
SPECIAL SECTION ON MOBILE EDGE COMPUTING

Received September 18, 2017, accepted October 13, 2017, date of publication October 24, 2017,
date of current version November 14, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2766068

Workflow-Net Based Service Composition
Using Mobile Edge Nodes
ISMAEEL AL RIDHAWI 1, (Member, IEEE), YEHIA KOTB 1, AND
YOUSIF AL RIDHAWI 2, (Member, IEEE)
1College of Engineering and Technology, American University of the Middle East, Kuwait City, Kuwait
2School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada

Corresponding author: Ismaeel Al Ridhawi (ismaeel.al-ridhawi@aum.edu.kw)

ABSTRACT Content delivery through cloud networks has gained popularity due to the cloud’s ability
to provide on-demand services. However, composite services, such as customized multimedia content,
introduce both delays and resource limitations if traditional cloud solutions are used.With recent advances in
mobile edge computing, customizedmedia delivery can be achieved through compositions of service specific
overlays (SSOs). This paper presents a workflow-net-based mechanism for mobile edge node cooperation
in fog-cloud networks to form guaranteed SSOs. The proposed solution uses a mathematical cooperation
operator to turn the SSO composition problem expressed as workflow nets into algebraic representations.
In turn, the minimal cost cooperative path from the workflow net is determined such that it guarantees the
delivery of the requested composite media services to clients. Experimental results show that the composition
process can be adequately established and carried out in a timely manner.

INDEX TERMS Cloud, fog, mobile edge computing, ontology, overlay, Petri net, service composition,
workflow net.

I. INTRODUCTION
Today’s service-centric paradigm of networking and
QoS-based content delivery has resulted in a plethora of
new services. To a large extent, most software and hard-
ware capabilities have become deliverable and consumable
services. Over the past decade, with the advances in cloud
service technologies, moving computing, control, and storage
into the cloud has been a favored trend. But with today’s
increased number and variety of powerful edge and user client
devices, a new concept has emerged in which researchers
are referring to as Mobile Edge Computing (MEC) or Fog
Computing [1], [2]. Edge and mobile devices have become
smarter and richer in functionality, in which data collection,
forwarding, enhancing and decision making has become part
of their capabilities. MEC is a novel paradigm that extends
cloud-computing capabilities to the edge of the network.
MEC can support applications and services with reduced
latency and improved service quality in dense geographical
hotspots by providing close proximity to mobile consumers.

Traditionally, IoT devices communicate directly with the
remote cloud for task submission, leading to high delays and
network bandwidth overload. A considerable amount of traf-
fic generated by the enormous number of IoT devices can be

processed before being sent to the cloud. The fog computing
paradigm was introduced to solve this issue, specifically for
media content that requires a plethora of media enhancement
mechanisms. The Fog-to-Cloud (F2C) [3] architecture was
introduced to solve communication latency issues. The fog
layer is an intermediate layer between the IoT devices and
the cloud (Figure 1), which extends the traditional cloud com-
puting paradigm towards the underlying networks. By bring-
ing the network and cloud resources closer to the network
edge, substantial amount of jobs will be processed near the
IoT devices instead of sending data all the way to the cloud
leading to reduced communication delays.

The Internet has surpassed the point of providing host
connectivity only, and has become a global platform for
sharing service components and content. Mobile edge com-
puting allows for different mobile network devices to have
the capability of providing diversified composed services at
the edge of the network without reliance on cloud resources.
The composition of distributed service components into more
complex ones in a mobile environment is an especially labori-
ous process. This is due to the possibility of facing disruptions
caused by movement of service providers and clients. Addi-
tionally, the heterogeneity of devices and resource availability

VOLUME 5, 2017
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

23719

https://orcid.org/0000-0001-5822-2763
https://orcid.org/0000-0001-8323-9751
https://orcid.org/0000-0003-2983-313X


I. Al Ridhawi et al.: Workflow-Net-Based Service Composition Using Mobile Edge Nodes

FIGURE 1. Service composition within a fog-cloud network.

is highly unpredictable in mobile networks. Furthermore,
the presence of multiple service providers offering the same
service results in more assorted composition processes.

With the increase in mobility and the number of available
services, the problem of linking and composing isolated indi-
vidual services into a distinguished complex service becomes
progressively complex. Overlays (Figure 1) provide a mech-
anism of using lower-level infrastructure to provide higher-
level services [4]. As such, it became possible to provide,
through service specific overlays (SSOs), new services to
end users. With today’s cloud, fog, and MEC infrastructure,
it has become possible to provide composable media and
network-side services to help streaming applications achieve
QoS guarantees. Nonetheless, service composition in an
unstable mobile environment is a challenging problem.

In this paper, we address the problem of building and
managing service specific overlays for media delivery in
cloud networks using mobile edge devices. With the increas-
ing number of mobile edge devices, there is a plethora of
potential computational infrastructure available for providing
end users with new functionality and improved services. The
goal of our research is to allow end users to take advantage
of dynamically available, local and remote computational
infrastructure, without requiring service providers to have
their services explicitly rewritten or reconfigured for each
end-user service request and with minimal end-user interven-
tion. Mobile edge devices make it possible for the dynamic
creation of on-demand media services that can be com-
posed from specific device capabilities through SSO buildup.
SSOs are guided by end-user-centric abstractions capturing
current user context and user intent. In contrast to data center
clouds, SSO participants can include both virtualized and
non-virtualized edge devices for faster service delivery. The
presented work provides an abstract solution that although
may seem to be adaptable to other mobile networks, the
current MEC infrastructure is the most suitable for such
SSO compositions.

Given the probable lack of having a single service
node perform all the required media adaptations, service

composition is a mainstream direction for solving such an
issue. A solution towards service composition is to merge
and manage the available capabilities of mobile nodes to
reach the common goal (i.e. composed service). Petri-net
composition is an active area of research [5], [6], where
services may be composed to produce more complex ones.
A cooperativemobile edge node service composition solution
is introduced for cloud networks reinforced using workflow
nets. Workflow nets [7], [8] constitute an extension to Petri
nets such that sourcemobile edge nodes (SSOMedia Servers)
have no incoming transitions and sink mobile edge nodes
(SSO Media Clients) have no outgoing transitions. Addition-
ally, the notion of soundness associated with workflow nets
implies that models are both structurally and behaviorally
well-formed [9]. We integrate a cooperation operator which
is used to compose mobile edge node capabilities expressed
as workflow net units into a cooperative composed workflow
net. We demonstrate that this solution is scalable to any
number of mobile nodes given any number of capabilities and
provides the minimal cost towards service composition.

Table 1 outlines the list of most used notations in this
article. The remainder of the paper is organized as follows.
In Section II we discuss related approaches in the litera-
ture. Section III provides an overview of the problem and
the proposed solution. Section IV models the service com-
position problem. Section V describes the approach taken
to solve the service composition problem. Section VI dis-
cusses the SSO generation algorithm. Section VII describes
the composition plan learning process. Section VIII consid-
ers the soundness of the framework. Evaluation results are
reported in Section IX. Finally, Section X concludes the
paper.

II. RELATED WORK
SSOs were first introduced as an effective method to address
some of the end-to-end QoS issues plaguing the Internet.
Today, SSOs also facilitate the creation and deployment
of value-added QoS-sensitive services. It allows simple
services to be dynamically combined into new, more
complex services. Initially composition was restricted to
web services, but eventually extended to network-side
functions such as media modification and synchroniza-
tion. A plethora of service composition architectures have
been introduced earlier and have evolved rapidly over
the last decade [10], [11]. Initially, service composition
architectures were designed for static environments, in
which most solutions relied on a central coordinator for
querying and composing services [12]. However, most of
these designs presented a problem when incorporated in
a dynamic mobile environment. Attempts to address these
issues were solved using decentralized service composition
architectures [13].

Fujii and Suda [12] presented a semantics-based service
composition architecture that intuitively obtained the seman-
tics of the requested service. The required components were
then discovered and composed into a service based on the

23720 VOLUME 5, 2017



I. Al Ridhawi et al.: Workflow-Net-Based Service Composition Using Mobile Edge Nodes

TABLE 1. List of most used notations.

service’s own semantics and the semantics of necessary
components. The architecture composed a service by cre-
ating a workflow of the requested service using discovered
components and then executing the workflow. The compo-
sition solution requires a centralized implementation, which
considerably limits the system’s scalability. Additionally, not

all service characteristics are considered when composing a
service which is inadequate when providing composed media
content.

The work in [14] presented amodeling approach to the web
service selection problem for QoS-sensitive large processes.
The service selection problem was formalized as a mixed
integer linear programming problem that allowed constraints
on the quality requirements to be specified. Services are
selected one at a time by associating the running abstract
activity to the best candidate service which supports its exe-
cution. Rudder, which was introduced in [13] provided a
decentralized service composition framework that relied on
software agents to provide high-level mechanisms for deal-
ing with system adaptations and information discovery. The
objective of Rudder was to enable runtime composition and
coordination in P2P environments. The framework relied on
a set of negotiation protocols to enable individual agents to
progress towards a consensus. Adaptation plans were nego-
tiated, decided, and enacted upon by multiple distributed
cooperating agents.

Al Ridhawi and Karmouch [15] presented a decentralized
semantic and syntactic nearness-based SSO node selection
algorithm for mobile network environments. The process
of constructing an SSO that meets the service requester’s
media content specifications and QoS requirements involves:
1) a semantic similarity measure between two connected
overlay nodes, 2) a semantic nearness measure between
a candidate service overlay node and the requester’s ser-
vice requirements against the output of the next-hop candi-
date service overlay node and the requester’s requirements,
3) current QoS measures between the output stream of a cho-
sen service overlay node and the input stream of the immedi-
ate next hop candidate service overlay node, and 4) expected
QoS measures between the output stream of the next hop
candidate service overlay node and the service requester’s
QoS requirements. Both semantic similarity and nearness are
evaluated using ontologies. A fuzzy QoS evaluation tech-
nique is used to determine whether quality levels reflected in
the provided services can meet the requester’s requirements.
SSO composition paths are created in a distributed decentral-
ized fashion in which each overlay node determines whether
or not it can meet the requester’s requirements.

Sirin et al. [16] demonstrated a goal-oriented, interactive
composition approach with a matchmaking algorithm to filter
and select services. The system utilizes OWL-S [17] service
descriptions (Service Profiles). When a service needs to be
located, the system creates a service profile for the desired
final service. A service registry matches requested profiles to
those advertised through subsumption. A composer is respon-
sible for choosing the best services for composition. Thework
suffers from an oversimplified matchmaking process where it
limits the matching classification to only four classes as well
as omitting the importance of QoS in service selection.

The authors in [18] introduced a solution to model
the many-to-many mobile cloud service composition prob-
lem, where multiple mobile cloud edge nodes pool their

VOLUME 5, 2017 23721



I. Al Ridhawi et al.: Workflow-Net-Based Service Composition Using Mobile Edge Nodes

resources to compose a service requested by a mobile client.
A theoretical model is presented to describe the service com-
position topology reconfiguration process based on a series of
decisions. Three algorithms are proposed to solve the service
composition process, each suitable for a different scenario.
The work omits experimental evaluations to showcase the
advantages of applying such a composition technique in cloud
environments.

The authors in [19] introduced an orchestrationmechanism
to enable the re-use and selection of service components
across different composite services in distributed edge clouds.
Clients requesting a particular composite service would select
one of the available service components. Since it is unlikely
that all components of a composite service are available
in a single cloud edge, session slots are used as a service
availability metric to allow sharing of service components
among clients.

Oueis et al. [20] presented a cooperative Small Cell
Cloud (SCC) solution to offload mobile user computations
to pools of resources that are closer to the user. Small cells
cooperate for computation purposes by forming computation
clusters. Clusters are composed depending on the requested
task to balance the load among the cells. The presented work
focuses on computation cluster provisioning and resource
allocation in multi-user cases, where such provisioning and
allocation is jointly and simultaneously optimized for all
users to achieve optimal performance. Simulation results
show that the proposed algorithm yields high user satisfac-
tion for up to four users per small cell and reduced power
consumption.

The authors in [21] outline that current cloud service
composition and selection methods assume that networking
resources are over-provisioned and their usage is not con-
sidered when making composition decisions. This will lead
to wasteful network resource consumption and impractical
end-to-end QoS optimality for cloud-based services. The
authors proposed a network-aware cloud service composition
approach that optimizes service composition decisions by
taking into account, among other decision-making factors,
network resource consumption in fat-tree cloud datacenter
networks and realistic (end-to-end) QoS optimality. The solu-
tion has a linear computation time with respect to problem
size and was tested using the WebCloudSim cloud simula-
tor. Although the presented approach performs well when
compared to several other service composition approaches,
simulation results show that it is not suitable for scenarios
with multiple data centers.

Padmavathi et al. [22] proposed an agent-based approach
for cloud service negotiation. The solution enables the inter-
action among software agents to optimize the procedure of
selecting the best cloud service providers that satisfy the
request of consumers. Additionally, if a single request can
only be satisfied by two or more providers, then a broker
combines the set of services from multiple providers and
delivers the combined service as one virtual service. The
authors introduced Contract Net Protocol (CNP) which is

a task sharing interaction protocol used for cloud service
selection and composition within the system.

In [23], a cloud service composition algorithm called
DE4CDSC is developed which considers mobility, QoS,
and temporal constraints in mobile cloud environments.
It first utilizes a constraint-based service filtering process
to reduce the search space and then adopts a differen-
tial evolutionary based algorithm to form a composed ser-
vice. In [24], the authors use bi-graphs to model the cloud
service composition problem as opposed to mathemati-
cal definitions to provide more accurate cloud composite
services.

Wu et al. [25] introduced a cloud service selection method,
namedCSSM, tomine for qualified versions of cloud services
for trusted cross-cloud service composition. The method
takes the utility value as the evaluation index and aims at
finding optimal or near-optimal trusted service composi-
tion solutions from a set of cloud services based on users’
demands. User preference on each QoS metric is formalized
as the preference interval for enhancing the fitness of the
service composition solution. Additionally, an extended top-k
iteration composition process is performed among cloud ser-
vices to get an optimal or near-optimal trusted service com-
position solution. Compared to other composition methods,
CSSM reduces time complexity and maintains comparable
optimality.

Research in the area of Petri net service composition is
ongoing [5], [6], where services may be composed on the
basis of complementarity. For instance, send and receive
services are complementary by nature and may be com-
posed [26]. Du et al. [6] presented a mediation-aided web
service composition approach when dealing with incompat-
ibilities of services. The solution first model’s services as
open workflow nets and then a modular reachability graph
of composition is constructed and analyzed. Li et al. [27]
introduced a formal definition of context-independent sim-
ilarity and showed that web services can be substituted by
an alternative service of similar behavior without interven-
ing other web services in the composition. This will reduce
the cost of verifying service suitability. Klai and Ochi [28]
proposed a solution to compose cloud services through the
use of Symbolic Observation Graphs (SOG) [29]. SOGs
are used to abstract cloud services and check the correc-
tion of the composition with respect to behavioral proper-
ties using event- and state-based LTL formulae. A registry
containing SOGs (i.e. abstraction of cloud services or public
views) are created through service translation with the aid
of petri-nets. A new formalism of petri-nets called resource
constrained open workflow nets (RCoWF-net) is introduced
to allow both asynchronous communication and sharing of
cloud resources between different services. The solution
is limited to only checking whether or not the resource
provider is able to satisfy a user’s request in terms of cloud
resources.

With the increase in the number of sensors, actuators, and
mobile nodes, IoT has emerged as a promising supporting

23722 VOLUME 5, 2017



I. Al Ridhawi et al.: Workflow-Net-Based Service Composition Using Mobile Edge Nodes

solution for seamless and ubiquitous computing. The con-
cept of IoT has become more widely implemented with the
integration of cloud systems. IoT combines different aspects
and technologies from different everyday objects and turns
them into a smart surrounding in which not only information
is collected, processed, and controlled, but also with the aid of
the cloud, this information is interconnected and exchanged
to provide enhanced composite services. The delay caused
by transferring data to the cloud and back is intolerable.
To address this issue, fog computing was introduced to allow
for the integration of edge devices and cloud resources to
help overcome latency issues. Fog computing is a distributed
paradigm that provides cloud-like services to the network
edge [30]. Studies on fog computing are still premature lead-
ing to many emergent architectures for computing, storage,
control, and networking that distribute services closer to
end-users.

Despite the abundant existing studies on service compo-
sition techniques, to the best of the authors’ knowledge,
the presented work is the first to employ a petri net based
cooperative service composition solution using mobile edge
nodes in fog and cloud systems to achieve fast and sta-
ble composed service overlays to deliver media content
to clients.

III. PROBLEM AND SOLUTION OVERVIEW
Composition of SSOs in fog-cloud networks is constrained
by the identification of which mobile edge nodes (service
nodes) should interoperate with each other in order to ful-
fill the subscriber’s request. It is important to incorporate a
solution that can model inter-service relationships to success-
fully form SSOs. Linking consecutive nodes in a composi-
tion involves addressing the notions of choice dependency
and unit similarity, such that if two or more nodes among
a set are deemed similar and fulfill part of or all of the
requirements, then they can be interlinked to accomplish
the required task or part thereof. Finding a service that per-
forms a required function does not guarantee it can seam-
lessly link with the previous or next node in a service path
without having their respective capabilities and similarities
challenged.

Such SSO composition problems can be solved for using
cooperating mobile service nodes. Cooperation among a
group of mobile edge nodes is defined as the process of
adapting and managing the available services and resources
of mobile nodes to reach the goal of composing a particular
service. Cooperating mobile nodes thus negotiate for services
and perform task planning in order to accomplish the goal of
establishing a composed service.

Figure 2 illustrates a set of composed SSOs in a fog-cloud
environment. The process of service composition starts with
a mobile node registering with a cloudlet (or a registered edge
node). The mobile node will communicate its capabilities
such as media services, hardware and software resources, etc.
Nodes that are capable of adapting enhanced media services

FIGURE 2. Composition of SSOs within a fog-cloud network.

such as encoding conversion, addition of subtitles, buffer-
ing, caching, routing and synchronization are registered as
Media Ports (MPs). A flexible and transparent construction
of end-to-end media delivery paths can be made from Media
Servers (MS) to Media Clients (MC). For example, consider
users (MCs) trying to view a particular video stream origi-
nating from a video server (MS) in MP4 encoding on their
mobile devices. Each client requires the media content to be
adapted to his/her unique device requirements. Given the pos-
sible unavailability of needed services at the MC side, one or
more MPs are needed for the conversion process. Therefore,
an SSO is constructed independently for each media delivery
session.

Thus, given a set of MPs, we must define a formal coop-
erative behavior description among the nodes to provide the
composed service. In our approach, we use workflow nets
which constitute an extension to Petri nets to guarantee the
correctness of the cooperation and reachability problem [9].
Additionally, we use workflow nets to generate workflow
plans, compare them, and find the one that produces the
minimal cost in terms of latency and path stability. Moreover,
workflows are used to allow cloud systems to find the most
optimal SSO composition solution for future user requests
using a process learning approach [31].

A petri net ℵ (1) is a directed graph for which the nodes
are either transitions or places. A place is connected to
one or more transitions. On the other hand, a transition is
connected to one or more places. Nodes sharing identical
types cannot be directly connected. A place can be either
empty or contain activities. A transition is said to be enabled
if and only if there are no empty places connected to it
as input.

ℵ =< P,T ,F,W > (1)

P is the set of places, T is the set of transitions, F is
the set of arcs among transitions and places, and W is a
vector containing the weights of the arcs in F . Workflow

VOLUME 5, 2017 23723



I. Al Ridhawi et al.: Workflow-Net-Based Service Composition Using Mobile Edge Nodes

nets (WFnet) are an extension to petri nets with the following
forced conditions:
• ℵ has a single input place Pin, where Pin = ∅.
• ℵ has a single output place Pout , where Pout• = ∅.
• If a transition t∗ is added to ℵ such that •t∗ = {Pout }
and t∗• = {Pin}, the petri net ℵ∗ becomes strongly
connected. t∗ is a transition which connects the input to
the output of WFnet.

The WFnet consists of transitions representing the actions
performed by MPs. In our model, we assume that there is a
set S = {λ1, λ2, . . . , λn} of all primitive service types that
cannot be fragmented into simpler service types, and sets of
non-primitive service types ε ⊂ S. Any service δ provided
by a MP at a given time is constructed from a list of non-
primitive service types. If a MPi from the set of cooperating
nodes {MP1,MP2, . . . ,MPn} has composition plan dj from
the set of plans {d1, d2, . . . , dk}, then the MP can perform its
plan on its own if and only if it meets the time constraints
(if any), and the following holds:

∀δ ∈ dj : δ ∈ w (MPi) (2)

where w (MPi) = {σ1, σ2, . . . , σs} is the set of basic service
capabilities σ provided byMPi, dj = {δo∪ δ∗k }, where δo = ∅
is a starting service and δ∗k is a set of services that follow.

Two nodes MPi and MPk can cooperate to perform a
desired composition plan dj if they satisfy the MC’s com-
posed service requirements as
follows:

∀δ ∈ dj : δ ∈ w (MPi) ∪ w (MPk) (3)

NodeMPk is a candidate for cooperation with nodeMPi if
and only if:

∀δ ∈ 1j : 1j = dj − w (MPi) such that δ ∈ w (MPk) (4)

where 1j is the difference between the capabilities required
to achieve composition plan dj and the capabilities of
node MPi.

IV. SSO COMPOSITION MODEL
A. SERVICE DESCRIPTION
The process of node selection for SSO composition begins
with a service request from the MC to the cloudlet (or a
registered edge node). To provide such a service, a num-
ber of sub-services might be composed to form the MC’s
requested service. The composition process might involve
a number of MPs in which each offers a particular type
of service to users such as caching, synchronization, video
encoding/decoding and content insertion. A service provided
by a MP is described as follows:

δi =


Opi,

Ini
(
inDescriptioni,j , inQoSi,j

)
,

Out i
(
outDescriptioni,j , outQoSi,j

)
,

Ci,

 (5)

where Opi specifies the functions carried out by the MP such
as encoding; Ini defines the acceptable input requirements
by the MP needed to perform its service which is described
by: service input description inDescriptioni,j and service input

QoS inQoSi,j . The former for example specifies {encoding, size,

stream length, etc.} of a video stream. The latter specifies
the level of acceptable QoS, for example {bit rate, loss rate,
accuracy, etc.}. Out i defines the characteristics of the output
service generated from the MP. It has the same definition
as Ini. Ci represents the cost of performing the MP’s service.

B. SERVICE REQUEST
A media service requested by a MC is represented as a com-
posite of a media description DMi parameter and the required
QoS properties’ levels QMi .

RMi =
(
DMi ,Q

M
i

)
(6)

The description parameterDMi encompasses general media
description properties such as the media stream identity
Didi , type D

type
i , encoding format Dencodingi , etc. While the

QoS parameter identifies the MC’s accepted levels of quality.
Each QoS propertyQMi , whereM = {delay, jitter, cost, etc.}
is further expanded to define the acceptable range of values
if not exact. These values range from a minimum acceptable
value qMmin to a maximum acceptable value qMmax . Addition-
ally, a priority level PM ∈ (1, 10) is associated with each
QoS property. The priority level illustrates the significance
of the property to the MC.

C. MODELING SERVICE COMPOSITION PLANS
Media requests arriving from the cloudlet (or registered edge
node) to the MSmay require the formation of service compo-
sition paths radiating from the MS towards the MC through
a number of MPs. The service composition problem can be
viewed as a planning problem. The use of plans provides
a solution to automatically compose services through map-
ping requirements into tasks’ descriptions that are potentially
mapped into concrete services provided by MPs.

A plan represents a full map of the services required in
every hop towards the MC along with the required lev-
els of QoS. Such services are initially described using (5).
An example of a composition plan is depicted in Figure 3.
The figure illustrates a multistage composition path involv-
ing sequential and parallel services. To facilitate chaining in
service composition, MPs can be described according to their
input and output ports. The concept was introduced in [32]
and [33]. Single input MPs take a media flow from one input
port and transform it into a different output flow according to
the service functions they offer. Splitters have a single input
and two or more output ports. A splitter might for example
take anMP4 video stream as input, and produce an AVI video
and MP3 audio streams as output. Joiners are the reverse of
splitters, taking in two or more input streams and producing
a single output stream.

23724 VOLUME 5, 2017



I. Al Ridhawi et al.: Workflow-Net-Based Service Composition Using Mobile Edge Nodes

FIGURE 3. A sample SSO composition plan generated following the
Media Client’s requested specifications.

As such, the general model of a composition plan as
described in Figure 3 is represented as follows:

PlanMCMS = {MS, δ0, II (δ1, δ2, δ3), II (δ4, δ5), δ6,MC} (7)

where II represents services that must be executed in parallel,
and δi, 0 < i ≤ n is a detailed description of the service
that must be provided by the MP. For example, δ4 is a joiner
service that merges the audio stream of service δ1 with the
video stream of δ2. The parallel execution of services can
have an effect on sequentially executed services even if it
is not connected to its predecessor’s parallel neighbors. For
example, δ5 cannot execute without δ3. However, δ3’s parallel
execution with δ1 and δ2 must be synchronized as does δ5’s
execution with δ4. This is due to the fact that δ6’s final
execution is affected by all previous services. Although com-
plete and exact parallelism cannot be guaranteed, however we
make the assumption that services executed in parallel syn-
chronize their operations as visually illustrated in Figure 3.
This synchronization assures that services execute without
having any conflicts with parallel or sequential services.

The formed plan represents an abstract plan that is
later translated into a workflow-net model constructed of
workflow-net units (8). A unit ui, where 1 ≤ i ≤ k , k is the
number of units composing the workflow net, is a transition
comprised of sets of input and output places that model an
action, the conditions prior to execution, and the results of
performing the action.

ui = (•Ti,Ti,Ti•) (8)

Ti is a transition, •Ti is the set of input places to Ti, and
Ti• is the set of output places for Ti.
As discussed in the previous section, two nodes MPi and

MPk can cooperate to perform a desired composition plan dj
if they satisfy the MC’s composed service requirements as
in (3) and (4). Thus, given a group of MPs, node service
capabilities and requirements must be considered for coop-
eration to be successful and for a desired composition plan
to be performed. Such cooperation is performed through
workflow-net unit comparisons.

The service overlay composition problem is modeled as a
set of workflow plans, where a required task can be achieved
using a single workflow from the set of workflow plans.
Figure 4 illustrates a WFnet model for a composed media
service plan originally outlined in Figure 3 and equation (7).
A descriptive example of the original media content (ser-
vice parameter description) provided by MP1 is outlined in
the figure showing the quality of the service requested by
the media client. Each transition will incorporate a simi-
lar media description outlining the service parameters after
applying the media services such as splitting audio from
video or adding subtitles. Transition description includes ser-
vice parameters such as the media type, id, encoding, delay
constraints, jitter constraints, and cost.

FIGURE 4. A WFnet model representing the SSO composition plan
described in equation (7). The model represents a media service which
consists of six transitions, each representing a predefined action.

The following section elaborates further on the SSO com-
position process.We introduce an algorithmwhich selects the
minimal cost cooperative path from the workflow net plan set
(see Section VI for details). Additionally, a composition plan
learning approach is developed to compose SSOs for future
user requests (see Section VII for details).

V. SSO COMPOSITION PROCESS
A. COMPOSITION PLANNING PROCESS
The composition planning process can be viewed in the sum-
marized architecture shown in Figure 5.With the arrival of the
MC’s request (6) at the cloudlet (or registered edge node), the
request is broken down by the Request Translator into three
service components: input media description, output media

VOLUME 5, 2017 23725



I. Al Ridhawi et al.: Workflow-Net-Based Service Composition Using Mobile Edge Nodes

FIGURE 5. Service composition planning process performed at the
cloudlet or a registered edge node.

description, and output QoS (5). With the aid of the Service
Component Translator, the translated service request is then
rendered into workflow net units (8). A Plan Generator will
then query the network’s available resources to determine its
capabilities of enforcing the plan.

Every MS and MP provide one or more services. Each
service is provided at a certain QoS level and require a
percentage of the node’s resources. Prior to sending its accep-
tance to join an SSO composition following the retrieved
plan, the current level of available resources in a service node
must be compared to those required. If acceptable levels of
resources are available; these resources must be reserved to
prevent any conflict with other SSO composition requests.
The plan generator relies on a set of planning rules that guide
the cloudlet (or registered edge node) into generating new
SSO composition plans. Details pertaining to the plan gener-
ation algorithm are discussed in Section VI. Once a new plan
is generated, it is passed on from the cloudlet (or registered
edge node) to the MS and then to subsequent MPs to form a
composition path.

B. ONTOLOGY-BASED MODELING
The reliance on the syntactic and semantic representation of
transitions (i.e. services performed by MPs) and the pre- and
post-conditions of such transitions (i.e. inputs and outputs of
such service actions) raises the need for a use of a unified
modeling method for the proposed system. The presence of
multiple entities in the system along with the requirement for
a common understanding of how concepts are represented
and how they interact with each other, are all factors that
encourage the use of a simple, sharable, and extendable
approach for representing context in a mobile environment.
As such, we have based our system on the assumption of
the existence of an ontology [34] that unifies the view and
understanding of all concepts in a fog-cloud environment.

We have assumed the presence of an OWL-based ontol-
ogy [35] covering an extended area of knowledge as shown
in Figure 6. This includes representations for services and all
components associated with such services. Contextual infor-
mation within our proposed system is restricted to bandwidth,
packet loss, available memory, and other information typi-
cally used within media service-oriented systems. Through
these ontologies, service request translation and syntactic

FIGURE 6. Ontology used to represent the service request and
description.

representations of workflow net units can be derived. Full
details pertaining to the ontology syntax, semantics, trans-
lation and inter-communication process has been introduced
earlier in [34] and is out of the scope of this article.

C. COMPOSITION PLAN GENERATION REQUIREMENTS
Once service description has been rendered into workflow net
units, workflow net plans are generated through the coopera-
tion of service nodes. A service composition plan C is a set
of joined units in a topology:

C = {U ,P,F} (9)

whereU is a set of units, P is a set of places, and F ⊆ U×P∪
P×U . A composition C1 ⊂ C2 if and only if ∀ui ∈ C1∃uj ∈
C2|ui ≡ uj.
The notions of choice dependency and unit similarity are

crucial due to their effect on the expected level of cooperation.
For example, if two units among a set of workflow nets
are deemed similar, then the units can be interchanged in
order to accomplish the same task or part thereof. It is thus
necessary to identify similar units to minimize cooperation
costs. Choice dependency occurs when two or more units
share one or more input places. For instance, if unit u1 and u2
are choice-dependent, but unit u3 is choice-independent, then
unit u1 cannot replace unit u3 in its actions and vice versa.
If a unit is choice-dependent, then the set of choice-

dependency is defined as:{
Tj|Ti ∈

{
T − Tj

}}
and • Ti ∩ •Tj 6= ∅ (10)

and can be determined by satisfying the following condition:

W+
(
Pj,Ti

)
−W+

(
Pj,Tk

)
= 0

∀
m
j=1Pj ∈ •Ti ∩ •Tk and ∀mk=1Tk ∈ T (11)

where m is the number of places Pj ∈ •Ti, k is the number
of transitions Tk ∈ T , andW+ is the input incident matrix of
the workflow net.

23726 VOLUME 5, 2017



I. Al Ridhawi et al.: Workflow-Net-Based Service Composition Using Mobile Edge Nodes

FIGURE 7. Units u1 and u2 represented by the figures (a) and (b) are
choice-independent due to the existence of another transition input
from place P2.

Figure 7 outlines an example of two units u1 and u2 which
are choice-independent. Although the two units are similar,
such that events represented by places P1 and P2 will lead
to events P3 or P4 by performing the actions represented by
transitions T1 and T2 respectively, the units are deemed not
similar since the event represented by P2 might lead to P5
when the action represented by transition T2 is performed.
The input incident matrix which models the workflows

represented in Figure 7 is as follows:

T1 T2 T3
P1
P2
P3
P4
P5


−1 −1 0
−1 −1 −1
1 0 0
0 1 0
0 0 1


Moreover, two units are identical if and only if they sat-

isfy similarities in transition, input and output places. Two
transitions are said to be similar if and only if T1 ∈ λ

implies T2 ∈ λ, where λ is an action belonging to the set of
primitive service types S. Input and output places’ similarities
are determined respectively as follows:

0 (T1)− 0 (T2) = 0 (12)

5(T1)−5(T2) = 0 (13)

where 0 (Ti) and 5(Ti) are column vectors representing the
input and output places to and from transition Ti.
Accordingly, unit u1 is said to be similar to unit u2 (denoted

u1 ≡ u2) if and only if ∃ T1 ∈ u1 and ∃ T2 ∈ u2|S (T1) =
S (T2) and •T1 = •T2.Moreover, unit u1 is said to be identical
to unit u2 (denoted u1 = u2) if and only if ∃ T1 ∈ u1 and ∃
T2 ∈ u2|S (T1) = S (T2) and •T1 = •T2 and T1• = T2•.
Figure 8 outlines an example of two similar units, namely,

u1 and u2. Although the two units have different output places
(i.e. P3 and P4), the two units are said to be similar since
both have similar input incident vectors where the events
represented by places P1 and P2 will lead to the same events
represented byP3 orP4 by performing the actions represented
by transitions T1 and T2 respectively.
Hence, the process of service node (unit) coopera-

tion becomes feasible knowing the similarity and equality
between the groups of available inter-dependent units within

FIGURE 8. Units u1 and u1 represented by the figures (a) and (b) are said
to be similar since both have similar input incident vectors.

the cloud environment, thus allowing services to be com-
posed and delivered to media clients. The following section
describes the algorithm used to generate SSOs (workflow net
plans).

VI. SSO GENERATION ALGORITHM
The SSO generation algorithm generates a cooperative, com-
posed workflow which contains all the possible coopera-
tive scenarios among service nodes (MSs and MPs). The
algorithm implements a back-tracking scheme allowing it to
determine the minimal cost cooperative path from the work-
flow net in terms of latency and composition path stability.
We begin by defining the concepts and data structures used
in the algorithm:
• Stages constitute the representation we use to express
the order of computation of a plan based on standard
operator precedence.

• Plan stagesG = {g1, g2, . . . , gn}, where n is the number
of stages. Stage i, denoted as gi, is a set of predicates
which belongs to plan ρ. A predicate is an action (ser-
vice capability) performed within a composition plan to
achieve the requested task. For instance, encoding of a
movie to a certain format is a predicate in logic form.

• A stage assignment A is a two-dimensional array with
its number of rows equal to the number of stages n.
Each row has a number of tuples (columns) equal
to the assignment of this stage. Example: A(0) is
the assignment of the first stage and is of the form
(MP1;Pr (2)), (MP2;Pr (1)), . . . , (MPn;Pr (k)), where
n is the number of node assignments in this stage and
k is the last assigned predicate. A(0, 1) is the second
assignment of the first stage which is (MP2;Pr (1))
in this example. This tuple signifies that node MP2 is
dedicated to execute predicate Pr (1).

• A two-dimensional matrix M with the number of rows
equal to the number of service nodes involved in the cur-
rent stage, and number of columns equal to the number
of predicates in the plan. Essentially, M (i; j) is the cost
to execute predicate Pr (j) with node MPi.
â M (i) (the ith row of M ) is a vector representing the

costs of the capabilities of node MPi to execute the
plan predicates.

â MT (i) (the ith column ofM ) is a vector representing
the costs of predicates when executed by different
nodes.

VOLUME 5, 2017 23727



I. Al Ridhawi et al.: Workflow-Net-Based Service Composition Using Mobile Edge Nodes

â The following is an example ofM with three nodes
and four service capabilities, in which the minimal
cost to perform a service task involving predicates
1, 2, and 4 is achieved through the cooperation
of nodes 1, 2 and 4. Pr (1) is performed by MP2,
Pr (2) is performed by MP3, and Pr (4) is per-
formed by MP1.

Pr (1) Pr (2) Pr (3) Pr (4)

MP1
MP2
MP3

 5 2 8 1
3 6 7 1
4 1 1 3


• Van der Aalst et al. [36] shows that to describe the
dynamic behavior of a workflow, few logic operators are
needed. Among those operators are AND,OR and impli-
cation. Van der Aalst also shows that this is the complete
list needed to define the workflow behavior. In our work,
we use those operators to describe a plan of execution
which in turn gets translated into a workflow. The and
operator

∧
joins the incident matrices of its predicates

yielding a new incident matrix describing the workflow
net resulting from applying the operator. The or operator∨

joins the incident matrices of two predicates to form
a new incident matrix describing the resulting workflow
net to allow one part or another of the cooperative plan to
be executed. The then operator→ creates the sequential
sections of cooperative plans between predicates. It joins
the incident matrices of its predicates creating a new
incident matrix describing the workflow net resulting
from applying the operator.

• The cooperation operator⊗ joins (composes) two work-
flow net units into a workflow net. The operator is
also used to join (merge) two cooperative workflow
nets (SSOs) into a single workflow net (SSO). The pro-
cess of merging two workflow nets into one is out of the
scope of this paper and has been discussed earlier in [37].

• We denote an operator Pr (i) affected by a then operator
using the symbol Pr (i)→ and Pr (i)9 if it is not. A pred-
icate that is affected by the→ operator has its execution
delayed by predicates prior to the operator in the plan.
If Pr (i)→ Pr (j) then Pr (i) is denoted as Pr (i)←.

• A predicate Pr (i) is affected by the then operator if and
only if there is a rule in the plan that is in the form of(
Pr (k)

{∧
|
∨
→
}
Pr (j)

)∗
→ Pr (i).

• |St (i)| is the cardinality of St (i).
• NodeIndex is a temporary node index value in A.
• (NodeIndex,∗) ∈ A(i) represents all tuples in stage i ∈ A
that has a node with an index of NodeIndex.

Algorithm 1 outlines the steps involved in generating a
composed SSO which are summarized as follows:

• For all nodes that belong to (served by) a fog, determine
the similarities in node capabilities to identify parallel
threads.

• Test the composition plan according to task coverage
(i.e. test the collective capabilities ofMPs and determine

if it is sufficient to execute the plan). The complexity of
this step is an order of O(MP).

• For all predicates Pr that are a result of implication,
calculate the collective incident matrix of the predicate.
The complexity of this step is an order of O(Pr ).

• After calculating the dependencies and implications,
build matrix M for stage gi.

• For every stage gi, select the minimum matrix M that
would satisfy the plan. The complexity of this step is an
order of O(gi).

• Test implications that satisfy all predicates.
• If a predicate is missing, then try to find a node that sup-
ports the missing predicate and add it to the assignment.

• The predicates are then converted into a workflow.
• The workflow is developed by merging and fusing the
new construct with the framework. The merging process
is out of the scope of this paper. Readers may refer
to [37] for futher details.

• The overall complexity of the system is an order of
O (MP)× [O (Pr )+ O(gi)].

VII. COMPOSITION PLAN LEARNING PROCESS
The composition process for future service requests is based
on a learning approach, such that node log files from previ-
ously successful composition processes are used to recreate
similar compositions for similar events in the future. Service
node log files include plan threads’ descriptions such as the
events that led to an action to be considered, the events
which occurred after applying the action, list of nodes that
preceded the considered node in the composition, and the
node that followed the considered node in the composition.
A plan thread is a description of the process flow from the
MS to the MC. Such that, a thread provides a description of
the events that are produced in a plan following the actions
performed by service nodes. More specific towards media
service composition scenarios, threads constitute the differ-
ent node composition paths taken to provide the composite
service.

Three steps are involved in the proposed service com-
position plan learning method: selecting candidate events,
calculating the probability of event occurrence, and merging
threads into a composition plan. The first step derives a list of
candidate events that may occur when applying a particular
action. The second step calculates the probability that the
selected candidate events will occur. The last step involves
merging multiple threads into a plan. A service composition
plan which may be made up of different or somewhat similar
plan threads (i.e. a series of events that occur following the
actions performed by multiple service nodes) is formed by
merging those threads together. These steps are repeated for
all plan threads of newly composed service log files until all
events are handled.

A. SELECTING CANDIDATE EVENTS
The set of candidate events 3́ are selected according to (14),
such that it contains all events that could start a particular

23728 VOLUME 5, 2017



I. Al Ridhawi et al.: Workflow-Net-Based Service Composition Using Mobile Edge Nodes

Algorithm 1 SSO Composition
INPUT: A plan P =

{
Pi
((∧
|
∨
| →

)
Pj
)∗}where Pi and

Pj are predicates, and a group of mobile edge nodesMP =
{MP1,MP2, . . . ,MPn} each with a set of capabilities.
OUTPUT: A cooperative service specific overlay
SS2 =< S,MP, � (MP),D, SIM , ξ >, where S is the set
of primitive action types,MP is the set of cooperating ser-
vice nodes, �(MP) = {w (MP1),w (MP2), . . . ,w (MPn)}
is the set of all service node capabilities, D is the
set of plans to be performed by the set of service
nodes, SIM =

(
SIM1, SIM2, . . . , SIMn(n−1)

)
,

ξ = {ξ1, ξ2, . . . , ξz} is the set of workflows that bind two
or more different workflows from two or more service
nodes.
for all MPi,MPj ∈ MP do
Calculate SIM

(
MPi,MPj

)
end for
Test SSO composition plan according to (3), end if not
satisfied.
i = 1
for all Pr (i) and Pr (i)9 do
gi = gi ∪ Pr (i)

end for
Label: 1
Build matrix M for stage gi
for k = 1 to |gi| do
Label 2:
NodeIndex = index of {minMT (k)} where

min{MT (k)} 6= ∞
if (NodeIndex, ∗) ∈ A(i) then
MT (NodeIndex, index of {minMT (k)}) = ∞
Go to Label 2

else if NodeIndex = ∅ then
Backtrack to k − 1
Choose the next least cost

else
A (i) = A(i) ∪ (NodeIndex, index of minMT (k)})

end if
end for
i++
if ∃Pr (i),Pr (k) |Pr (i)→ and Pr (k)→ and Pr (k) ∈ gi−1
then
gi = gi ∪ Pr (i)
Go to Label 1

end if
if ∃MPu ∈ MP |(u, ∗) /∈ Aand∃MPk | (k,w (MPk)) ∈ A
and SIM (MPu,MPk) = w (MPk)
A (index (k)) = A(index(k)) ∪ (ru,w (MPk))

end if
for all Pr (i) ∈ gi do
Create uj = (•Ti,Ti,Ti•)

end for
for all up, uq|

(
Pr (p)

((∧
|
∨
| →

)
Pr (q)

))
∩ P 6= ∅ do

Compute SS2 = SS2⊗ (up ⊗ uq)
end for
Output SS2

process and do not depend on any previous events 30, union
with the set of events that depend on the already executed

events (
−→

D́ ×3c).

3́ = 30
∪ (
−→

D́ ×3c) (14)
−→

D́ =
−→
3 × D́ is a vector that determines the dependency

of a certain event upon the set of events that have already
been executed (

−→
3 ). D́ = ði × D is a vector that outlines

the dependency of a single event ði from matrix D, where
D is a two-dimensional matrix with length equal to the num-
ber of existing primitive events that cannot be fragmented into
simpler events (3). The matrix D defines the dependencies
between events as follows:

D
[
ði,ðj

]
=

{
0 if event ði = event ðj|ði does not depend on ðj
1 if event ði depends on event ðj

(15)

The set of candidate events 3́ provide an overview of the
events’ sequence in a service composition process beginning
with the event leading to the selection of source node MS and
sink node MC. The set 3́ contains all possible plan threads’
events that may exist in a single composition plan and thus
multiple event sequences are generated, which in turn form
multiple threads.

B. PROBABILITY OF EVENT OCCURRENCE
The second step in the composition plan learning process
involves determining the probability for an event to occur
from the set of candidate events 3́ found in the first step.
This is achieved by first calculating a belief value for an event
occurrence according to (16).

bel (ði) =
∫ n

j=1
P(ði|ðj)×MAX (

−→

D́ j,H(‖ði ∩30
‖))dð

(16)

where P(ði|ðj) is the probability for the event ði to occur
given the occurrence of the event ðj. This probability is
calculated according to a uniform distribution function. H is
a step function which produces 0 if the magnitude is 0 and 1
otherwise.

Once the believe values have been derived for the set 3́, a
normalized probability is calculated for each event according
to (17).

PN (ði) =
bel (ði)∑n
j=0 bel

(
ðj
) (17)

C. MERGING THREADS
The previous two steps of the plan learning method develops
a composition path (thread) from the set of candidate events.
In this step, the composition plan which may be composed
of multiple threads is built by merging those threads together.

VOLUME 5, 2017 23729



I. Al Ridhawi et al.: Workflow-Net-Based Service Composition Using Mobile Edge Nodes

Merging threads is the process of redefining the relationship
between threads and merging them into a bigger entity (plan).

We assume that thread events are defined through a
sequence of levels in which events are categorized by their
hierarchy level. Two different threads having the same set of
events occurring at the same hierarchy level can be merged
into the same plan. Therefore, the operation of thread merg-
ing is achieved through thread hierarchy level comparison.
For instance, different composition plan paths can exist to
compose the requested service. Such that the same requested
service may be composed through different set of nodes and
paths (i.e. different nodes offering similar services). Both
solutions may create similar thread events that belong to the
same execution sequence level. Given such circumstances,
we can merge the two threads into a single plan which can
be adopted for future service composition requests.

The steps involved in the planmerge process are as follows:
1. Create a common start event ð0 which is the starting

event for all different composition paths (i.e. threads).
E.g. availability of the original non-enhanced movie on
a node would be considered the starting event before
enhancing the movie.

2. Create a common end event ðend , which is the final
event for all different composition paths. E.g. movie
enhancements are completed, would be considered the
final event.

3. ∀(levi ∈ εn and ∀levj ∈ εm), if i = j then ∀(ðs ∈ levi
and ðt ∈ levj), ðk = ðs ∪ ðt .

4. bel (ðk) =
∫
P (ðk) =

∫
P (ðs)+ P (ðt) dð.

5. After the merge is complete for all threads, obtain the
normalized probabilities from the belief values found
in step 4.

levi is a level in thread εn, levj is a level in thread εm,
and k is the level that results from merging levi and levj.
In other words, the resulting composition plan would have
a single start event, a single end event, and for each level
the common events are modelled once with probability of
occurrence equal to the sum of the two occurrences before
merging.
Figure 9 provides an illustrative example of two compo-

sition plans (threads) considered for the addition of media
enhancements requested by a MC to an original movie con-
tent found at a MS. Figure 9(a) illustrates the thread events
involved in the composition process. Figure 9(b) illustrates
different but similar thread events in the composition process.
Figure 9(c) provides an illustration ofmerging the two threads
in which common events are modelled once only.

VIII. SOUNDNESS OF THE SSO
The presented composition method considers the correctness
of the composed overlay in terms of soundness. Soundness
is the property which indicates that for a process with a start
marking of a certain number of tokens in its source place, can
reach the termination state marking with the same number
of tokens in its sink place [7]. In other words, for an SSO
composition workflow to be sound, a planned path from

FIGURE 9. (a) Composition plan thread 1 – events for service overlay
composition path 1, (b) Composition plan thread 2 – events for service
overlay composition path 2, (c) Plan merging – merged threads for the
same service request.

the MS to the MC through MPs should exist to compose a
service. The original non-enhanced service at the MS will
be rendered at each MP to deliver the requested composite
service to theMC. The service should not be renderedwithout
assurance that the requested service task will be completed
and delivered to the MC at some point. Soundness has been
addressed in the literature where some of the work focuses
on the assurance of workflow-net behavior correctness and
complexity [38], [39]. The following framework describes the
SSO composition workflow:

SS2 = 〈3,6,�,N , 9,ϒ〉 (18)

where 3 = {RM1 ,R
M
2 , . . . ,R

M
` } is the set of service requests

described in (6). 6 = {σ1, σ2, . . . , σs} is the set of basic
service capabilities σ provided by the service node, such
that w (MPi) ⊆ 6 where w (MPi) = {σi, σj, . . . , σk} is
the service capability set for a service node where ∀σ ∈
w (MPi), σ ∈ 6. � = {w (MP1),w (MP2), . . . ,w (MPk)}
is a mapping function that maps every service request RM` to
its basic service capabilities σs. N = {MP1,MP2, . . . ,MPk}
is the set of service nodes in the SSO. 9 is the com-
munication protocol used between the service nodes, and
ϒ = {WFnet1 ,WFnet2 , . . . ,WFnet l } is the set of workflows
describing the service capabilities of every service node.

23730 VOLUME 5, 2017



I. Al Ridhawi et al.: Workflow-Net-Based Service Composition Using Mobile Edge Nodes

Theorem 1: A cooperative service specific overlay SS2 is
sound if and only if:

1. ∀RM ∈ 3, ∃σ ∈ 6|�(RM , σ ) 6= ∅.
2. ∀

(
MPi,MPj

)
∈ N

∣∣∃ (MPi ×MPj)∣∣MC ∈ [MPi〉.
3. ∀MPi,MPj|MC ∈ [MPj

〉
and MPj ∈ [MPi〉

and MPi ∈ [MS〉.
4. ∃9|MPi×MPj is always true andMPi×MS is always

true and MPj ×MC is always true.
5. ∀ ϒ ∈ w (MP), ϒ is sound at any point in time

t if ∃MPi|MPi ∈ SS2t−k and MPi /∈ SS2t then
∃MPj|MPj ∈ SS2t and ϒ(MPj) ≡ ϒ(MPi).

To proof the theory, we need to proof that if SS2 is sound,
then all five conditions are satisfied, and vice versa.
Proof of the ‘‘If-part’’: For SS2 to be sound then ∀RM ∈

3,RM ∈ MS t−k and RM ∈ MC t where t is time and k ≥ 0.
Therefore ∃MPl ∈ [MS〉 and MC ∈ [MPl〉 where 0 ≤ l ≤
m where m is the path length from MS to MC . Therefore,
∀MPl ∈ [MS〉 and ∀MPj |MC ∈ [MPi〉 , ∃9|MPi × MPj 6=
∅. Additionally, since the task has to be covered for it to be
performed, therefore ∀RM ∈ 3, ∃σ ∈ 6|�(RM , σ ) 6= ∅.
Since MC ∈ [MS〉, therefore, ∃

(
MPi ×MPj

)
|MPi ∈ [MC〉

and MC ∈ [MPj
〉
and MPi ×MPj 6= ∅ and, therefore, ∀ϒ ∈

w (MP), ϒ is sound for RM ∈ MC .
Proof of the ‘‘Only-If-part’’: Since ∀RM ∈ 3∃σ ∈

6|�(RM , σ ) 6= ∅, therefore, ∀RM ∈ 3,RM can be performed
using the composed overlay SS2. Since ∀

(
MPi,MPj

)
∈

N
∣∣∃ (MPi ×MPj)∣∣MC ∈ [MPi〉, therefore, MC ∈ [MS〉

and therefore, ∃ path MS · MPi · MPj · . . . · MPk ·
MC|RM ∈ MS t−k and RM ∈ MC t . Since 9 is sound, then
if ∃

(
MPi ×MPj

)
andMPj ∈ [MPi〉, therefore, RM ∈ MPit−k

and RM ∈ MPjt . Since ∀ϒ ∈ w (MP), ϒ is sound, then
∀RM ∈ MS t−k ,RM ∈ MC t therefore SS2 is sound.
Lemma 1: If SS2 is sound, then ∃MPi,MPj, . . . ,MPk
|
⋃

i,j,...,k w (MPi) ≡ (RM1 ,R
M
2 , . . . ,R

M
k ) where RMk ∈ 3.

IX. EXPERIMENTAL SIMULATIONS
System evaluations were conducted using two simulation
setups. The first simulator setup was used to demonstrate the
effectiveness of node cooperation and parallelism in work-
flow net plan execution regardless of the type of service being
provided. The second simulator setup integrates a realistic
network scenario which focuses on the creation of overlays
that provide multimedia services to clients. The evaluations
were performed to demonstrate the effectiveness of applying
the SSO composition process in terms of stability and expe-
rienced delay.

A. FIRST SIMULATOR SETUP AND RESULTS
The first simulator used was built using C++ for the
SSO composition framework, in which the algorithm
described in Section VI was implemented. The input of the
simulator consists of a plan in the form of a linear logic
expression which constitutes a set of service nodes (agents),
each with a set of capabilities expressed as workflow nets.
Each capability corresponds to one or more actions defined
in the plan, along with the cost associated with performing

that action. Capability costs are assigned as follows: first, a
uniformly distributed random variable is used to determine
the initial set of capabilities for each service node. When a
node is assigned a capability, the cost for its execution is ran-
domly determined with a normally distributed variable. Once
the node capabilities are set, the simulation evaluates the
MC’s composed service requirements. If the generated node
capabilities are insufficient to provide a complete composed
service, the simulator terminates. Otherwise, the cooperative
plan is constructed and executed.
A set of 50 mobile service nodes (agents) in 100 simula-

tions were used such that each node possessed different num-
ber of service capabilities.We assumed a set of seven different
service capabilities, in which we controlled the probability
for a service node to process each capability. For example,
given a task coverage probability of 20%, each one of the
50 nodes has a 20% chance of processing all seven service
capabilities. Experiments were conducted with task coverage
probabilities in the range of 1-100%. Time units are expressed
in terms of transition costs in the workflow nets. The plan to
be executed by the experiment is outlined in Figures 3 and 4
and is expressed as follows:

MS→δ0→
(((
δ1
∧
δ2

)
→δ4

)∧
(δ3→δ5)

)
→δ6→MC (19)

where each predicate represents a unique service capability.
The cost of performing those predicates is outlined below
through matrix M . From the matrix, it is clear that the min-
imal cost of performing the service composition is achieved
through the plan outlined in equation (19).

δ0 δ1 δ2 δ3 δ4 δ5 δ6

M =

MS
MP1
MP2
MP3
MP4
MC


∞ ∞ ∞ ∞ ∞ ∞ ∞

2 3 8 5 3 ∞ ∞

∞ 1 1 2 7 ∞ 3
∞ 3 3 8 1 2 5
∞ 5 9 7 1 ∞ 1
∞ ∞ ∞ ∞ ∞ ∞ ∞


The first set of experimental results obtained are used to

demonstrate the way by which our solution exploits cooper-
ation and parallelism. Figure 10 compares two workflow net
plansWF1 andWF2, in whichWF2 does not associate service
node cooperation, such that tasks are performed sequentially,
whilst WF1 associates full node cooperation. It is evident
from the figure that WF1 outperforms WF2 in terms of
execution time reduction as the number of achieved service
tasks increase. Additionally, results show that when the two
workflows work in parallel to achieve the required composed
service, time needed to achieve the required task is reduced
significantly.
The second set of experiments involved the use of four

plans. Plan[0] incorporates full workflow net parallelism,
Plan[1] incorporates full service node cooperation, Plan[2]
incorporates some degree of cooperation, and Plan[3] pro-
vides no mechanism for cooperation in which tasks are per-
formed sequentially. Results depicted in Figure 11 show that

VOLUME 5, 2017 23731



I. Al Ridhawi et al.: Workflow-Net-Based Service Composition Using Mobile Edge Nodes

FIGURE 10. Comparing execution time for two workflow nets, WF 1 - with
cooperation and WF 2 - without cooperation.

FIGURE 11. Comparing execution time for different plans while varying
degree of cooperation and parallelism.

Plan[0] outperforms all other plans in terms of time required
to achieve the requested tasks. On the contrary, Plan[3] pro-
vides the least favorable result. Under a realistic network
scenario, it is well-known that full parallelism is impossible to
achieve and hence Plan[1] provides the most optimal solution
provided that all service nodes are willing to cooperate.

The third set of experiments explored the effects of varying
the number of service nodes (agents) against a plan’s required
execution time. Figure 12(a) shows the cases in which prob-
abilistic task coverages are insufficient to complete a plan.
It is clear from the figure that such cases occur with a very
low number of service node availability or low task coverage
probability. On the contrary, Figure 12(b) shows the cases
of sufficient task capability coverages. Results demonstrate
that extended service node capabilities reduce execution time
more drastically with the increase in the number of service
nodes. In this particular case, the solution favors nodes with
better task coverage than node availability.

B. SECOND SIMULATOR SETUP AND RESULTS
In the second phase of experiments, we adopt the successfully
tested workflows from the first phase of experiments and

FIGURE 12. (a) Cases of insufficient task coverage to complete a plan.
(b) Cases of sufficient task coverage to complete a plan.

test it on a mobile network oriented scenario. The simulation
experiments conducted in this phase were performed using
the C++ based OMNeT++ [40] discrete event network
simulator. OverSim [41] was used to model the proposed
service-specific overlay composition technique in a mobile
network environment. In the performed tests, nodes were
placed in a 2-dimensional Euclidean space where the delay
between any two nodes was assumed to be proportional to the
distance between them. Two thousand nodes were randomly
distributed and divided into 5%MCs, 5%MSs, and 90%MPs.
Each MP is associated randomly with a set of services where
each service is provided at specific QoS levels. A lifetime
based churn model of exponential distribution was used to
model the arrival and departure of nodes in the network.
A fully-recursive KBR protocol is used to model the network
traffic, where messages are encapsulated and forwarded to
the next service node according to the composition process.
Message sizes range from 32 bytes to 100 bytes and are
generated at a 60 seconds’ interval with a failure latency of
10 seconds. Nodes are added to the network according to a
Poisson process at a rate of 1 node/second. OntoCAT [42]
was used to parse, search though, and compare acquired
service description files. It provides a high-level of abstrac-
tion for interacting with ontology resources in the standard
OWL format.

The set of experiments conducted compares our pro-
posedworkflow-net plan-based service composition solution,
referred to as WN-SSO henceforth, to our earlier work pre-
sented in [15] referred to as PF-SSO and the work presented
in [43] referred to as limited PF-SSO. The work in [15]

23732 VOLUME 5, 2017



I. Al Ridhawi et al.: Workflow-Net-Based Service Composition Using Mobile Edge Nodes

FIGURE 13. Composition delay experienced while increasing composition
path length.

uses a decentralized plan-free semantic-based service com-
position technique, in which semantic similarity and seman-
tic nearness of overlay nodes are considered when creating
overlay paths to deliver a particular composed service. The
solution semantically advances composition paths towards
users’ needs with each service hop while guaranteeing a
user-acceptable QoS level. On the contrary, the work pre-
sented in [43] is also a decentralized service composition
technique but with an assumption that eachMP has a distance
function used to produce the list of required adaptations for
a media flow based on its input and output. A methodol-
ogy for quantifying the compatibility and similarity between
service descriptions is not used, but similarity between
MPs is considered. However, the similarity function relies on
a globally accessible directory of MP descriptions that is not
regularly updated and hence optimal SSO compositions are
not achieved.

A comparison of the SSO composition delays for the
three techniques, namely: WN-SSO, PF-SSO, and limited
PF-SSO are presented in Figure 13. Results illustrate how
delay increases steadily as the number of MPs involved in
the SSO path grows. The service composition time of both
WN-SSO and PF-SSO is slightly higher than that of the
limited PF-SSO. This increase is due to the lack of detailed
QoS and semantic comparison evaluations in the limited
PF-SSO technique. Limited PF-SSO thus composes SSOs
faster, however, it lacks semantic and QoS precision.
Additionally, the figure shows that WN-SSO outperforms
PF-SSO in terms of SSO composition speed while achieving
the same high level of semantic and QoS precision. Further-
more, the flooding approach used in the PF-SSO and the
limited PF-SSO results in a number of messages exchanged
that far exceeds the plan-based method, where messages are
only forwarded to specific overlay nodes, hence resulting in
a reduced composition delay.

Figure 14 depicts a comparison of the average composition
time between the three methods. The average composition
time is the time difference between the start of the compo-
sition request and the completion of the SSO path. Results
show that the limited PF-SSO technique experiences less
delay in low service node density environments. As node
density increases, the average composition time increases
almost exponentially. On the contrary, both the WN-SSO and
PF-SSO techniques experience more of a somewhat stable

FIGURE 14. Average composition delay while varying service node
density.

FIGURE 15. Composition success rate while varying service node density.

average composition delay in both low and high service
density environments. Although limited PF-SSO provides
the least average composition time overall, limited PF-SSO
incorporates less realistic and less complex service descrip-
tion models, as well as the utilization of semantic and QoS
comparisons when selecting MPs. Comparing WN-SSO to
PF-SSO, we see that our technique provides a more stable
average composition time as node density increases. Addi-
tionally, WN-SSO provides the same level of semantic and
QoS comparison precision with almost a twofold decrease in
average composition time.

Figure 15 compares the composition success rate for the
three methods. Success rate is defined as the number of
service requests that receive positive responses divided by the
total number of queries. The proposed WN-SSO technique
outperforms both the limited PF-SSO and PF-SSO compo-
sition methods in highly dense environments. In less dense
environments, although success rates in both WN-SSO and
PF-SSO slightly fall below those of limited PF-SSO, yet this
decline is justified by the increase in the accuracy of node
selection. Both WN-SSO and PF-SSO better meet the MC’s
media flow format and QoS requirements. WN-SSO achieves
this with a higher success rate compared to PF-SSO.

Our final test involved measuring the delay experienced
in forming each hop of the SSO composition as depicted in
Figure 16. Both PF-SSO and limited PF-SSO maintained
higher levels of delay for each composed hop compared
with WN-SSO. Although our proposed technique achieves
lower levels of delay overall, it can be noticed that per
hop composition delay increases per hop as opposed to
a decrease in per hop composition for both PF-SSO and

VOLUME 5, 2017 23733



I. Al Ridhawi et al.: Workflow-Net-Based Service Composition Using Mobile Edge Nodes

FIGURE 16. Composition success rate while varying service node density.

limited PF-SSO. This is in fact due to the use of a decentral-
ized MP search mechanism in the PF-SSO techniques which
limits the number of MPs contacted in each hop, and thus, the
acceptable QoS levels set by the MC in its request becomes
less restrictive due to the limited set of MP availability.
On the contrary, since the WN-SSO mechanism uses a plan-
based composition method which is incorporated within the
cloudlet or registered edge node, the MP search process
becomes more restrictive by considering not only the MC’s
request, but also the restrictions placed by the MPs in the
path.

Consistently, our proposed workflow-net plan-based
SSO composition technique provides performance levels
that outpace both PF-SSO and limited PF-SSO in terms of
composition delay and success rate. Additionally, it pro-
vides guaranteed QoS levels that meet the MC’s service
requirements

X. CONCLUSION AND FUTURE WORK
This paper proposed a workflow-net based mechanism for
mobile edge node cooperation in cloud networks to form
guaranteed SSOs for media content delivery. The solution
integrates a cooperation operator used to compose node ser-
vice capabilities expressed as workflow net units into a coop-
erative composed workflow net. The service composition
algorithm implements a back-tracking scheme allowing it
to determine the minimal cost cooperative path from the
workflow net. Simulation results demonstrate that the system
is scalable to any number of mobile nodes given any number
of service capabilities and provides the minimal cost towards
service composition. Further evaluations are planned to inves-
tigate the behavior of the proposed system in real-time under
different network conditions.

REFERENCES
[1] X. Sun and N. Ansari, ‘‘EdgeIoT: Mobile edge computing for the Inter-

net of Things,’’ IEEE Commun. Mag., vol. 54, no. 12, pp. 22–29,
Dec. 2016.

[2] X. Masip-Bruin, E. Marín-Tordera, G. Tashakor, A. Jukan, and G.-J. Ren,
‘‘Foggy clouds and cloudy fogs: A real need for coordinated management
of fog-to-cloud computing systems,’’ IEEE Wireless Commun., vol. 23,
no. 5, pp. 120–128, Oct. 2016.

[3] V. B. Souza, X. Masip-Bruin, E. Marin-Tordera, W. Ramirez, and
S. Sanchez, ‘‘Towards distributed service allocation in fog-to-cloud
(F2C) scenarios,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Washington, DC, USA, Dec. 2016, pp. 1–6.

[4] Z. Duan, Z.-L. Zhang, and Y. T. Hou, ‘‘Service overlay networks: SLAs,
QoS, and bandwidth provisioning,’’ IEEE/ACMTrans. Netw., vol. 11, no. 6,
pp. 870–882, Dec. 2003.

[5] Y. Xia, X. Luo, J. Li, and Q. Zhu, ‘‘A petri-net-based approach to reliability
determination of ontology-based service compositions,’’ IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 43, no. 5, pp. 1240–1247, Sep. 2013.

[6] Y. Du, X. Li, and P. Xiong, ‘‘A Petri net approach to mediation-aided
composition of Web services,’’ IEEE Trans. Autom. Sci. Eng., vol. 9, no. 2,
pp. 429–435, Apr. 2012.

[7] W. M. P. van der Aalst, ‘‘The application of Petri nets to workflow man-
agement,’’ J. Circuits, Syst. Comput., vol. 8, no. 1, pp. 21–66, 1998.

[8] F. L. Tiplea and C. Bocaneala, ‘‘Priority workflow nets,’’ IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 43, no. 2, pp. 402–415, Mar. 2013.

[9] Y. T. Kotb and E. Badreddin, ‘‘Synchronization among activities in a
workflowusing extendedworkflowPetri nets,’’ inProc. 7th IEEE Int. Conf.
E-Commerce Technol. (CEC), Jul. 2005, pp. 548–551.

[10] Q. Duan, Y. Yan, and A. V. Vasilakos, ‘‘A survey on service-oriented
network virtualization toward convergence of networking and cloud com-
puting,’’ IEEE Trans. Netw. Serv. Manage., vol. 9, no. 4, pp. 373–392,
Dec. 2012.

[11] I. Paik, W. Chen, and M. N. Huhns, ‘‘A scalable architecture for automatic
service composition,’’ IEEE Trans. Serv. Comput., vol. 7, no. 1, pp. 82–95,
Jan./Mar. 2014.

[12] K. Fujii and T. Suda, ‘‘Semantics-based dynamic service composition,’’
IEEE J. Sel. Areas Commun., vol. 23, no. 12, pp. 2361–2372, Dec. 2005.

[13] L. Zhen andM. Parashar, ‘‘Rudder: A rule-basedmulti-agent infrastructure
for supporting autonomic grid applications,’’ in Proc. Int. Conf. Auto.
Comput., 2004, pp. 278–279.

[14] D. Ardagna and B. Pernici, ‘‘Global and local QoS constraints guarantee
in Web service selection,’’ in Proc. IEEE Int. Conf. Web Serv., Jul. 2005,
pp. 1–2.

[15] Y. A. Ridhawi and A. Karmouch, ‘‘Decentralized plan-free semantic-based
service composition in mobile networks,’’ IEEE Trans. Serv. Comput.,
vol. 8, no. 1, pp. 17–31, Jan./Feb. 2015.

[16] E. Sirin, B. Parsia, and J. Hendler, ‘‘Filtering and selecting semantic
Web services with interactive composition techniques,’’ IEEE Intell. Syst.,
vol. 19, no. 4, pp. 42–49, Jul. 2004.

[17] I. W. Kim and K. H. Lee, ‘‘A model-driven approach for describing
semantic Web services: From UML to OWL-S,’’ IEEE Trans. Syst., Man,
Cybern. C, Appl. Rev., vol. 39, no. 6, pp. 637–646, Nov. 2009.

[18] H. Wu and D. Huang, ‘‘MoSeC: Mobile-cloud service composition,’’
in Proc. 3rd IEEE Int. Conf. Mobile Cloud Comput., Serv., Eng.,
San Francisco, CA, USA, Mar. 2015, pp. 177–182.

[19] P. Simoens, L. Van Herzeele, F. Vandeputte, and L. Vermoesen, ‘‘Chal-
lenges for orchestration and instance selection of composite services in
distributed edge clouds,’’ in Proc. IFIP/IEEE Int. Symp. Integr. Netw.
Manage. (IM), Ottawa, ON, Canada, May 2015, pp. 1196–1201.

[20] J. Oueis, E. C. Strinati, and S. Barbarossa, ‘‘The fog balancing: Load
distribution for small cell cloud computing,’’ in Proc. IEEE 81st Veh.
Technol. Conf. (VTC Spring), Glasgow, U.K., May 2015, pp. 1–6.

[21] S. Wang, A. Zhou, F. Yang, and R. N. Chang, ‘‘Towards network-aware
service composition in the cloud,’’ IEEE Trans. Cloud Comput., to be
published, doi: 10.1109/TCC.2016.2603504.

[22] S. Padmavathi, V. P. Dharani, S. Maithrreye, M. M. Devi, and S. Durairaj,
‘‘Multi-agent framework for cloud service composition,’’ in Proc. Int.
Conf. Emerg. Trends Eng., Technol. Sci. (ICETETS), Pudukkottai, India,
Feb. 2016, pp. 1–5.

[23] S. Deng, L. Huang, H. Wu, and Z. Wu, ‘‘Constraints-driven service
composition in mobile cloud computing,’’ in Proc. IEEE Int. Conf. Web
Serv. (ICWS), San Francisco, CA, USA Jun. 2016, pp. 228–235.

[24] Z. Benzadri, N. Hameurlain, F. Belala, and C. Bouanaka, ‘‘A theoretical
approach for modelling cloud services composition,’’ in Proc. Int. Conf.
Adv. Aspects Softw. Eng. (ICAASE), Constantine, Algeria, 2016, pp. 1–8.

[25] T. Wu, W. Dou, C. Hu, and J. Chen, ‘‘Service mining for trusted service
composition in cross-cloud environment,’’ IEEE Syst. J., vol. 11, no. 1,
pp. 283–294, Mar. 2017.

[26] P. Baldan, A. Corradini, H. Ehrig, and R. Heckel, ‘‘Compositional seman-
tics for open Petri nets based on deterministic processes,’’ J. Math. Struct.
Comput. Sci., vol. 15, no. 1, pp. 1–35, Feb. 2005.

[27] X. Li, Y. Fan, Q. Z. Sheng, Z.Maamar, andH. Zhu, ‘‘A Petri net approach to
analyzing behavioral compatibility and similarity of Web services,’’ IEEE
Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 41, no. 3, pp. 510–521,
May 2011.

23734 VOLUME 5, 2017

http://dx.doi.org/10.1109/TCC.2016.2603504


I. Al Ridhawi et al.: Workflow-Net-Based Service Composition Using Mobile Edge Nodes

[28] K. Klai and H. Ochi, ‘‘A formal approach for service composition in a
cloud resources sharing context,’’ in Proc. 16th IEEE/ACM Int. Symp.
Cluster, Cloud Grid Comput. (CCGrid), Cartagena, Colombia, May 2016,
pp. 458–461.

[29] S. Haddad, J.-M. Ilié, and K. Klai, ‘‘Design and evaluation of a symbolic
and abstraction-based model checker,’’ in Proc. ATVA, 2004, pp. 196–210.

[30] A. V. Dastjerdi and R. Buyya, ‘‘Fog computing: Helping the Internet
of Things realize its potential,’’ Computer, vol. 49, no. 8, pp. 112–116,
Aug. 2016.

[31] I. Al Ridhawi, Y. Kotb, M. Aloqaily, and B. Kantarci, ‘‘A probabilistic
process learning approach for service composition in cloud networks,’’ in
Proc. IEEE 30th Can. Conf. Electr. Comput. Eng. (CCECE), Windsor, ON,
Canada, Apr. 2017, pp. 1–6.

[32] S. Herborn, Y. Lopez, and A. Seneviratne, ‘‘A distributed scheme for
autonomous service composition,’’ in Proc. 1st ACM Int. Workshop Multi-
media Serv. Compos. (MSC), vol. 5. 2005, pp. 21–30.

[33] S. Herborn and A. Seneviratne, ‘‘Service composition for mobile personal
networks,’’ in Proc. 3rd Annu. Int. Conf. Mobile Ubiquitous Syst., Netw.
Serv., 2006, pp. 1–8.

[34] Y. Al Ridhawi and A. Karmouch, ‘‘Ontology-based negotiation protocol
and context-level agreements,’’ in Proc. 4th IET Int. Conf. Intell. Environ.,
Jul. 2008, pp. 1–8.

[35] G. Antoniou and F. van Harmelen, ‘‘Web ontology language: OWL,’’
in Handbook on Ontologies (International Handbooks on Information
Systems). Berlin, Germany: Springer, 2009, pp. 91–110.

[36] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and
A. P. Barros, ‘‘Workflow patterns,’’ Distrib. Parallel Databases, vol. 14,
no. 1, pp. 5–51, 2003.

[37] Y. T. Kotb, S. S. Beauchemin, and J. L. Barron, ‘‘Workflow nets for
multiagent cooperation,’’ IEEE Trans. Autom. Sci. Eng., vol. 9, no. 1,
pp. 198–203, Jan. 2012.

[38] G. Liu, W. Reisig, C. Jiang, and M. Zhou, ‘‘A branching-process-based
method to check soundness of workflow systems,’’ IEEE Access, vol. 4,
pp. 4104–4118, 2016.

[39] G. Liu, ‘‘Some complexity results for the soundness problem of work-
flow nets,’’ IEEE Trans. Serv. Comput., vol. 7, no. 2, pp. 322–328,
Apr./Jun. 2014.

[40] A. Varga. (2012). OMNeT++ User Manual, Version 4.1. [Online]. Avail-
able: http://www.omnetpp.org/doc/omnetpp/manual/usman.html

[41] I. Baumgart, B. Heep, and S. Krause, ‘‘OverSim: A flexible overlay
network simulation framework,’’ in Proc. 10th IEEE Global Internet
Symp. (GI), May 2007, pp. 79–84.

[42] T. Adamusiak et al., ‘‘OntoCAT—Simple ontology search and integration
in Java, R and REST/JavaScript,’’ BMC Bioinform., vol. 12, no. 1, p. 218,
2011.

[43] I. Al-Oqily and A. Karmouch, ‘‘SORD: A fault-resilient service overlay for
MediaPort resource discovery,’’ IEEE Trans. Parallel Distrib. Syst., vol. 20,
no. 8, pp. 1112–1125, Aug. 2009.

ISMAEEL AL RIDHAWI (M’09) received the
B.A.Sc., M.A.Sc., and Ph.D. degrees in electrical
and computer engineering from the University of
Ottawa, Canada, in 2007, 2009, and 2014, respec-
tively. He is currently an Assistant Professor of
computer engineering with the College of Engi-
neering and Technology, American University of
the Middle East. His current research interests
include quality of service monitoring, cloud net-
work management, and overlay networks.

YEHIA KOTB received the Ph.D. degree from
the Faculty of Computer Science, University of
WesternOntario, Canada, in 2011. Hewas a Senior
Software Developer with Akira Systems, London,
ON, Canada. He is currently anAssistant Professor
of computer engineering with the College of Engi-
neering and Technology, American University of
the Middle East. His current research interests
include probabilistic process learning and multi-
agent cooperation in distributed systems.

YOUSIF AL RIDHAWI (M’07) received the B.Sc.,
M.Sc., and Ph.D. degrees in electrical and com-
puter engineering from the University of Ottawa,
Canada, in 2006, 2008, and 2013, respectively.
His current research interests include autonomic
service discovery and composition, quality of ser-
vice management, and overlay wireless network
communications.

VOLUME 5, 2017 23735


	INTRODUCTION
	RELATED WORK
	PROBLEM AND SOLUTION OVERVIEW
	SSO COMPOSITION MODEL
	SERVICE DESCRIPTION
	SERVICE REQUEST
	MODELING SERVICE COMPOSITION PLANS

	SSO COMPOSITION PROCESS
	COMPOSITION PLANNING PROCESS
	ONTOLOGY-BASED MODELING
	COMPOSITION PLAN GENERATION REQUIREMENTS

	SSO GENERATION ALGORITHM
	COMPOSITION PLAN LEARNING PROCESS
	SELECTING CANDIDATE EVENTS
	PROBABILITY OF EVENT OCCURRENCE
	MERGING THREADS

	SOUNDNESS OF THE SSO
	EXPERIMENTAL SIMULATIONS
	FIRST SIMULATOR SETUP AND RESULTS
	SECOND SIMULATOR SETUP AND RESULTS

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	ISMAEEL AL RIDHAWI
	YEHIA KOTB
	YOUSIF AL RIDHAWI


