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ABSTRACT Recent studies show that pattern-recognition-based transient stability assessment (PRTSA)
is a promising approach for predicting the transient stability status of power systems. However, many
of the current well-known PRTSA methods suffer from excessive training time and complex tuning of
parameters, resulting in inefficiency for real-time implementation and lacking the online model updating
ability. In this paper, a novel PRTSA approach based on an ensemble of OS-extreme learning machine (EOS-
ELM) with binary Jaya (BinJaya)-based feature selection is proposed with the use of phasor measurement
units (PMUs) data. After briefly describing the principles of OS-ELM, an EOS-ELM-based PRTSAmodel is
built to predict the post-fault transient stability status of power systems in real time by integrating OS-ELM
and an online boosting algorithm, respectively, as a weak classifier and an ensemble learning algorithm.
Furthermore, a BinJaya-based feature selection approach is put forward for selecting an optimal feature
subset from the entire feature space constituted by a group of system-level classification features extracted
from PMU data. The application results on the IEEE 39-bus system and a real provincial system show that
the proposal has superior computation speed and prediction accuracy than other state-of-the-art sequential
learning algorithms. In addition, without sacrificing the classification performance, the dimension of the
input space has been reduced to about one-third of its initial value.

INDEX TERMS Transient stability, feature selection, binary Jaya algorithm, extreme learning machine,
ensemble learning.

I. INTRODUCTION
Transient stability assessment (TSA) of power systems has
always been regarded as a primary task to guarantee the
system safe and stable operation [1]. With problems arising
from electricity market reforms, the increasing application of
power electronic devices and the gird integration of large-
scale renewable resources, the dynamic behaviors of modern
power systems are becomingmore andmore complex [2], [3],
and the consequences resulted from transient instability are
growing increasingly serious therewith [4]–[6]. Therefore,
it is an urgent need for developing a well-calibrated TSA
approach to make a fast and accurate determination of the
transient stability status of post-fault power systems.

Transient stability is the ability of synchronous machines
to maintain synchronism when subjected to a severe distur-
bance. It is dependent not only on the initial operating state
of the pre-fault system, but also on the disturbance’s sever-
ity [7]. Since transient stability is a very fast phenomenon

that requires a corrective control action within short period of
time (< 1 s) [1], [8], fast detection of instability is essential.
In literature, the existing TSA methods can be divided

into four basic classes: time-domain (T-D) simulations [9],
direct methods (e.g. transient energy function (TEF)
methods [10], [11] and the extended equal-area crite-
rion (EEAC) [12]), and Lyapunov exponents (LEs) meth-
ods [13], [14] and pattern recognition-based TSA (PRTSA)
methods. The T-D simulation is most straightforward
approach with high-accuracy calculation results, but it is
time-consuming and the results are strongly dependent on the
accuracy of the system model and parameters [1]. The direct
methods have fast calculation speed and are able to provide
transient stability margins, but there are still several open
problems existing to determine the specific TEF or coherent
generator groups under a certain disturbance when using this
approach in practical power systems with complex mod-
els [10], [12]. The LEs method proved that the transient
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stability can be determined by identifying the sign of the
system’s maximal Lyapunov exponent (MLE) [13]. However,
the LEs methods needs several seconds to calculate MLE due
to the limitations of observed time window length [13], [14].

In recent years, PRTSA has proved to be potential in the
area of on-line dynamic security analysis by applying of
machine learning techniques, such as artificial neural net-
works [15]–[17], support vector machine [18]–[20], decision
trees [21], [22], and core vector machine [23], for solving
protection and control problems of power systems. Form
the viewpoint of PRTSA, the TSA problem can be viewed
as a pattern recognition task, and the transient stability can
be assessed by mapping relationships between input fea-
tures extracting from the system operational parameters and
final post-fault stability status [24]–[26]. Meanwhile, the
matured applications of phasor measurement units (PMU)-
based wide area measurement system (WAMS) have made it
become a reality to acquire the real-time synchronized mea-
surements, and this brings new ideas and opportunities for
implementing an advanced wide-area protection and control
system [27], [28].

Unfortunately, many of the well-known PRTSA methods
suffer from excessive training time and complex tuning of
parameters [15], [16], [18]–[20], [25], resulting in ineffi-
ciency for real-time implementation and lacking the on-
line model updating ability. The traditional framework of in
such approaches is the application mode of ‘‘offline training-
online matching’’ [15]–[20]. When a trained model is unsat-
isfactory for some special samples in on-line application,
the running model has to be terminated and offline retrained
again [21]. However, in a real operating environment, training
samples cannot cover all of the operating modes of time-
varying modern complex power systems for sure. This will
inevitably lead to the deteriorated applicability of the trained
model via off-line training when used online [17], because
training samples generated by offline simulations might not
be able to represent the current modes.

Extreme learning machine (ELM) proposed by Huang is
a new machine learning approach for single hidden layer
feed forward networks [29], and it has been successfully
applied in many engineering applications [30]–[33]. As an
extension of ELM, OS-ELM can learn data one-by-one or
chunk-by-chunk and discard the data for which the train-
ing has already been done [34], [35]. Ensemble learning
is an attracting machine learning approach [22], [36]–[38],
which learns knowledge by using a set of learning machines
and comprehensively ensembles various learning results to
obtain better generalization ability than individual learning
machines. Besides classifier design, it is well-known that,
for PRTSA, feature selection is of paramount importance
[24], [25]. The idea is that feature selection will improve
the classifier performance and provide a faster classification,
leading to comparable or even best generalization ability than
using all features [26].

In this paper, a novel PRTSA approach based on
an ensemble of OS-ELM (EOS-ELM) with binary

Jaya (BinJaya)-based feature selection is proposed with the
use of PMU data. Use of ELM and OS-ELM for TSA
have been previously studied in [31] and [35], respectively.
The aim of that method in [31] is to trigger preventive
control as a precaution for a set of contingencies, and its
inputs are extracted from pre-fault steady-state information.
Different from the TSA model in [31], a PRTSA model is
built to predict the post-fault transient stability status of a
power system in real time with consideration of post-fault
dynamic-state information in this work. In [35], OS-ELM is
introduce into TSA to overcome the inefficiency of online
model updating existing in many of current models due to
trivial parameter tuning. However, recent research suggests
that original OS-ELM has the drawback of weak stability
in different trials [36]. In addition, the used input features
in [35] may not always be the ‘best’ ones for different cases
since they are primarily selected through simulation analysis
without a feature selection procedure. To overcome these
issues, we utilize EOS-ELM to further improve the stability
and accuracy of original OS-ELM. Besides, a BinJaya-based
feature selection approach is put forward for selecting an opti-
mal feature subset from the entire feature space constituted by
a group of system-level classification features extracted from
PMU data.

The remainder of this paper is structured as follows:
Section II gives a brief introduction of the basic principles
of OS-ELM. Next, a detailed description of the proposal
using EOS-ELM is put forward in Section III. Section IV
provides a novel BinJaya-based feature selection approach
for EOS-ELM, with Section V examining the proposal on
the IEEE 39-bus system and a real provincial power system
in China. And finally, the conclusions are drawn from the
simulation results.

II. PRINCIPLES OF OS-ELM
As a kind of typical batch learning algorithms, ELM is hard to
satisfy the demand for online updating of TSA models [35].
In such cases, OS-ELM is no doubt a better choice due to no
retraining from scratch whenever a new sample arrives.

OS-ELM can be summarized in the following two
steps [34]:
Step 1 (Initialization Phase): For the given training

set D, a small chunk of initial training data D0 =

{(xi, ti) |xi ∈ Rn, ti ∈ Rm, i = 1, · · · ,N0} is chosen from D
to initialize the learning, N0 ≥ L. Here, N0 is the number of
samples in D0, and L is the number of hidden layer nodes.

(a) The hidden node parameters (ai, bi), i = 1, · · · ,L, are
randomly generated. Here, ai is the input weights vector, and
bi is the bias of the i-th hidden node.
(b) The initial hidden layer output matrixH0 is obtained as

H0 =

 G(a1, b1, x1) · · · G(aL , bL , x1)
... · · ·

...

G(a1, b1, xN0 ) · · · G(aL , bL , xN0 )


N0×L

(1)

where G(·) denotes an activation function.
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(c) The initial output weight β(0) is estimated according to

β(0)
= P0HT

0T0 (2)

where P0 = (HT
0T0)−1, and T0 = [t1, · · · , tN0 ]

T .
(d) Set k = 0, where k is the number of chunks.
Step 2 (Sequential Learning Phase): (a) Present the

(k + 1)th chunk of new observations:

Dk+1 = {(xi, ti)}
∑k+1

j=0 Nj

i=(
∑k

j=0 Nj)+1
(3)

where Nk+1 denotes the number of observations in the
(k + 1)th chunk.

(b) The partial hidden layer output matrix Hk+1 is
calculated for the (k + 1)th chunk of data Dk+1:

Hk+1 =
G
(
a1, b1, x(∑k

j=0 Nj)+1

)
· · · G

(
aL , bL , x(∑k

j=0 Nj)+1

)
... · · ·

...

G
(
a1, b1, x∑k+1

j=0 Nj

)
· · · G

(
aL , bL , x∑k+1

j=0 Nj

)

Nk+1×L

(4)

Set Tk+1 =
[
t(∑k

j=0 Nj)+1
, · · · , t∑k+1

j=0 Nj

]T
.

(c) The output weight β(k+1) is determined according to
the following equations.

Pk+1 = Pk − PkHT
k+1

(
I+Hk+1PkHT

k+1

)−1
Hk+1Pk (5)

β(k+1)
= β(k)

+ Pk+1HT
k+1

(
Tk+1 −Hk+1β

(k)
)

(6)

(d) Set k = k + 1. Go to step 2(a).
When the training samples are received in the mode of one-

by-one, Nk+1 ≡ 1, equation (5) and (6) can be respectively
the following simple format:

Pk+1 = Pk −
Pkh (xk+1)hT (xk+1)Pk
1+ hT (xk+1)Pkh (xk+1)

(7)

β(k+1)
= Pk+1h (xk+1)

(
tTk+1−h

T (xk+1)β(k)
)
+ β(k) (8)

where h (xk+1) = [G(a1, b1, xk+1) · · ·G(aL , bL , xk+1)].

III. TSA BASED ON EOS-ELM
A. EOS-ELM
Considering the output errors of OS-ELM are volatile due to
random assignment of the hidden-node parameters, ensemble
learning is introduced to improve the classification ability.
Here, OS-ELM is employed as a weak classifier, and an
online boosting algorithm is used as an ensemble learning
algorithm.

1) CONCEPTS OF ONLINE BOOSTING
Supposed that a set of M weak classifiers are given with
the hypothesis Hweak

= {hweak1 , · · · , hweakM }, a selector is
employed to select one of those classifiers.

hsel(x) = hweakm (x) (9)

where m is determined in term of an optimization crite-
rion [39]. Factually, the estimated error ei of every weak clas-
sifier hweaki ∈ Hweak is employed in the process. Specifically
speaking, the corresponding index of the weak classifier with
the lowest estimated error ei is chosen as the parameter m,
which is defined as

m = argmin
i
ei (10)

And then, by training a selector, all the weak classi-
fiers have been trained from first to last and the best weak
classifier (with the lowest estimated error) is determined
accordingly [39]. The weak classifiersHweak correspondence
to features. Consequently, a subset of M features Fsub =
{f1, · · · , fm |fi ∈ F } can be selected from the global feature
pool by the selectors.

2) PRINCIPLE OF EOS-ELM
By using OS-ELM and online boosting algorithm as a weak
classifier and an ensemble learning algorithm respectively,
an EOS-ELM-based PRTSAmodel is presented. The specific
steps of EOS-ELM training process are as follows:

(a) Initialize a group of N selectors hsel1 , · · · , h
sel
N ran-

domly. Then, update all the selectors, when a new training
sample<x, t> is received. The weak classifier which has the
smallest error will be chosen by the selector in the following
way:

argmin
m

(en,m), en,m =
λ
wrong
n,m

λ
wrong
n,m + λcorrectn,m

(11)

where en,m is the corresponding classification error rate of the
classifier hweakn,m , which is the m-th weak classifier in the n-th
selector; λcorrectn,m and λwrongn,m are respectively the sum of the
importance weights of the samples which are correctly and
wrongly classified at present.

(b) Update the importance λ and the corresponding voting
αn of the sample, and pass them to the next selector hseln+1.
In this way, all the selectors repeat this procedure in turn.

(c) Finally, a strong classifier can be obtained by a linear
combination of the corresponding weak classifiers selected
by each selector, which is defined as

hstrong(x) = sgn(
N∑
n=1

αn·hseln (x)) (12)

where sgn(·) is a sign function.

B. EOS-ELM-BASED TSA MODEL
As above mentioned, the conventional framework of PRTSA
consists of two closely related phases: off-line training and
on-line application [15], [25], as shown in Fig. 1. In the offline
training phase, the learning machine (LM) is trained by using
the offline sample set (X, Y), and then the mapping relation
Y=f (X) of the ideal model is obtained. In the online test
phase, the transient stability assessment is executed on testing
samples by using the trained model, and the transient stability
status is predicted accordingly.
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FIGURE 1. Conventional framework of PRTSA.

However, in the practical application, if a trained PRTSA
model is unsatisfactory for some special samples in on-line
application, the running model has to be terminated and
offline retrained again, resulting in inefficiency for real-time
implementation and lacking the on-line model updating abil-
ity [31], [35]. For solving this problem, an EOS-ELM-based
TSA Model is proposed with shown in Fig. 2.

FIGURE 2. EOS-ELM-based TSA model.

1) GENERATION OF KNOWLEDGE BASE
As is known, the generalization ability of a PRTSA model
largely depends on the completeness and representativeness
of the utilized knowledge base (KB) [21], [26]. For this
reason, large amounts of time-domain simulations have been
carried out to cover all of the typical contingencies as many
as possible. Every operating point can be characterized by
a stability index under contingencies and a vector of input
features. By this means, the transient stability of a power
system can be depicted by KB.

It is important to clarify that the generation scheme of KB
can be available in off-line and on-line modes. Currently,
the performance index of online dynamic security assess-
ment (DSA) has met the requirements of practical applica-
tion and become an important functional module of energy
management systems (EMS) [40]. As far as the generation
of on-line sample is concerned, the prospective operating
points can be quickly generated by means of the very short-
term load forecasting. Furthermore, parallel and distributed
computation techniques are able to be used to greatly improve
the efficiency of time-domain simulations [9]. In this way,
large amounts of on-line samples can be generated from on-
line simulation data reflecting the current operating modes
through interfacing with the online DSA module of EMS.

2) OPERATING MODES
The proposed approach has three modes of operation: the
off-line learning mode, the on-line learning mode, and the
real-time prediction mode.

a: OFF-LINE LEARNING MODE
The off-line learning model formulates the initial structure
of the TSA model, which reflects the main transient char-
acteristics of power systems [21], [25]. In this mode, train-
ing samples are extracted from the offline simulation data,
which cover the combination of typical operating modes and
contingencies. And then, the nonlinear relationship mapping
between the system operation condition and the transient
stability status of power systems is set up by training the
model in the offline manner.

b: ON-LINE LEARNING MODE
In this mode, the proposed approach is able to extract samples
from on-line simulation data reflecting the current operating
modes through interfacing with the online DSA module of
EMS. On the other hand, by learning new samples, the pre-
diction model comprising its structure and parameters can be
efficiently updated whenever a new special case occurs [35].
In this way, the present method is able to adapt the current
operation modes of power systems; furthermore, the perfor-
mance of the proposal is able to maintain accurate and more
robust.

c: REAL-TIME PREDICTION MODE
In the proposal, it is supposed that once a large disturb
occurs, this operation mode will be immediately triggered by
a tripping signal issued by relay protection devices [19]. And
then, the transient stability status will be predicted in real time
according to the mapping relationships in the trained TSA
model.

IV. FEATURE SELECTION FOR EOS-ELM
A. CONSTRUCTION OF THE ORIGINAL FEATURES
The used features in previous works are mainly pre-fault
static features because the traditional supervisory control
and data acquisition (SCADA) measurements are unable to
provide wide-area post-fault dynamic information [17], [26].
Considering the matured application of WAMS, the proposal
focuses on extracting input features from post-fault dynamic
information besides static information to take full advantage
of PMU data.

After having studied the literature comprehensively and
carried out extensive simulations, a group of system-level
classification features are constructed as the original feature
set A [26], as listed in Table 1. Here, tcl+3c, tcl+6c and
tcl+9c respectively are the 3rd, 6th and 9th cycle after the
fault.

B. BINJAYA-BASED FEATURE SELECTION
In this work, a novel BinJaya algorithm with kernel-
ized fuzzy rough sets (KFRS) is proposed for select-
ing an optimal feature subsets from the entire feature
space constituted by a group of system-level classification
features.
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TABLE 1. The original input features.

1) CLASS SEPARABILITY CRITERION
A classification task can be formulated as<U ,A,D>, where
U is the nonempty and finite set of samples,A is the set of fea-
tures characterizing the classification, D is the class attribute
which divides the samples into subset {d1, d2, · · · , dm}.
Given <U ,A,D>, a KFRS-based generalized classifica-

tion function gc(D) is used as the class separability crite-
rion [26].

gc(D) =
[
gγ θB (D)+ gω

θ−σ
B (D)

]
/2 (13)

where B is the feature space B ⊆ A and B 6= Ø, gγ θB (D)
and gωθ−σB (D) are respectively the generalized dependency
function and generalized classification certainty function.

2) JAYA ALGORITHM
The ‘Jaya’ proposed by Rao in 2015 [41] is based on ‘‘get the
victory by avoiding all failures’’ principle, and has been suc-
cessfully used for solving engineering problems [42], [43].

Let f (x) is the objective function to be minimized. At iter-
ation i, assume that there are ‘m’ number of design variables,
‘n’ number of candidate solutions. Let the best (/worst) can-
didate best (/worst) obtains the best (/worst) value of f (x) in
the entire candidate solutions. If Xj,k,i is the value of the jth

variable for the k th candidate during the ith iteration, then the
value is modified as [41]:

X ′j,k,i = Xj,k,i + r1,j,i(Xj,best,i − |Xj,k,i|)

× r2,j,i(Xj,worst,i − |Xj,k,i|) (14)

where, Xj,best,i (/Xj,worst,i) is the value of the variable j for
the best (/worst) candidate. X ′j,k,i is the updated value
of Xj,k,i and r1,j,i and r2,j,i are the two random numbers for
the jth variable during the ith iteration in the range [0, 1]. X ′j,k,i
is accepted if it gives better function value. All the accepted
function values at the end of iteration are maintained and
these values become the input to the next iteration, shown
as Fig. 3.

FIGURE 3. Flowchart of the Jaya algorithm.

3) ANGLE MODULATION
The Jaya was originally developed for continuous-valued
space. This paper employs angle modulation to enable the
Jaya to correctly operate in binary space. The BinJaya is a
Jaya algorithm that utilizes a trigonometric function as a bit
string generator. Based on angle modulation, the function is
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derived from a signal processing technique. The technique
uses a composed sin/cos generating function [44]:

g(y) = sin(2π (y− o)× p× cos(2π × r(y− o)))+ s (15)

where y is a single element from a set of evenly separated
intervals determined by the number of bits specified to be
generated. The coefficient o represents the horizontal shift of
the function, p represents the maximum frequency of the sin
function, r represents the frequency of the cos function and s
represents the vertical shift of the function.

The standard Jaya is applied to optimize a simpler
4-dimensional tuple (o, p, r , s) representing the parameters
of (15). After the iteration, the parameters are substituted
back into (15). The resultant function is then sampled at the
evenly spaced intervals to generate a bit for each interval.
If the output value is positive, the bit value is noted as 1, else
it is noted as 0 [44].

V. CASE STUDY
In this section, the effectiveness of the proposal is examined
using two testing cases: the IEEE 39-bus system and a real
provincial system in China. All the simulations are executed
under the MATLAB environment on a PC platform with
2 Intel Core dual core CPUs (2.4 GHz) and 6 GB RAM.

A. CASE 1—IEEE 39-BUS SYSTEM
First of all, the IEEE 39-bus system is used to test the
proposal’s effectiveness. The system (including 10 genera-
tors, 39 buses, 12 transformers and 34 lines) is a widely
used testing case for examining the performance of a TSA
approach [14]–[17], [19]–[21], [25], [26], [31], [35], and its
single-line diagram is demonstrated in Fig. 4. The system
represents a 345 kV power network in New England, USA.

FIGURE 4. IEEE 39-bus system.

1) GENERATION OF KB
In order to ensure KB with the adequate completeness and
representativeness, large amounts of time-domain simula-
tions have been executed [26]. The simulation calculation

conditions of the modeled system are as follows. The gen-
erator model employed is the four-order model with the
IEEE DC1 excitation system; the load model is the con-
stant model. The considered contingencies are three-phase to
ground short-circuit faults, the fault clearing time is supposed
to 5 cycles for all of the contingencies (the faults are created
at 0.2 s and cleared at 0.3 s), and a total of 60 different
fault locations are taken into account. Here, it is assumed
that the network topology is not changed when the faults
are cleared [25], [26]. The contingencies are repeatedly per-
formed at 11 levels (80%, 85%, ... , 130% of the base load),
and 5 kinds of generator output under each load level are
randomly assigned. Finally, a KB with total 3300 samples is
obtained. In the KB, 2200 samples are chosen as the training
set, and the rest are the testing set.

A class label Class_Lable of each sample is denoted by a
transient stability index which is related to the relative rotor
angle deviation during the transient period of a disturbed
power system [19]. The label Class_Lable is determined as

Class_Lable = sgn(360◦ − |1δ|max) (16)

where | · | is the absolute value function, and 1δmax is of the
maximum relative rotor angle deviation between generators
in the period. By plotting the rotor angle swing curves of
all the generators, a stable case and an unstable case are
respectively demonstrated in Figs. 5 and 6.

FIGURE 5. Transient stable case.

2) MODEL SELECTION
Note that, for OS-ELM, the sole parameter needed to be deter-
mined is the optimal number of hidden nodes L [34], [35].
In this work, the parameter L is determined by using the
well-known cross-validation methods [26]. Specially speak-
ing, the determination of the optimal network structure is
implemented in such a way that the corresponding OS-ELM
network offers the highest validation accuracy when the
parameter L achieves the optimal value. Among the com-
mon activation functions, the used one in this paper is the
sigmoid function. This is selected because it gives the most
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FIGURE 6. Transient unstable case.

satisfactory results when compared to other alternatives such
as polynomials and RBF [34], [35].

Fig. 7 illustrates the validation results of OS-ELM.

FIGURE 7. Model selection of OS-ELM.

In Fig. 7, the validation accuracy is plotted against the
parameter L. Based on the given data set, it is noticeable to
see that the validation accuracy can be dramatically improved
with the increase of the parameter L before reaching the
maximum value, which is 98.50% with 65 hidden nodes.
Consequently, the optimal value of L is chosen to 65 in this
testing case.

For EOS-ELM, the parameter L in each weak classifier (an
OS-ELM network) is assigned to the same value as the
one used in the compared original OS-ELM network. The
number of weak classifiers in EOS-ELM is in turn assigned
to 5, 10, 15, 20 and 25 in 50 trials; then, the optimal number of
weak classifiers is determined according to the standard devi-
ation (SD) and the average testing accuracy of the 50 trials.
More specifically, the optimal number of weak classifiers in
EOS-ELM is chosen in such a way that the ensemble network
is able to provide the better average testing accuracy and the
lowest SD with the results obtained by OS-ELM for the same
application. The results of EOS-ELM model selection for
IEEE 39-bus system is shown in Table 2.

TABLE 2. Model selection results of EOS-ELM.

As observed from Table 2, when the number of weak
classifiers is chosen to 10, the corresponding EOS-ELM
achieves the best predictive performance. On the one hand,
the proposed model obtains the lowest SD value; on the other
hand, the testing accuracy achieved by EOS-ELM is better
than all the others as well. Therefore, the optimal number
of weak classifiers in EOS-ELM is selected as 10 in our
experiments.

3) RESULTS AND DISCUSSION
a: COMPARISON OF EOS-ELM AND ORIGINAL OS-ELM
To examine the performance of the presented approach,
a comparison of EOS-ELM and original OS-ELM in [35]
is performed in one-by-one mode. By using the proposed
BinJaya-based feature selection algorithm, the optimal fea-
ture subset OFS1 = {Tz4, Tz9, Tz19, Tz25, Tz26, Tz31,
Tz32} can be obtained, and the test results are summarized
in Table 3. Here, it should be noted that both the training time
and accuracy are the average value of 50 trials of simulations
in the table.

The parameters are set as follows: for OS-ELM, the value
of L is set to 65, and the parameterN0 used in the initialization
phase is set to N0 = L + 50; for EOS-ELM, the number of
weak classifiers (OS-ELM networks) is 10, and the parameter
N0 for initialization phase is set to the same value as that of
the compared OS-ELM.

TABLE 3. Test results between EOS-ELM and original OS-ELM.

As can be seen in Table 3, the presented method outper-
forms original OS-ELM in almost all the performance indica-
tors except for the training time. Compared with the original
OS-ELM, the testing accuracy of EOS-ELM is increased
by 1.14%, while at the same time the testing SD is decreased
by 0.0154. This indicates that the classification accuracy and
output stability of the original OS-ELM have been evidently
strengthen through the use of ensemble learning. As a result,
we can draw that ensemble learning is an effective way
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to improve the predictive performances of PRTSA models.
Especially for the applications requiring high accuracy and
reliability like TSA, EOS-ELM can just play its advantages
in these respects.

b: TEST RESULTS OF OTHER SEQUENTIAL LEARNING
ALGORITHMS
In order to properly evaluate the effectiveness of the pro-
posal, a test between the proposed approach and other
popular sequential learning algorithms is further carried
out. The performance of the proposal is compared with
the algorithms, such as stochastic gradient descent back-
propagation (SGBP) [34], Growing and Pruning Radial Basis
Function (GAP-RBF) [45] and Minimal Resource Allocation
Network (MRAN) [46], in one-by-one learning mode with
the results summarized in Table 4. In Table 4, both the training
time and the accuracy are the average values of 50 times.

TABLE 4. Test results of other sequential learning algorithms.

The parameters used in this section are set in the following
manner. For SGBP, the number of hidden neurons is set to
30, and the used activation function is the sigmoidal additive
activation function; the parameters of GAP-RBF and MRAN
are fixed as: the distance parameters εmax = 0.5, εmin = 0.01,
γ = 0.99, the impact factor adjustment parameter κ = 0.80.
As shown in Table 4, it can be concluded as follows:
(a) The performances of EOS-ELM, comprising the accu-

racy and stability, are far better than that of GAP-RBF and
MRAN with much lower training time. The reason for this is
that: for ELM, learning can be done without iterative tuning.

(b) Comparedwith SGBP, though the training time of EOS-
ELM is a little more than that of SGBP, its testing accuracy is
far superior to that of SGBP. In addition, the SD of EOS-ELM
is less than that of SGBP, which suggests that the stability
of EOS-ELM is better than that of SGBP. As can be seen,
it is because the proposed method utilizes online ensemble
learning that it has better stability and classification ability
than SGBP.

Therefore, comprehensively considered with various
related factors, EOS-ELM is the best method in this paper.

B. CASE 2—REAL POWER SYSTEM OF LIAONING
PROVINCE
In order to further examine the applicability of the proposed
method to a real system, the proposed approach is tested
on the real power system of Liaoning province. The system

TABLE 5. Test results in the power system of Liaoning province.

is a large-scale power system in the northeast of China,
which covers an area of 148,000 square kilometers. The total
installed capacity of the system is about 39657.2 MW.

The modeled system contains 91 generators and 750 major
buses in total. In addition, it has SVCs comprises and series
compensated lines. The system has formed 5 connected chan-
nels with the external network through 10 500kVAC tie lines,
1± 500kV DC line and 1 500kV DC back-to-back converter
station.

1) GENERATION OF KB
As same as in the Case-1, large amount of simulations have
been executed. 12 out of all generators are modeled as the
six-order model, and they are configured with the governors
and the excitation systems; the rest generators are modeled as
the classical machine model. The employed load model is the
composite load model, which is made up of constant power
load (60%) and constant-impedance load (40%).

The load level varies from 80% to 130% of the basic load.
The fault type considered is the three-phase to ground fault,
and the corresponding fault clearing times are set in the range
from five to ten cycles. The locations of typical faults are set
at different locations on lines (0, 25%, 50%, and 75% of the
length). The stability criterion used here is consistent with
that employed in Case-1. Finally, there are 2000 samples are
totally created through time-domain simulations; 1320 of all
the samples are randomly chosen to constitute the training set,
and the rest as the testing set.

2) PREDICTION RESULTS AND PERFORMANCE
With the use of the presented feature selection scheme,
the obtained optimal feature subset is OFS2 = {Tz1, Tz4,
Tz9, Tz17, Tz18, Tz19, Tz24, Tz25, Tz26, Tz31, Tz32,
Tz33}. Moreover, by means of the model selection scheme
in Case-1, the optimal number of OS-ELM networks in EOS-
ELM is selected as 15 through large amounts of experiments.

In order to evaluate the prediction performance of the
chosen optimal feature subset OFS2 reasonably, it is used as
the input for the proposed TSA model. At the same time, the
OFS2 has been compared and contrasted to the obtainedOFS1
in Case-1 and the original feature setAwith the results shown
in Table 5, where both the training and testing accuracies are
the average values of 50 times, as in Case-1.

Table 5 demonstrates that the proposed approach is able to
predict the transient stability for the real power system. It can
be observed that the classification performance of OFS2 has
similar classification performances with the original feature
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set A, while the dimension of the input space is sharply
reduced to about one-third of its initial value (from 33 to 12).

Furthermore, it also illustrates that the prediction perfor-
mance of OFS2 is better than that of OFS1. The reason for this
is that, with the increase of the system size, the complexity of
the stability pattern space of the disturbed system correspond-
ingly increases [26], and thereby the predictive model needs
more input features to more adequately represent the transient
stability characteristics of the power system.

VI. CONCLUSIONS
PRTSA has proved to be an effective way to determine the
transient stability status of power systems. However, many
of the existing PRTSA methods suffer from problems of
inefficiency for real-time implementation and lacking the on-
line model updating ability. To overcome this issue, a novel
PRTSA approach based on EOS-ELM with BinJaya-based
feature selection is proposed with the use of PMU data.
The effectiveness of the proposal is examined, and the main
conclusions are drawn from the simulation results as follows:

(1) The proposal has superior computation speed and pre-
diction accuracy than other state-of-the-art sequential learn-
ing algorithms, including SGBP, GAP-RBF and MRAN.

(2) The proposed BinJaya algorithm can effectively solve
the feature selection problem of PRTSA. Without sacrificing
the classification performance, the dimension of the input
space has been reduced to about one-third of its initial scale.

(3) The presented method can greatly improve the stability
and generalization ability of an original OS-ELMwith the use
of ensemble learning techniques.

In future work, it is possible to use the proposal as a trigger
for wide-area protection and control systems by predicting
the impending power system transient instability. Further-
more, the BinJaya-based feature selection may be applied
to any similar pattern classification problem in the area of
engineering.
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