health state of a complex electromechanical system.
With the proposed model, the future behavior of the system
is objectively described, and the health state is accurately
predicted. In this process, the P-CMA-ES [23] algorithm is
used to update the initial parameters.

The proposed double layer BRB model is an advan-
tage hybrid method that is suitable for the characteristic of

small-scale samples appeared in complex electromechanical
system. The modeling approach can address the information
contains both quantitative and qualitative knowledge that the
data-driven method cannot be qualified. Moreover, the model
can also reflect the dynamic change in a complex electrome-
chanical system with history and current data.

This paper is organized as follows. In Section II, the prob-
lem is formulated. In Section III, a double layer BRBmodel is
established, and the detailed steps are described. Section IV
presents a case study for the vibration problem in an aero-
engine. Finally, the conclusions are given in Section V.

II. PROBLEM FORMULATION
For complex electromechanical systems, which lack accurate
analytic models, there are features that can reflect the health
state of the human body system, such as temperature, blood
pressure and blood glucose [24]. During the full life cycle,
the change of the health state can be reflected by the changes
of these features. Thus, the key problem in this paper is how to
build a health predictive model by using reasonable features.
The health prognostics can be known as the health estimation
for the system’s future behavior. Thus, the process of the
model contains two steps: a time series of features prediction
and health estimation for future behavior.

It is assumed that the health state of a complex electrome-
chanical system is represented by y(t) in the time instant t .
The health state of a complex electromechanical system with
features can be described as:

y (t) = f (x1t , x2t , · · · , xNt ,V) (1)

where xnt (n = 1, 2, . . . ,N ) is one of the features reflecting
the health state, f (•) is a nonlinear BRB model, and V is the
set of parameters in this model.

Therefore, the prognostics of the health state in a complex
electromechanical system can be expressed as:

ŷ (t + p) = f (x̂1(t+p), x̂2(t+p), · · · , x̂N (t+p),V) (2)

where p is the step of the prognostics.
x̂n(t+p) represents the time series prediction, which can be

described as:

x̂n(t+p) = h
(
xnt , xn(t−1), . . . , xn(t−τ ),G

)
(3)

where G is the set of parameters in the model.
Therefore, the health prognostics of a complex electrome-

chanical system can be expressed as:

ŷ(t+p) = f (h (Xt ,Xt−1,Xt−τ ) ,V,G) (4)

where, X = [x1, x2, · · · , xN ].
This paper focuses on how to establish a nonlinear

model, which contains f and h, and determines the model
parameters V and G.

III. THE HEALTH PROGNOSTICS BASED
ON DOUBLE LAYER BRB
The BRB model is effective at nonlinear dynamic model-
ing. After considering the related features of the system,
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FIGURE 1. The proposed double layer model.

FIGURE 2. Health state prediction model based on the double layer BRB.

a BRB-based health prognostics model is proposed. In this
paper, we propose a double-layer BRB to dynamically pre-
dict the health state of a complex electromechanical system.
BRB_layer1 is used to establish the dynamic change of fea-
tures in a time period, followed by prediction. BRB_layer2 is
employed to combine the features to evaluate the future
health state. The structure of the double-layer BRB is shown
in Fig. 1.

In the process of health prognostics, the features selection
and parameters updates are used to build a more compact
and accurate model. The infinite irrelevance method and
P-CMA-ES are applied to select features and update param-
eters, respectively. The process of modeling is detailed as
follows. The modeling process of health prognostics based
on double-layer BRB is shown in Fig. 2.

A. FEATURE SELECTION BASED ON INFINITE
IRRELEVANCE METHOD
There are many features that can reflect the health state in
a servo system. Some of them have less influence on the
health of the servo system. And the number of features deter-
mines the complexity of the BRB model. The computation
complexity of BRB is based on the number of rules which is

calculated by the number of features and references. Feature
selection can ensure the accuracy of BRB model in reducing
the computation complexity. Thus, the infinite irrelevance
method [25] is used to reduce the scale of the features. The
specific steps are shown in Fig. 3 [25].

According to the three steps in Fig. 3, the complex corre-
lation coefficient ρi is obtained. A greater value of ρi means
that the correlation of xi has amajor relevance with the others.
Thus, the features can be selected on the basis of ρi.

B. BRB_LAYER1: TIME SERIES PREDICTION MODEL
In the double-layer BRB health predictive model, dynamic
time series prediction is first performed to characterize the
feature of the complex electromechanical system. The time
series prediction model is developed in accordance with the
basic BRB, which contains the current and historical data
of the feature as well as some expert knowledge. The time
series BRB prediction model of the feature is established as
follows:

RkBRB_layer1 :

If xn (t) is Ak1 ∧ xn (t−1) is A
k
2 ∧ · · · ∧ xn (t−τ) is A

k
τ+1

Then xn (t + p) is
{(
D1, β1,k

)
, · · · ,

(
DN , βN ,k

)}
(5)
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FIGURE 3. He steps of infinite irrelevance method.

where Rk is the kth belief rule of xn in BRB_layer1 and
xn is the input. τ is the delay step. Akm (k = 1, 2, · · · ,L)
represents the reference value of antecedent attribute in
the kth rule. p is the step of prediction in BRB_layer1.
D = {D1,D2, · · · ,DN } is the set of value of consequent;
βj,k (j = 1, 2, · · · ,N , k = 1, 2, · · · ,L) is the belief degree
of jth results Dj, where Dj ∈ D.
Therefore, the time series BRB prediction model of xn as

BRB_layer1 is established in a complex electromechanical
system, which is h in (4).

C. BRB_LAYER2: HEALTH ESTIMATION MODEL
It is assumed that a total of n features can be used to
express the health state of a complex electromechanical sys-
tem. The health assessment model of the system can be
established as:

Rk ′ BRB_layer2:

If x1 (t+p) is Ak1 ∧ x2 (t+p) is A
k
2 ∧ · · · ∧ xn (t+p) is A

k
n

Then
{(
H0, β1,k

)
, · · · ,

(
HB, βN ,k

)}
With a rule weightθk and attribute weightδ̄1, δ̄2, · · · , δ̄n

(6)

where Rk ′ is the k ′ th belief rule in BRB_layer2, xn is
the input, and n is the number of features in the
complex electromechanical system. Akn (k = 1, 2, · · · ,L)
is a set of reference value antecedent attribute, where

Akn ∈ H . H = {H0,H1, · · · ,HB} is the set of consequents;
βb,k (b = 1, 2, · · · ,B, k = 1, 2, · · · ,L) is the belief degree
of Hb in the results, where Hb ∈ H .

D. OPTIMIZATION MODEL FOR THE DOUBLE LAYER
BRB BASED ON P-CMA-ES ALGORITHM
In the double-layer BRB, the initial parameters in the model
are set by the experts. Because the expertise is limited by
the lack of prior knowledge, the initial parameters cannot
accurately reflect the true working state. Thus, it is necessary
to build an optimization model to train the initial parameters
of the double-layer BRB.

In BRB_layer1, the optimized objective function can be
built as follows:

min ξ (G)

s.t.
N∑
n=1

βn,k = 1

0 ≤ βn,k ≤ 1, k = 1, 2, · · · ,L (7)

where ξ (G) is the mean squared error (MSE), and ξ (G) =
1

T−τ

T∑
t=τ+1

(
x(t)− x̂(t)

)2, where T is the amount of data.

As with the optimized model presented in BRB_layer1,
the optimized objective function of BRB_layer2 can also be
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FIGURE 4. The process of P-CMA-ES.

built as:

min ξ (V)

s.t.
N∑
n=1

βn,k = 1,

0 ≤ βn,k ≤ 1, k = 1, 2, · · · ,L

0 ≤ δi ≤ 1, i = 1, . . . ,M

0 ≤ θk ≤ 1 (8)

where ξ (V) is the mean squared error (MSE), and ξ (V) =
1

T−τ

T∑
t=τ+1

(
y(t)− ŷ(t)

)2, where T is the amount of data.

In the double-layer BRB, the P-CMA-ES algorithm is used
to optimize the proposed model. It was proposed by Hu [23]

in 2016 based on the CMA-ES algorithm. This algorithm
has the advantage of reducing complexity and subsequently
improving the effectiveness of optimization. The detailed
steps for optimization are shown in Fig. 4, and G as the
parameter set of BRB_layer1 taken as an example.

IV. CASE STUDY
To verify the proposed model of health prognostics for com-
plex electromechanical systems, the test bed for a type of
aero-engine is taken as an example to carry out the experi-
mental study for health prognostics. The data of aero-engine
vibration are collected, and the vibration sensor is the orig-
inal part of the aero-engine. In the condition of engine
speed of 6500 r/min, the vibration signal of the aero-engine
under three states is collected, and 3000 groups are collected
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TABLE 1. The referential points and values of Kurtosis.

for each state. These three health states are Normal (high-
altitude valve spring pressure is normal), Medium Serious
(high-altitude valve spring pressure is decreased by 10%),
and Serious (high-altitude valve spring pressure is decreased
by 20%). The vibration signal of the aero-engine is shown
in Fig. 5.

FIGURE 5. The vibration signal of aero-engine under three states.
(a) Kurtosis. (b) Skewness.

A. FEATURES SELECTION BASED ON INFINITE
IRRELEVANCE METHOD
Due to the complexity of its structure and the diversity of
the vibration excitation of the aero-engine, a single vibra-
tion quantity cannot make an accurate prognosis for the
health state of the aero-engine. Time-domain characteristics
have physical meanings that can be easily explained, so five
dimensionless time-domain features are extracted from the
vibration signal [21], [26]. The extracted features are Mean,
Mean square value, Variance, Skewness and Kurtosis. Their
calculation method and physical meaning are presented as:

Mean:

x̄ =
1
n

T∑
n

xn (9)

Mean square value:

ξ = E(x2n ) (10)

Variance:

σ 2
= E[(x2n − x̄)

2] (11)

Skewness:

ψ = E[(x2n − x̄)
3]/σ 3 (12)

Kurtosis:

η = E[(x2n − x̄)
4]/σ 4 (13)

The results of filtering are shown in Fig. 6.
From the feature selection method introduced in part A

of section III, the complex correlation coefficients of five
dimensionless features are obtained, which are 0.999, 0.999,
0.992, 0.790 and 0.592. Thus, Skewness and Kurtosis are
selected as the most representative features and then are used
as the input attributes in the BRB model. Theoretically, the
value should be stabilized in the same health state. However,
in the measurement environment, the vibration data not only
contain vibration data but also contain environmental noise.
To obtain the actual vibration data, the vibration data are
screened to accurately evaluate the health by cleaning some
error data. The results of data cleaning are shown in Fig. 7.

B. ESTABLISHING BRB_LAYER1 MODEL
After determining the features of an aero-engine vibra-
tion machine health state, which are Kurtosis and Skewness
denoted by x1 and x2 respectively, the two features of the time
series prediction model, named BRB1 and BRB2, are shown
below:

R1k :

If x1 (t) is Ak1 ∧ x1 (t−1) is A
k
2 ∧ · · · ∧ x1 (t−τ) is A

k
τ+1

Then x1 (t+p) is
{(
D11, β

1
1,k

)
, · · · ,

(
D1N , β

1
N ,k

)}
(14)

R2k :

If x2 (t) is Ak1 ∧ x2 (t−1) is A
k
2 ∧ · · · ∧ x2 (t−τ) is A

k
τ+1

Then x2 (t+p) is
{(
D21, β

2
1,k

)
, · · · ,

(
D2N , β

2
N ,k

)}
(15)

Four referential points are chosen for Kutrosis, which are
Low, Middle, High and Very High, abbreviated as L, M, H
and VH. The referential points of Skewness are also set as L,
M, H and VH. The referential points and attributes value in
BRB1 and BRB2 are shown in Table 1 and Table 2.

In the time series prediction model, the delay steps are 2,
that is τ = 1, and the prediction steps are 1, that is p = 1.
Because the Kurtosis x1(t) has 4 referential values, the delay
of Kurtosis x1(t − τ ) also is set with 4 referential values.
Therefore, there are 16 belief rules in BRB1 and BRB2. The
initial parameters in BRB1 and BRB2 are set as the same
values and are shown in Table 3.

In the parameter training of BRB1 and BRB2, 300 data
are selected from the dataset respectively. The P-CMA-ES
algorithm is chosen as the optimization algorithm, and its
population size is set to 82 and the generation number is
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FIGURE 6. The feature extraction results. (a) Mean. (b) Mean square value. (c) Variance. (d) Skewness. (e) Kurtosis.

set to 500. After the training part, the optimized parameters
in BRB1 and BRB2 are shown in Table 4 and Table 5.
The optimized attribute weights for x1 and x2 are set to
0.6078 and 0.0219 in BRB1, and 0.8642 and 0.5632 in BRB2,
respectively.

A total of 600 data points are used as the testing data, and
the predictive outputs of Kurtosis and Skewness are shown
in Fig. 8 and Fig. 9. From these figures, the prediction out-
comes can flow the change of the testing data, and the predic-
tion results of optimized BRBs have higher fitting degree than
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FIGURE 7. The features after data cleaning. (a) Kurtosis. (b) Skewness.

TABLE 2. The referential points and values of Skewness.

FIGURE 8. Prediction output of Kurtosis by BRB1.

the initial ones. The MSE of optimized BRB1 and BRB2 are
set to 0.00387 and 0.0452, respectively. Thus, it can be seen
that the two optimized BRB models can accurately predict
the dynamic changes of Kurtosis and Skewness.

C. ESTABLISHING BRB_LAYER2 MODEL
According to the experiment, four-level referential points
of the aero-engine health state are set, denoted by Seri-
ous, medium Serious and Normal. The referential points
and values for the health states (H0,H1,H2) = (00.51).

The aero-engine health predictive model named BRB3 is
established as follows:

If Kurtosis is Ak1 ∧ Skewness is A
k
2

Then the health state is
{(
H0, β1,k

)
,
(
H1, β2,k

)
,
(
H2, β3,k

)}
with a rule weight θk and attribute weight δ1, δ2 (16)

where Ak1 and Ak2 are the referential values of two input
attributes, Kurtosis and Skewness. Similar to the BRB model
built in subsection B, there are also 4 reference values for
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TABLE 3. The initial parameters of BRB1 and BRB2.

FIGURE 9. Prediction output of Skewness by BRB2.

two attributes. The initial parameters in BRB3 are shown
in Table 6.

The health predictivemodel contains two parts: the training
part and testing part. The functions of these two parts are

training the BRB3 model with the training data and then
testing the effectiveness of the BRB3 model with the testing
data. In this paper, 599 sets of data of Kurtosis and Skew-
ness are predicted by using the time series prediction model.
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TABLE 4. The optimized parameters of BRB1.

FIGURE 10. Estimated health state of aero-engine.

For each test condition, 100 sets of prediction data are
selected as the training data of BRB3. P-CMA-ES is used as
the optimization algorithm, and the population number is set
to 66 and the generation number is set to 500.

After the part of training, the optimized parameters of
BRB3 are obtained as shown in Table 7. The optimized
attributes are obtained as 0.7300 and 0.4338 for Kurtosis
and Skewness. Then, the total dataset of the optimized
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TABLE 5. The optimized parameters of BRB2.

BRB3 model are the inputs of the testing part. The pre-
dicted health state generated by the optimized BRB3 is shown
in Fig. 10. It can be seen that the red line can follow the change
of blue line, and the fitting degree is increasingly accurate
with model updating, which reflects that the optimized BRB3
model can accurately predict the health state of the aero-
engine. Therefore, we can conclude that when the health
state of the aero-engine is lower than 0.4, it needs to be
maintained.

From Fig. 10, it can be seen that the red line has a fluc-
tuation in the normal state and medium fault of the aero-
engine.When observation data are gathered from engineering
practice, they may be affected by some unmeasured fac-
tors that can decrease the accuracy of the prediction model,
e.g., temperature, humidity and vibration. If these factors are
taken into consideration, the fluctuation in the normal state
and medium fault can be well avoided.

D. COMPARATIVE STUDIES
In this section, to demonstrate the effectiveness of the new
proposed model, a comparative study between the BP neural
network and double-layer BRB model is conducted.

The training data are the same as the dataset used in sub-
sections of B and C . The initial parameters of the BP neural
network are as follows: net. trainParam. epochs= 10000, net.
trainParam. epochs = 1e-004 and net. trainParam. lr = 0.01.
The safety levels are also selected as 1, 0.5 and 0, denoted as
normal, medium fault and serious fault, respectively.

Fig. 11 and Fig. 12 are the prediction results for the
dynamic changes of Kurtosis and Skewness compared with
the BP neural network. It can be seen that the BP neural
network can predict the changes of the two attributes from
the beginning. However, when the Kurtosis and Skewness
change significantly, the BP neural network cannot follow the
changes accurately and has a certain delay time. Compared
with the predictive BRB models, which are represented by
the red line in Figs. 11 and 12, the errors of the BP neural
network are huge, and their MSEs are 0.6028 and 0.3343 for
the prediction model of Kurtosis and Skewness, respectively.
TheMSEs generated by the predictive BRBmodels proposed
in subsection B are 0.0123 and 0.0039 for Kurtosis and
Skewness, respectively. On the basis of the above analysis,
it can be seen that the accuracy of the prediction BRB model
is improved compared with the BP neural network.
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TABLE 6. The initial parameters of BRB3.

FIGURE 11. Comparison between BP neural network and BRB model for Kurtosis.

Comparing the BRB-based model with the BP neu-
ral network in the health state prognostics, its accuracy
is also improved. As shown in Fig. 13, the red line,

which represents the assessment of the health state by
BRB, can follow the black line denoting the actual health
state of the aero-engine accurately. However, the blue
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TABLE 7. The optimized parameters of BRB3.

FIGURE 12. Comparison between BP neural network and BRB model for Skewness.

line, representing the assessment of the health state by
the BP neural network, cannot reflect the actual status
of the engine when under normal condition and medium
fault.

From the above comparison, we conclude that compared
with the BP neural network, the BRB-based prognostics
model can predict the attributes and evaluate the engine health
state accurately.
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FIGURE 13. Comparison between BP neural network and BRB model in the estimation for the health state.

V. CONCLUSIONS
In this paper, a double-layer BRB model is proposed to
dynamically predict the health state for a complex electrome-
chanical system. Both qualitative knowledge and quantitative
information are considered to build the model of health prog-
nostics. In the process of health prognostics, an infinite irrel-
evance method and P-CMA-ES are selected as the features
selection method and optimization model to optimize the size
and accuracy. A type of aero-engine is taken as an example,
and the case study demonstrates that the proposedmethod can
predict the health state well.

The proposed model can take advantage of expert expe-
rience which improves the training accuracy compared with
the traditional data-driven model. In addition, history and
current data are used to predict future data, which can reflect
the dynamic changes in a complex electromechanical system.
Moreover, features are combined to determine the health state
with different weights to ensure the accuracy of prediction.

In this paper, we assume that the data obtained are fully
reliable. However, in the actual working environment, the
quality of sensors may cause errors in the observation data.
This could create doubts in the data that are collected by the
sensors, thus reducing the reliability of the data. Therefore,
a model of health prognostics considering data reliability
should be further studied for a complex electromechanical
system. Moreover, this future work may have a better engi-
neering significance.
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