
SPECIAL SECTION ON GREEN CLOUD AND FOG COMPUTING: ENERGY EFFICIENT
AND SUSTAINABLE INFRASTRUCTURES, PROTOCOLS AND APPLICATIONS

Received August 20, 2017, accepted October 4, 2017, date of publication October 24, 2017, date of current version November 14, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2766165

INVITED PAPER

Adaptive Energy-Aware Computation Offloading
for Cloud of Things Systems
YUCEN NAN 1, (Student Member, IEEE), WEI LI1, (Senior Member, IEEE),
WEI BAO1, (Member, IEEE), FLAVIA C. DELICATO2, PAULO F. PIRES2, YONG DOU3,
AND ALBERT Y. ZOMAYA1, (Fellow, IEEE)
1Centre for Distributed and High Performance Computing, School of Information Technologies, The University of Sydney, NSW 2006, Australia
2Department of Computer Science, Federal University of Rio de Janeiro, Rio de Janeiro 20001-970, Brazil
3College of Computer Science, University of Defense Technology, Changsha 410073, China

Corresponding author: Yucen Nan (ynan2995@uni.sydney.edu.au)

The work of W. Li was supported in part by the Faculty of Engineering and IT Early Career Researcher scheme, The University of Sydney,
and in part by the Faculty of Engineering Information Technologies, The University of Sydney, under the Faculty Research Cluster
Program. The work of W. Bao was supported by The University of Sydney DVC Research/Bridging Support. The work of A. Y. Zomaya
was supported by an Australian Research Council Discovery under Grant DP130104591. The work F. C. Delicato and P. F. Pires was
supported by CNPq Fellowship. The work of Y. Dou was supported by the Natural Science Foundation of China under Grant U1435219.

ABSTRACT Cloud computing has become the de facto computing platform for application processing in the
era of the Internet of Things (IoT). However, limitations of the cloud model, such as the high transmission
latency and high costs are giving birth to a new computing paradigm called edge computing (a.k.a fog
computing). Fog computing aims to move the data processing close to the network edge so as to reduce
Internet traffic. However, since the servers at the fog layer are not as powerful as the ones in the cloud, there is
a need to balance the data processing in between the fog and the cloud. Moreover, besides the data offloading
issue, the energy efficiency of fog computing nodes has become an increasing concern. Densely deployed
fog nodes are a major source of carbon footprint in IoT systems. To reduce the usage of the brown energy
resources (e.g. powered by energy produced through fossil fuels), green energy is an alternative option.
In this paper, we propose employing dual energy sources for supporting the fog nodes, where solar power is
the primary energy supply and grid power is the backup supply. Based on that, we present a comprehensive
analytic framework for incorporating green energy sources to support the running of IoT and fog computing-
based systems, and to handle the tradeoff in terms of average response time, average monetary, and energy
costs in the IoT. This paper describes an online algorithm, Lyapunov optimization on time and energy
cost (LOTEC), based on the technique of Lyapunov optimization. LOTEC is a quantified near optimal
solution and is able to make control decision on application offloading by adjusting the two-way tradeoff
between average response time and average cost. We evaluate the performance of our proposed algorithm
by a number of experiments. Rigorous analysis and simulations have demonstrated its performance.

INDEX TERMS Internet of things, fog computing, Lyapunov optimization, green energy.

I. INTRODUCTION
In the past few years, the emergence of a pervasive and
ubiquitous computing paradigm - Internet of Things (IoT)
and its applications generate an extensive amount of data.
However, the limited computing capability and energy
resources of IoT devices prevents the processing of such
data by the devices themselves. Therefore, it is natural to
utilize the on-demand resourceful cloud computing paradigm
to process the data generated from IoT devices. Thus, a new
paradigm called cloud of things (CoT) has emerged, which

integrates IoT and Cloud Computing in the development of
the IoT systems. Such systems comprise of two tiers, the front
tier encompassing the Things and the back tier encompassing
the Cloud devices. Despite the obvious advantages of using
cloud devices to process IoT data, CoT systems still suffer to
deliver the needed QoS for delay sensitive IoT applications.
The unpredictable communication delay from the Things tier
to the Cloud tier become a high risk factor for these applica-
tions. Besides, the network bandwidth could be over-utilized
when transferring the generated data of IoT applications to
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the Cloud tier, despite the fact that most of such applications
can be processed locally.

As a remedy to the above limitations, a promising
computing paradigm called Edge Computing has recently
been advocated. The key idea behind Edge Computing is the
introduction of an intermediate tier with the data processing
capability in between the above two-tiers of CoT systems.
Since the edge tier is situated close to the Things tier, the data
processing at suhc tier can significantly reduce the communi-
cation delay, shortening the response time of IoT applications
and generating less traffic over Internet. Fog Computing [1]
as a representative paradigm of Edge Computing keeps the
data processing close to end users to reduce the communi-
cation delay over the Internet and minimize the bandwidth
burden by not fully offloading the generated data to the cloud.

Apart from the data offloading issue, the energy-efficiency
of fog computing paradigm has become an increasing con-
cern for researchers. This is due to providing reliable
grid power supply in some remote areas can be extremely
costly or even infeasible [2]. Furthermore, to accommodate
the growing demands for ubiquitous information access,
the access points and fog computing nodes are becoming
increasingly densely deployed. Thus, it is without surprise
that the energy consumption of these devices becomes a
major portion (60% - 80%) of the energy consumption of
CoT systems [3], generating a major source of carbon foot-
print. In order to reduce the usage of the brown energy
resources (e.g. powered by energy produced through fossil
fuels), green energy (e.g. powered by solar, wind or geother-
mal) is embraced as an alternative energy resource to use
while reducing the threats of global climate change. The
green energy sources can also provide local and affordable
energy for urban and rural communities. In spite of the
fact that there are lots of advantages of using green energy,
the disadvantage of such energy sources is that the energy
conversion rate is relative low, and some of the sources are
tightly correlated to the weather conditions, so they could
vary dramatically leading to a highly unpredictable power
generation. To tackle these issues, we employ dual energy
sources for supporting the running of the fog computing
paradigm in our system, where solar is used as our primary
energy supply and grid power as the backup energy supply.
The grid power is also used as the primary energy source to
support the running of the Cloud data centres.

In this paper, we present a comprehensive analytic frame-
work for not just incorporating green energy sources to sup-
port the running of IoT and fog computing-based system, but
also enabling an energy-efficient data offloading mechanism
to make sure the long-term system cost (measured by the
money spending on energy consumption) is minimized and
the users would not experience a poor quality of service.
In general, such problem can be converted into a constrained
stochastic optimization problem. Using the technique of Lya-
punov optimization [4], we designed an adaptive decision-
making algorithm called LOTEC (Lyapunov Optimization
on Time and Energy Cost) for distributing the incoming

applications to the corresponding tiers without a priori knowl-
edge of the status of users and system. The main goal of
this algorithm is to ensure the data is processed within a
certain amount of time meanwhile the availability of the fog
servers is still guaranteed, and the cost (measured by the
money spending on using grid power) of the whole system
is minimized. In addition, our proposed algorithm achieves
the average response time arbitrarily close to the theoretical
optimum. The performed discrete-event simulation demon-
strates that, under this CoT scenario, our proposed framework
outperforms the selected benchmarks and provides the best
overall performance for the system users.

The rest of the paper is organized as follows: Section 2
introduces the system model including two dimensions:
workload model and energy model. Section 3 presents
the theoretical solution and the proposed algorithm.
Section 4 evaluates the performance of the proposed algo-
rithm. Related work is provided in Section 5, followed by the
final remarks in Section 6.

FIGURE 1. The system architecture of the CoT.

II. SYSTEM MODELS
A. THE OVERVIEW OF THE THREE-TIER CLOUD OF THINGS
As shown in Fig. 1, our CoT system mainly focuses on two
tiers in this paper, namely Fog tier and Cloud tier. The Things
tier is assumed to be our data source in this study, so it is not
explicitly included in the figure. The interested readers are
referred to our previous works [5] [6] for further information.

The Fog tier encompasses many distributed fog systems,
each one associated with IP addresses from different sub-
nets. Within each fog system, we consider the exisence of
a server and a gateway, which are physically co-located.
The fog server receives and processes data generated by the
IoT devices within the same subnet. The number of newly
arrival applications in a unit time slot (termed as arrival
rate) may be higher than the processing capacity of the fog
server (termed as service rate). Therefore, this will lead to
an increment of queue length or even an excess of queue
length in the fog server. To avoid overload in fog server,
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FIGURE 2. Application processing flow.

the applications can also be processed in the Cloud tier that
comprises typical (macro) data centres. Unlike directly send-
ing data generated by IoT devices to the fog server, some
applications on the fog server will then be sent to the Cloud
tier via the gateway for their processing. The transmission
delay from the fog server to the gateway is negligible due
to the physical proximity. The service rates of the servers
located in the cloud tier are generally higher than the fog
servers, but the data transmission from fog to cloud causes
extra delay and power consumption. In our study, we assume
that the Cloud is completely supported by the grid power with
certain monetary cost while the fog server can be partially
supported by the green energy without any monetary cost.
Fig. 2 shows the application processing flow in our system.
For the sake of the simplicity of analysis, we use only one fog
system to demonstrate how our proposed algorithm works,
but the approach also applies to the case of multiple fog sys-
tems. Please note that, the cooperation between fog systems
is out of the scope of this paper. In Table 1, we provide the
definitions of the important parameters used in our paper.

B. WORKLOAD MODEL
We consider a discrete-time model by dividing the operation
period into coarse-grained time slots of equal length indexed
by t = 0, 1, ..., in accordance with the length of the long-
term-ahead grid market, e.g., days or hours.

1) FOG SERVER IN FOG SYSTEM
During the tth time slot, the arrival rate of applications in
the fog system is λ(t) and the service rate of the server
in this fog system is µ(F)(t). Since the fog server has lim-
ited computation capacity, λ(t) may be greater than µ(F)(t),
we allow a portion of the applications to be offloaded to the
Cloud tier. Let η(F)(t) denote the portion of the applications
processed locally, and η(C)(t) denote the portion offloaded
to the cloud server. Let λ(F)(t) = η(F)(t)λ(t) denote the
equivalent local arrival rate of the applications at the server in
the fog system, and the remaining applications which denoted
as λ(C)(t) will be offloaded to the cloud server for processing

TABLE 1. Key parameters.

after transmitting via gateway. We have

λ(t) = λ(F)(t)+ λ(C)(t). (1)

We model the server in the fog system as an M/M/1
queue [7]. According to the Little’s Law, the average local
response time is

τ (F)(t) =
1

µ(F)(t)− λ(F)(t)
, (2)

note that we must satisfy

µ(F)(t) > λ(F)(t). (3)

2) TRANSMISSION FROM FOG TIER TO CLOUD TIER
As we discussed before, the transmission delay from the fog
server to the gateway can be ignored due to the physical
proximity. During the tth time slot, the arrival rate to the
gateway equals to the arrival rate of the Cloud, which is
denoted as λ(c)(t). The transmission rate in communication
channel is µ(X )(t). We model the process of transmission in
gateway as an M/M/1 queue, and the average transmission
time from the gateway to the cloud can be denoted as:

τ (X )(t) =
1

µ(X )(t)− λ(C)(t)
, (4)

note that we must satisfy

µ(X )(t) < λ(C)(t). (5)

Furthermore, if the gateway is used, there will be a prop-
agation delay τ

′

(t). In summary, if the application will be
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sent to the Cloud, the average response time for sending
applications to the cloud server from the fog system is

τ (X )(t) = τ (X )(t)+ τ
′

(t). (6)

3) SERVERS IN THE CLOUD TIER
In this paper, we assume that the Cloud data centre is able
to provide auto-scale services to the users, which means
the number of cloud servers can be automatically varied by
monitoring some selected metrics in the centre. In this study,
we choose the length of waiting queue in the Cloud data
centre as the metric to monitor, which can be denoted as γ (t).
Correspondingly, the threshold of scaling up or down the
numbers of servers can be denoted by γup and γdown. After
that, the action of scaling can be formulated as following:

f (t) =


y γ (t) ≥ γup
0 γdown ≤ γ (t) ≤ γup
−z γ (t) < γdown,

where the number of the servers can be varied once scaling
up or down is triggered, which can be denoted as y and
z respectively. When γ (t) exceeds the γup, the cloud data
centre will use ymore servers to process applications. On the
contrary, when γ (t) drops below γdown, the cloud data centre
will switch off z running servers. Moreover, when γ (t) lies
in the range of [γdowm, γup], the number of servers in the
cloud data centre remains the same. As mentioned before,
the number of the running servers in the cloud data centre
during the tth time slot can be denoted as following:

S(t) = S(t − 1)+ f (t − 1). (7)

The arrival rate to a cloud server is λ(C)(t). The service rate
of a cloud server is µ(C)(t). Again, an M/M/1 queue is used
to evaluate the average response time in the cloud data center,
and can be denoted as

τ (C)(t) =
1

S(t)µ(C)(t)− λ(C)(t)
, (8)

note that we must have

S(t)µ(C)(t) > λ(C)(t). (9)

C. ENERGY COST MODEL
In order to save money as much as possible and try to be
environmental friendly, we use solar as our primary green
energy source to supply the fog system. In a given time slot,
the volume of electricity converted from solar energy can be
denoted as E (F)

in (t), which is a stochastic value depending on
weather conditions. We assume that no monetary cost will
be raised by using the electricity converted from the green
energy. However, the green energy is unpredictable and unsta-
ble. In the fog system, if the demand of the electricity exceeds
that green energy can supply, we need to use traditional grid
power to maintain the system functions properly. According
to the well-known physical formulations, we can derive the
energy consumed in fog system as following:

E (F)
µ1

(t) = τ (F)(t)ω(F)
s , (10)

E (F)
µ2

(t) = τ (X )(t)ω(F)
b , (11)

where E (F)
µ1 (t) is the energy demand of the fog server andω(F)

s
is the unit power consumption of the fog server. Similarly,

E (F)
µ2 (t) denote the energy demand of the gateway and ω(F)

b
is the unit power consumption of the gateway. Then, we can
obtain the total energy consumption in the fog system:

Eout (t) = E (F)
µ1

(t)+ E (F)
µ2

(t). (12)

Regarding the cost of using grid power, the price is based
on time period, which can be divided into: peak hour, shoulder
hour and off-peak hour [8]. If we use grid power in the peak
hour, the price of electricity can be denoted as ponp, and the
price of shoulder hour and off-peak hour can be denoted as
pshd and pofp respectively.

pe(x) =


ponp peak
pshd shoulder
pofp off − peak,

note that, in this paper, we must satisfy

ponp > pshd > pofp. (13)

By multiplying the unit price of the electricity in different
time period and the amount of electricity that exceeds the
green energy can support, we obtain the cost of running the
fog system:

M (F)(t) = pemax [Eout (t)− Ein(t), 0] . (14)

On the contrary, the grid power is used to support the
servers in the Cloud. Then we can obtain the cost of running
the cloud servers accordingly:

M (C)(t) = peS(t)τ (C)(t)ω(C). (15)

D. DATA OFFLOADING FOR COST-EFFECTIVE PROCESSING
In order to balance the response time and cost, as we intro-
duced previously, we presume that there is no cost if the
applications are processed in the fog system by using green
energy. However, as discussed in Section II-C, if there is not
enough green energy to use, the applications will be either
processed in the Fog system with grid power or sent out to
the Cloud for their processing. Moreover, if the applications
are sent to the Cloud, it will introduce transmission cost by
using grid power. The overall cost at t is

M (t) = M (F)(t)+M (C)(t)

= pe
(
τ (F)(t)ω(F)

s + τ
(X )(t)ω(F)

b − Ein(t)
)

+ pe
(
τ (C)(t)ω(C)

)
(16)

On the other hand, as discussed in Section II-B, the total
average response time at t is

τ (t) =
λ(F)(t)
λ(t)

τ (F)(t)

+
λ(C)(t)
λ(t)

[
τ (X )(t)+ τ (C)(t)

]
. (17)
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Then our aim is to minimize the long-term average
cost

lim sup
T→∞

1
T

T−1∑
t=0

E [M (t)] (18)

and satisfy the following requirements about response time
and energy consumption:

lim sup
T→∞

1
T

T−1∑
t=0

E [τ (t)] ≤ D. (19)

III. PROBLEM SOLUTION THROUGH LYAPUNOV
OPTIMIZATION
In order to satisfy the response time constraint (19), we need
to introduce a virtual queue Q(t), which are used to accumu-
late the part of the response time that exceeds the expected
finish time, and we define Q(0) = 0. Q(t) evolves as
follows

Q(t + 1) = max[Q(t)− D, 0]+ τ (t) (20)

Lemma 1: If Q(t) is mean rate stable [4], then (19) is
satisfied.

A. LYAPUNOV OPTIMIZATION FORMULATION
Next, we define a Lyapunov function as a scalar measure
of response time and energy consumption in the system as
follows

L (Q(t)) ,
1
2
Q2(t), (21)

Then we define the conditional unit-slot Lyapunov drift as
follows

1(Q(t)) = L (Q(t + 1))− L (Q(t)) . (22)

B. BOUNDING UNIT-SLOT LYAPUNOV DRIFT
Our primary aim is to optimize the upper bound of the overall
response time which is the upper bound of 1(Q(t)).
Lemma 2: For any t ∈ {0, T − 1}, given any possible

control decision, the Lyapunov drift 1(Q(t)) can be deter-
ministically bounded [4] as follows

1(Q(t)) ≤ H + Q(t)E [−D+ τ (t)|Q(t)] , (23)

where H = 1
2

[
maxE

(
τ (t)2

)
+ D2

]
.

C. MINIMIZING THE DRIFT-PLUS-COST PERFORMANCE
Defining the same Lyapunov function L (Q(t)) as in (21), and
letting1(Q(t)) represents the conditional Lyapunov drift at t .
While taking actions to minimize a bound on 1(Q(t)) every
time slot would stabilize the system, the resulting cost might
be unnecessarily large. In order to avoid this, we minimize a
bound on the following drift-plus-penalty expression instead
of minimizing a bound on 1(Q(t))

1 (Q(t))+ VE [M (t)|Q(t)] , (24)

where V ≥ 0 is a parameter that represents an ‘‘important
weight’’ on how much we emphasize cost minimization. We
add a penalty term to both sides of (23), yielding a bound on
the drift-plus-penalty

1(Q(t))+ VE [M (t)|Q(t)]

≤ H + E [Q(t)τ (t)|Q(t)]

−DQ(t)+ VE [M (t)|Q(t)] . (25)

At each time slot, we are motivated to minimize the following
term.

min
λ(F)(t),λ(C)(t)

E [Q(t)τ (t)|Q(t)]+ VE [M (t)|Q(t)] , (26)

substituting (26), we have the following one-time slot opti-
mization problem C1. (26) is minimized if we opportunisti-
cally minimize (27) as follows at each step [4].

min
λ(F)(t),λ(C)(t)

Q(t)
(
λ(F)(t)
λ(t)

τ (F)(t)+
λ(C)(t)
λ(t)

(τ (X )(t)+τ (C)(t))
)

+Vpe
(
τ (F)(t)ω(F)

s + τ
(X )(t)ω(F)

b −Ein + τ (C)(t)ω(C)
)
,

(27)

subject to λ(F)(t) ≤ µ(F)(t), (28)

λ(C)(t) ≤ min(µ(C)(t), µ(X )(t)). (29)

In the next subsection, we show that if (26) is minimized
at each time slot, we can achieve quantified near optimal
solution.

D. OPTIMALITY ANALYSIS
Let † denote any S-only offloading policy1, and τ †(t) and
M†(t) denote the average response time and average cost at t
based on policy †.

1(Q(t))+ VE [M (t)|Q(t)]

≤ qH + Q(t)E [τ (t)− D|Q(t)]+ VE [M (t)|Q(t)] (30)

≤ H + Q(t)E
[
τ †(t)− D|Q(t)

]
+ VE

[
M†(t)|Q(t)

]
(31)

= H + Q(t)E
[
τ †(t)− D

]
+ VE

[
M†(t)

]
. (32)

Now we assume that there exists δ > 0 such that

E
[
τ †(t)

]
≤ D − δ can be achieved by an S-only policy [9],

and among all feasible S-only policies, M
∗
(δ) is the optimal

average cost. We have

(31) ≤ H − Q(t)δ + VM
∗
(δ). (33)

Taking expectations of (33), we have

T−1∑
t=0

E [1(Q(t))]+ V
T−1∑
t=0

E [E(M (t)|Q(t))]

≤ TH −
T−1∑
t=0

E [Q(t)] δ + VTM
∗
(δ).

1S-only offloading policy means that the decision on
λ(F)(t), λ(C)(t) depends only on the system state at t (i.e.,
λ(t), µ(F)(t), µ(X )(t), µ(C)(t), τ (t),M (t)), but does not depend on Q(t).
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Using the law of iterated expectations as before yield and
summing the above over t ∈ [0,T − 1] for some positive
integer T yield, we have

E [L(Q(T ))]− E [L(Q(0))]+ V
T−1∑
t=0

E [M (t)]

≤ TH −
T−1∑
t=0

E [Q(t)] δ + VTM
∗
(δ). (34)

Rearranging the terms in the above and neglecting non-
negative quantities where appropriate yields the following
two inequalities

1
T

T−1∑
t=0

E [Q(t)] ≤
H
δ
+
VM

∗
(δ)− V

T

∑T−1
t=0 E [M (t)]

δ

+
E [L(Q(0))]

T δ
(35)

and

1
T

T−1∑
t=0

E [M (t)] ≤
H
V
+M

∗
(δ)+

E [L(Q(0))]
VT

, (36)

where the first inequality follows by dividing (34) by VT and
the second follows by dividing (34) by T δ. Taking limits as
T →∞ shows that

lim sup
T→∞

1
T

T−1∑
t=0

E [Q(t)] ≤
H + V

[
M
∗
(δ)−M

∗
]

δ
, (37)

where M
∗
is the optimal long-term average cost achieved by

any policy. We also have

lim sup
T→∞

1
T

T−1∑
Tk=0

E [M (t)] ≤
H
V
+M

∗
(δ). (38)

The bounds (37) and (38) demonstrate an [O(V ),O(1/V )]
tradeoff between average response time and average cost.
We can use an arbitrarily large V to make H

V arbitrarily small,
so that the inequality (38) illustrates that with the increasing
of parameter V , the money cost is closer to theM∗. However,
when V is too large, the data queue is not stable, which
means the response time will exceeded the predefined system
expected finish time and not satisfying the constraint (19)
anymore. It is obvious that tuning the parameter V can min-
imize the response time and money cost at the same time.
This comes with a tradeoff: the average response time bound
in inequality (37) is O(V ).

E. LOTEC OPTIMIZATION
In this subsection, we need to further solve the problem P1
in (27)-(29) and the pseudo code of our proposed algorithm
LOTEC is given in Algorithm 1.

Algorithm 1 LOTEC Optimization Algorithm
1: for each Application ∈ N do
2: Calculating (27) under the constraints (28) and (29).

Derive the optimal value of (27) by selecting
Fog or Cloud respectively, which are denoted by Ffog
and Fcloud

3: if Ffog ≤ Fcloud then
4: Set Nfog = Nfog + 1,
5: Set λ(F)∗ = λ(F)(t)
6: else
7: Set Ncloud = Ncloud + 1
8: Set λ(C)∗ = λ(C)(t)
9: end if

10: end for
11: The optimal solution is λ(F)(t) = λ(F)∗, and λ(C)(t) =

λ(C)∗

IV. PERFORMANCE EVALUATION
In this section, we first provide the details of the simulations,
then we investigate the performance of our proposed algo-
rithm by evaluating the tradeoff between average response
time and average cost. After that, we investigate how different
amounts of solar energy will impact the system performance.
Lastly, we present three selected algorithms implemented as
benchmarks to compare with our proposed algorithm.

A. SIMULATION ENVIRONMENT SETTING
In order to evaluate the performance of our proposed algo-
rithm, we carried out a discrete event simulation (DES) mak-
ing use of the SimPy [10].

We first established the three-tier CoT system as shown
in Fig. 2 in our simulations. There were totally N applica-
tions generated by the IoT devices in a time slot and they
would be directly sent to the fog server in the fog system,
which a Poisson-distributed service rate. Meanwhile, there is
a gateway located in the fog system which is used to sent
the selected applications to the servers in Cloud tier with
a Poisson-distributed transmission rate. To address different
workloads on the Cloud, we assumed that the number of
servers in the Cloud is scalable depending on the backlog.
When the backlog in Cloud tier exceeds the preset upper
threshold (set to 100 in our experiment), the number of
servers will be scaled up to 4 servers (2 servers is the default
value) to speed up the applications processing. However,
when the backlog is lower than the lower threshold (set to
50 in our experiment), the number of Cloud server will be
scaled down to 1 to save energy. In addition, regarding to our
proposed algorithm, there is a penalty term V to show how
much we emphasize on the average cost.

In our experiments, we consider each time slot as
1 day (24 hours) and divided it into three parts with differ-
ent electricity price, namely peak hour (2pm-8pm), shoulder
hour (7am-2pm and 8pm-10pm) and off-peak hour (10pm-
7am) [8]. In peak hour, the price of traditional grid electricity
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is set to $0.22 per kilowatt, the price of shoulder hour is set
to $0.06 per kilowatt, and the price of off-peak hour is set
to $0.02 per kilowatt [11]. Except the traditional grid power,
we use solar energy (with no monetary cost) as our primary
power supply for the fog system, and the period of sunshine
duration is randomly generated in each time slot, ranging
from 4 hours to 12 hours.

Since the servers in fog tier are not as powerful as servers
in Cloud tier, the unit power consumed by fog server is set to
41.6 Kw/h while power consumption of cloud server is set to
277.8 Kw/h in our experiments. In addition, the unit power
consumed by gateway is set to 2.7Kw/h and the solar energy
is the first choice to power Fog tier (fog server and gateway).

FIGURE 3. The influence of penalty term in LOTEC optimization algorithm.

B. THE IMPACT OF DIFFERENT PENALTY TERMS ON THE
PERFORMANCE OF THE PROPOSED ALGORITHM
To investigate the effects of the penalty term V in our pro-
posed algorithm, we varied its value and observed how the
average cost and average response time change accordingly.
In this experiment, we first fixed the available amount of
solar energy and then varied the value of V from 0.01 to 1,
which represents the importance of the average cost spending
will affect the system performance. As depicted in Fig. 3,
by setting the value of V to a small one, we observed that
the average response time remains small while the average
cost remains large. This is due to the penalty of cost spending
is low in the system, so that the applications are preferred
to be processed at cloud in order to get a better response
time. By setting V to a large value, the significant increment
of the average response time can be observed in the figure.
However, the change of average cost is not as simple as aver-
age response time. Two phrases of the change of the average
cost are shown in the figure. When the value of V is lower
than 0.5, the average cost is dropping from 125 to around
60. When V keeps increasing from 0.5 to 1, the average cost
stops decreasing, instead, it starts increasing slowly. This is
because when the green energy is exhausted, the fog server
will use brown energy to support its running, but its low
service rate results in a longer response time, increasing the

FIGURE 4. The influence of penalty term in application offloading.

monetary cost. It is clear that when V is set to 0.5, the average
cost of the system is minimized.

Apart from studying the impact of the change of V on
average cost and average response time, we also study how
the application offloading in the entire system is affected.
In Fig. 4, the red curve depicts the number of applications in
the Fog tier and the black curve depicts the number of applica-
tions in the Cloud tier. As shown in the Figure, the number of
applications in the Fog tier is increasing along with the value
of V is changing from 0.01 to 1. It indicates that we care more
about monetary cost, so the application are preferred to be
processed in the Fog tier. On the contrary, the number of the
applications sent to cloud for their processing is decreasing in
the same time since the Cloud tier is fully supported by gird
power with more cost. In conclusion, the larger V is given,
the more applications will be processed in the Fog tier.

C. THE IMPACT OF DIFFERENT AMOUNT OF SOLAR
ENERGY ON THE PERFORMANCE OF THE LOTEC
ALGORITHM
As mentioned before, the usage of solar energy has zero cost
and it acts as the primary power supply for the Fog tier. In real
world scenarios, the power amount converted from solar
energy generally varies in different days, which are caused
by different natural environmental factors such as sunshine
durations. Therefore, it is also important for us to investigate
the system performance to be managed by LOTEC algorithm
under different amount of green energy supply. To study the
impact of various energy loads on system performance, the V
value is kept as a fixed value.

Fig. 5 depicts the changes of application offloading and
how their average response time varies accordingly with
different amount of solar energy during the fixed length time
slots and penalty terms. In this experiment, we sample ten
fixed length time slots (24 hours per slot) loaded with differ-
ent solar energy supply. As shown in the figure, the average
response time of our proposed algorithm increases along with
the increment of solar energy amount at a moderate rate. This
is due to more applications to be processed in the fog tier
powered by the cost free solar energy. As a result, the total
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FIGURE 5. Average response time and data offloading in different
amount of solar energy.

FIGURE 6. Average Cost and data offloading in different amount of solar
energy.

FIGURE 7. Offloading proportion in different amount of solar energy.

cost is spontaneously reduced as showed in Fig. 6. This
indicates LOTEC is capable of taking full advantages of green
energy without significantly increasing the response time.

Fig. 7 detailed the percentage of application offloading
in the corresponding ten time slots with increasing amount
of solar energy load (shown as the black square in this
figure). Each floating bar is composed of three different parts,

including the numbers of applications processed at Cloud tier
powered solely by grid electricity (in blue, slashed), the num-
bers of applications processed at Fog tier powered by grid
electricity (in red, slashed) and the numbers of applications
processed at Fog tier powered by the cost free solar energy (in
red, cross slashed). This is a much clearer observation that the
LOTEC algorithm can effectively allocate more applications
to be processed at the Fog tier powered by the cost free
solar energy when the solar energy supply becomes more
sufficient.

D. PERFORMANCE EVALUATION OF DIFFERENT
ALGORITHMS
To further evaluate the performance of our proposed algo-
rithm, we implemented Fog-Only, Cloud-Only and Round
Robin algorithms as our benchmarks. In the Fog-Only algo-
rithm, all newly arrival applications are sent to fog sever for
their processing. In the Cloud-Only algorithm, the applica-
tions allocation strategy is opposite to the Fog-Only algo-
rithm, where all newly arrival applications are sent to the
Cloud for their processing. In the Round Robin algorithm,
the odd-indexed applications stay in the fog tier for their
processing while the even-indexed applications are sent to the
Cloud for their processing.

FIGURE 8. The performance of processing applications in different
algorithms.

Fig. 8, shows the variation of average cost and average
response time of these four different algorithms displayed
as the upper and lower parts of each bar respectively with
increasing amount of solar energy applied. It is obvious that
the Fog-Only algorithm delivered the slowest services how-
ever cost less than any of the other there algorithms. The
Cloud-Only algorithm presents the opposite features with
significant less response time but much higher cost than the
Fog-Only algorithm. Both two algorithms failed to provide a
cost/service trade-off under all ranges of solar energy supplies
in the system. It is quite interesting that with low solar energy
supply, (e.g. the 1st, 2nd selected time slots), the Round-
Robin algorithm showed a good performance with similar
response time but lower cost than LOTEC, which we believe
this could be caused by the nature of its fair applications
distribution. However, as the solar energy supply increases,

23954 VOLUME 5, 2017



Y. Nan et al.: Adaptive Energy-Aware Computation Offloading for Cloud of Things Systems

the superiority of LOTEC emerges, with significant decrease
in the cost and well controlled increase in the response time.
It is clearly that when the total solar energy supply reaches
109.05 Kwh, the values of the overall optimization aims of
LOTEC is already much lower than the Round-Robin one.
This indicates that LOTEC has better optimization ability
when solar energy is universally applied as a large potion in
the power supply system, which is in coincidence of current
energy development strategy worldwide.

V. RELATED WORK
ICT (Information and communication technology) has been
recognized as one of the major energy consumers in the
world. One of its representatives, cloud datacentres consume
a significant amount of the total ICT energy consumption
for providing elastic and on-demand ICT services. In many
ICT systems designs, energy consumption is not perceived
as a critical success factor, and then at some point energy
needs become a constraint and thereby degrade the overall
system performance. These systems are generally brown-
powered (e.g. powered by energy produced through fossil
fuels). Such energy production process emits large amount
of greenhouse gases emissions and causes significant envi-
ronmental impact. A number of energy-efficient techniques
have thus been proposed to reduce the usage of the carbon
intensive energy of ICT systems, while not compromise sys-
tem robustness and availability.

In recent years, the main focus of developing energy-
efficient techniques for ICT systems was on Cloud datacentre
since its tremendous amount of energy consumption. The
main energy consumers of a datacentre have been identified
in [12], and the corresponding energy saving techniques have
been well studied. However, the needs [5] of processing
the time-sensitive IoT applications and enabling computation
intelligence at the network edge drive the emergence of edge
computing. The energy-efficiency techniques developed for
the edge computing paradigm is still in its infancy age and
only a few works address this issue. In [13], the authors
compared the energy demands of the cloud computing appli-
cations and fog computing applications, and showed that
some IoT applications can save more energy if they are run
on fog. In [6], the authors studied the resource management
issue of cloud of things system with the aim of minimiz-
ing the system resource usage (e.g. energy consumption of
IoT devices) while meeting the deïĄned QoS requirements.
However, no usage of renewable energy is considered in the
work. In [14], the authors advocated for leveraging on-site
renewable energy production in the different edge computing
nodes to enable greener IoT systems while offering improved
QoS compared to the core cloud approaches. An analytic
model is developed to decide whether to offload a task to
the nearby edge node or to the remote cloud datacentres for
its processing depending on the renewable energy availability
and the desired application QoS.

In dynamic systems, Lyapunov optimization is a
promising approach to solve resource allocation, traffic

routing, and scheduling problems. It has been applied to the
works of traffic routing and scheduling in wireless ad hoc
networks [15], [16], but they did not consider processing
applications in the processing network environment.

In processing networks, [17] proposed a method on how to
offload one application from a mobile device to a cloud dat-
acentre for its processing. [9], [18], [19] studied processing
networks with limited numbers of network nodes, while we
allow arbitrarily large numbers of things, nodes and datacen-
tres in the system. In [20], the authors focused on studying
task processing and offloading in a wired network, but they
overlooked to address the potential conflict of performance
requirements between them.

VI. CONCLUSION
In this paper, we studied the problem of providing energy-
effective data processing service in a three-tiers Cloud of
Things system, and proposed an efficient and effective
online algorithm, called LOTEC (Lyapunov Optimization on
Time and Energy Cost) for balancing the tradeoff between
data processing time and the monetary cost on running the
system. Simulation results demonstrated that the our pro-
posed algorithm is promising.

In the future, we will include a more realistic weather
forecasting function so as to further improve the performance
of our solution. In addition, to investigate how to enable the
cooperation between fog systems will be essential to continue
exploration of this work.

APPENDIX A
PROOF OF THE MEAN RATE STABLE EQUATION

Proof:
Due to the definition of Q(t), we have

Q(t + 1) ≥ Q(t)− D+ τ (t).

Then taking expectation of the above inequality, we have

E [Q(t + 1)]− E [Q(t)] ≥ −D+ E [τ (t)] .

Summing up both sides of the above inequality over t ∈
[0,T − 1] for some positive integer T yields and using the
law of iterated, we have

E [Q(T )]− E [Q(0)] ≥ −TD+
T−1∑
t=0

E [τ (t)] .

Then through dividing by T , we have

E [Q(T )]− E [Q(0)]
T

≥ −D+
1
T

T−1∑
t=0

E [τ (t)] .

Applying Q(0) = 0 to the above inequality, we have

E [Q(T )]
T

≥ −D+
1
T

T−1∑
t=0

E [τ (t)] .

Finally, letting T→∞ , we have

lim sup
T→∞

E [Q(T )]
T

≥ −D+ lim sup
T→∞

1
T

T−1∑
t=0

E [τ (t)] .

VOLUME 5, 2017 23955



Y. Nan et al.: Adaptive Energy-Aware Computation Offloading for Cloud of Things Systems

If Q(t) is mean rate stable, then lim supT→∞
E[Q(T )]

T = 0

0 ≥ −D+ lim sup
T→∞

1
T

T−1∑
t=0

E [τ (t)] .

Rearranging terms in the above, we have

lim sup
T→∞

1
T

T−1∑
t=0

E [τ (t)] ≤ D.

By introducing the virtual queue Q(t), we are able to con-
vert the constraint (19) into a queue stable problem. If we
can guarantee that Q(t) is mean rate stable, we are able to
satisfy (19).

APPENDIX B
PROOF OF THE BOUNDED LYAPUNOV DRIFT EQUATION

Proof:

1(Q(t)) = E [L (Q(t + 1))− L (Q(t)) |Q(t)]

=
1
2
E
[
Q2(t + 1)− Q2(t)|Q(t)

]
.

Applying equation (20), we have

1(Q(t)) =
1
2
E
[
[max [Q(t)− D, 0]+ τ (t)]2 − Q(t)2|Q(t)

]
.

For any Q(t) ≥ 0, D ≥ 0, τ (t) ≥ 0, we have

[max[Q(t)− D, 0]+ τ (t)]2 ≤ Q(t)2 + τ (t)2 + D2

+ 2Q(t)(τ (t)− D),

then we have

1(Q(t)) ≤
1
2
E
[
τ (t)2 + D2

+ 2Q(t)(τ (t)− D)|Q(t)
]

≤ E

[
τ (t)2 + D2

2
|Q(t)

]
+E [Q(t)τ (t)− Q(t)D|Q(t)] .

Defining H as a finite constant that bounds the first term on
the right-hand-side of the above drift inequality, so that for
all t , all possible Q(t), we have

H =
1
2

[
maxE(τ (t)2)+ D2

]
.
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