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ABSTRACT In this paper, we address underdetermined blind separation of N sources from their M
instantaneous mixtures, where N > M , by combining the sparsity and independence of sources. First, we
propose an effective scheme to search some sample segments with the local sparsity, which means that in
these sample segments, onlyQ(Q < M ) sources are active. By grouping these sample segments into different
sets such that each set has the same Q active sources, the original underdetermined BSS problem can be
transformed into a series of locally overdetermined BSS problems. Thus, the blind channel identification
task can be achieved by solving these overdetermined problems in each set by exploiting the independence
of sources. In the second stage, we will achieve source recovery by exploiting a mild sparsity constraint,
which is proven to be a sufficient and necessary condition to guarantee recovery of source signals. Compared
with some sparsity-based UBSS approaches, this paper relaxes the sparsity restriction about sources to some
extent by assuming that different source signals are mutually independent. At the same time, the proposed
UBSS approach does not impose any richness constraint on sources. Theoretical analysis and simulation
results illustrate the effectiveness of our approach.

INDEX TERMS Underdetermined blind source separation, sparsity, independence, source recovery, blind
identification.

I. INTRODUCTION
Blind source separation (BSS) aims to separate source signals
from their measurable mixtures without any prior knowledge
about the mixing matrix and the source signals [1]–[15].
A challenging issue in BSS is that the number of sources
exceeds the number of mixtures, which refers to the so-called
underdetermined blind source separation (UBSS). This sit-
uation is often encountered in practical applications. For
example, in a wireless sensor network, the number of sources
is sometimes unknown to the receivers. As a result, the
number of deployed receiving sensors could be less than
the number of the sources. Other applications of UBSS
include medical imaging, time series analysis and so on [10].
Therefore, UBSS is of particular importance in practice
and has attracted considerable research attentions in recent
years.

So far, various UBSS methods have been developed.
Among these methods, a small number of them employs

some special properties of the source signals and/or the
mixing matrix. In [11] and [12], the differences between
nonstationary source signals and stationary source signals are
exploited to separate the former from the measured mixtures,
whilst the latter are treated as noise signals and thus cannot be
recovered. Differently, [14] uses a special property of themix-
ing matrix to develop some sequential underdetermined blind
extraction techniques. Specifically, in order to estimate one
single source signal from the mixtures, it is required that there
must exist at least one column in the mixing matrix which
is not a linear combination of all other columns [14]. This
constraint is restrictive in practical applications since any
column in a randomly generated underdetermined matrix can
be expressed, with probability one, as a linear combination
of all other columns. Some high-order cumulant-based blind
identification approaches are developed in [4] and [5], which
cannot recover source signals, and impose some restrictions
on the maximum number of outputs.
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On the other hand, a large number of UBSS methods
perform source separation by utilizing the sparsity properties
of sources in time domain [16]–[19] or other transformation
domains, such as time-frequency domain [10], [20]–[26].
Sparse representation provides a powerful tool for solv-
ing the UBSS problem [15], [19], [33]. Underdetermined
blind source separation is achieved in [16]–[18], [20] by
assuming that at most one source signal possesses the dom-
inant energy at each sample point, which is called as the
W-disjoint orthogonal condition (or approximate W-disjoint
orthogonality). For example, a so-called DUET algorithm
is proposed in [20], [21] to estimate the underdetermined
mixing matrix by exploiting the ratios of the time-frequency
transforms of the observed mixture signals under the above
W-disjoint orthogonal condition. In [29]–[31], the sparsity
constraint about source signals is relaxed to some extent
by allowing the energy distributions of sources to overlap.
Specifically, it is not required in [29]–[31] that each sample
point has at most one active source, and a weaker sparsity
condition is presented, i.e., that there are some adjacent sam-
ple regions where only one source occurs. Based on this
condition, the TIFROM algorithm is proposed to tackle the
UBSS task in [29]–[31]. More recently, as an extension of
the DUET algorithm and the TIFROM algorithm, an effective
UBSS algorithm is developed by [15] to obtain the estimation
for the mixing matrix under a milder sparsity condition, i.e.,
that there exist some isolated (or discrete) sample points on
which only one single source is active. Clearly, it is more relax
than the sparsity constraints required by the DUET algorithm
and the TIFROM algorithm. It is notable that all of the above-
mentioned sparsity constraints need some sample points hav-
ing at most one active source signal, that is, there must exist
some sample points where the energy distributions of source
signals do not overlap. Such a sparsity restriction could be too
difficult to satisfy in some practical applications, where all
sample points havemore than one active source. Interestingly,
this restriction is successfully removed in [19] at the cost
of an additional condition about the richness of the source
signals. Specifically, [19] allows the distributions of source
signals to overlap on all sample points, and does not need any
sample points with only one active source. However, as an
additional richness constraint, the sources are required to be
sufficiently rich such that for any N −M +1 sources from all
N sources, there must exist at leastM sample points on which
these N −M + 1 sources are inactive [19], where N and M
stand for the number of sources and the number of mixtures,
respectively. It is notable that the richness condition is still
difficult to satisfy in some practical applications, which will
be further illustrated by an example presented in Section II.

In order to overcome the drawbacks of the existing works,
this paper presents a group-based UBSS algorithm. Specifi-
cally, we group all the availablemixture vectors into a number
of sets such that each set has only Q(Q < M ) active sources.
As a result, the UBSS problem is transformed into a series
of locally non-underdetermined BSS problems. By solving
these locally non-underdetermined BSS problems, we can

achieve UBSS. The above idea is similar to that of [32], which
combines the sparsity and independence of sources to solve
the UBSS problem. Both our proposed algorithm and [32]
need to group all the observed mixture vectors into different
sets, by which the original UBSS task can be achieved by
solving a series of non-determined BSS problems in each
set. The main difference between our algorithm and [32]
lies in that different methods are used in the above grouping
procedure. In order to obtain such one group, a searching
procedure regarding a particular cost function has to be exe-
cuted based on a steep ascent method in [32]. Clearly, this
procedure will suffer from the problem of local maxima.
Although [32] proposed some amendments for this problem,
this adds greatly the computational complexity. In contrast,
our proposed algorithm only need an SVD operation and
some simple comparisons for getting each group. On the other
hand, our proposed method can estimate the mixing matrix,
and then recover source signals, while [32] only can achieve
the estimation for the mixing matrix. It is well-known that
even though the mixing matrix is known, it is not a trivial
task to recover source signals in the underdetermined system,
where the mixing matrix is not invertible. It is notable that
some blind source recovery algorithms have been developed
in [10] and [26] by exploiting the known mixing matrix.
For example, [26] exploits the estimated mixing matrix and
subspace projection to identify the sources present in each
sample point of time-frequency (TF) plane, and then esti-
mates their corresponding time-frequency distribution values.
Finally, source signals can be recovered via a TF synthe-
sis algorithm [26]. More recently, [10] points out that [26]
does not provide the sufficient conditions to guarantee the
effectiveness of the UBSS algorithm, and relaxes the related
sparsity restriction about source signals compared with [26].
However, [10] depends on the quadratic time-frequency
distributions of signals, which makes the performance of the
UBSS algorithm in [10] be negatively affected by the cross
terms among different sources.

In this paper, we will propose a UBSS algorithm,
which relaxes the sparsity assumption about source signals
by exploiting the statistical independence among different
source signals, and permits all sample points to possess more
than one active source. Besides, unlike [19], the proposed
algorithm does not need any additional constraint on the
richness of the source signals. The advantages of the proposed
approach make it applicable to a wider range of practical
applications.

The rest of this paper is organized as follows.
In Section II, the UBSS problem is formulated and the UBSS
algorithm in [19] is reviewed. Section III presents the new
UBSS algorithm based on some mild constraints on the
sources and the mixing matrix. In Section IV, simulation
results are provided to illustrate the effectiveness of the
proposed approach. Finally, Section V concludes the paper.
Notations: The bold-faced upper case letters denote matri-

ces (e.g., X). The bold-faced lower case letters represent
column vectors (e.g., x) and xi is the ith element of the
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vector x. The superscript (·)T denotes the transpose operation.
IM×M and 0M×1 stand for the M × M unit matrix and the
M -dimensional zero vector, respectively. pinv (X), rank [X]
and span {X} denote the pseudoinverse of the matrix X, the
rank ofX and the subspace spanned by all the column vectors
of X, respectively.

II. PROBLEM FORMULATION AND REVIEW
OF RELATED WORKS
Let us consider an instantaneous underdetermined mixing
system with N sources and M outputs (N > M ):

x(k) = As(k)+ n(k) (1)

where s(k) = [s1(k), s2(k), . . . , sN (k)]T is the
N -dimensional source signal vector, x(k) = [x1(k),
x2(k), . . . , xM (k)]T is theM -dimensional mixture signal vec-
tor,A = [a1, a2, . . . , aN ] is theM×N mixing matrix, n(k) is
the additive noise vector, and k = 1, 2, . . . ,K . In (1), k is an
index given to each sample of signals. As a generalized index,
k has different meanings in different domains. For example,
k stands for one time instant in the time domain, while in the
time-frequency (TF) domain, the index k denotes one sample
point in TF plane. The mixing system (1) has been widely
used in the study of UBSS [10]–[15], [17]–[26]. The column
vector ai in A is called the steering vector corresponding to
the ith source signal si(k), where i = 1, 2, . . . ,N [10]. The
objective of UBSS is to recover the source signals s(k) only
from their observed mixture signals x(k). Since N > M , the
mixing matrix A is not invertible, which makes UBSS a very
challenging task.

To perform UBSS, a large number of approaches have
been developed based on different sparsity assumptions about
source signals. Most of these sparsity-based UBSS algo-
rithms require the existence of some adjacent or discrete sam-
ple points, on which only one source is active. By searching
these sample points, one can achieve the estimation for the
mixing matrix, and then recover source signals. More inter-
estingly, In [19], Georgiev et al. relax the sparsity constraint
to develop an effective UBSS algorithm, which does not need
any sample points with only one active source. In other words,
it allows multiple source to be active on all sample points.
Unfortunately, [19] requires an additional restriction about
the richness of the source signals, that is,

A1) The source signals are sufficiently rich in the sense that
for any N −M + 1 sources in all N sources, there must exist
at least M sample points at which these N −M + 1 sources
are inactive.

It is notable that the above assumption A1) is still strict and
difficult to satisfy in many practical applications. To illustrate
this point, we consider a simple UBSS example with M = 3
outputs and N = 4 source signals s1(k), s2(k), s3(k), s4(k),
which means that the mixing matrix A is of dimension 3× 4.
According to the assumption A1), these 4 source signals must
satisfy the following CN−M+1N = C2

4 = 6 conditions:
c1) There are at least M = 3 time instants at which s1(k)

and s2(k) are inactive.

c2) There are at least M = 3 time instants at which s1(k)
and s3(k) are inactive.
c3) There are at least M = 3 time instants at which s1(k)

and s4(k) are inactive.
c4) There are at least M = 3 time instants at which s2(k)

and s3(k) are inactive.
c5) There are at least M = 3 time instants at which s2(k)

and s4(k) are inactive.
c6) There are at least M = 3 time instants at which s3(k)

and s4(k) are inactive.

FIGURE 1. Comparisons between two sets of source signals. Left column:
source signal set {s1(k), s2(k), s3(k), s4(k)} satisfying the assumption A1).
Right column: source signal set {t1(k), t2(k), t3(k), t4(k)} violating the
assumption A1).

Regarding the above six conditions, let us consider two
sets of source signals {s1(k), s2(k), s3(k), s4(k)} and {t1(k),
t2(k), t3(k), t4(k)}, which are shown in the left and right
columns in Fig. 1, respectively. It is easy to see that the
source signals {s1(k), s2(k), s3(k), s4(k)} satisfy all the above
conditions c1)-c6) but the source signals {t1(k), t2(k), t3(k),
t4(k)} only meet the conditions c2) and c5). Specifically,
for the source signals {t1(k), t2(k), t3(k), t4(k)}, the condi-
tion c5) is met during the time instants 1–4000, whilst the
condition c2) is satisfied during the time instants 5000–6000.
However, the conditions c1), c3), c4), and c6) cannot be
satisfied by {t1(k), t2(k), t3(k), t4(k)}. As a result, {t1(k), t2(k),
t3(k), t4(k)} cannot be separated from their underdetermined
mixtures by using the algorithm in [19]. From this example,
we can see that the assumption A1) seriously limits the
application scope of the UBSS algorithm in [19]. It is also
worth mentioning that the assumption required by [16]–[18],
i.e., only one source possesses the dominant energy at each
time instant, does not hold for the two sets of source signals
shown in Fig. 1. Therefore, it is necessary and interesting
to develop new UBSS approaches which depend on milder
constraints on the source signals and thus can be applied to a
wider variety of applications.
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III. THE PROPOSED UBSS ALGORITHM
In this section, we will develope a new group-based UBSS
algorithm which exploits the statistical independence among
different source signals to relax the sparsity constraint. Our
developed UBSS algorithms are based on the following four
conditions:

A2) Any M column vectors in the mixing matrix A are
linearly independent.

A3) The source signals s1(k), s2(k), . . . , sN (k) are statisti-
cally independent.

A4) At mostM−1 sources among N sources are active on
any sample point.

A5) For any source signal si(k)(1 ≤ i ≤ N ), there exist
some sample segments consisting of M − 1 adjacent sample
points. On these sample segments, si(k) and other M − 2
sources are active.

The assumption A2) is a mild restriction on the mixing
matrix. It is easy to see that it can be satisfied for any
randomly-generated mixing matrix AM×N with the probabil-
ity one. The assumption A3) is also a widely-used assumption
in the BSS field, which may be satisfied in many practical
applications. Based on this assumption, a large number of
ICA approaches have been developed in the past decades.

The assumption A4) is a mild sparsity constraint about
source signals, which has been widely exploited in many
existing works [19] solving the UBSS problem.

Next, let us examine whether the assumption A5) is easily
satisfied. From the assumption A4), we know that at most
M − 1 sources are active on any sample point, which means
that active sources on any given sample point have CM−1N
possible different combinations. Clearly, the probability that
si(k) and other M − 2 sources are active on a given sample
point is 1/CM−1N . And then, the probability that active sources
on M − 1 adjacent sample points consist of si(k) and other

M − 2 sources is equal to
(
1/CM−1N

)M−1
. In other words,

the probability that the assumption A5) is met is equal to(
1/CM−1N

)M−1
. Clearly, this assumption is not restrictive for

practical application with thousands of sample points. In the
application example shown in Fig. 1. with M = 3 mixture
signals and N = 4 source signals, the probability that any
sample segmentwith the lengthM−1 satisfies the assumption
A5) equals to 1/36, and 333 sample segments among total
12000 sample segments meet the assumption A5).

In summary, both the assumptions A4) and A5) are some
mild sparsity constraints about source signals. They only
require that source signals are partially sparse. In contrast, it
is required by [16]–[18] that source signals are sparse on all
sample points, and [15], [29]–[31] need some sample points
or areas, which contain only one active source.

Since the sparsity and independence are two useful prop-
erties of source signals, clearly, it is interesting to com-
bine these two properties to solve the UBSS problem,
which is the motivation of this work. The combination of
the sparsity and independence results in the following two
advantages:

(1) Exploiting the sparsity assumption, we transform the
original underdetermined BSS problem into a series of locally
overdetermined problems by grouping the observed mixture
signals, and make the classical ICA techniques, e.g., the
JADE algorithm [35], can be extended to solve the underde-
termined BSS problem.

(2) The introduction of independence can be used to relax
the sparsity constraint to some extent.

At the same time, it is also notable that no constraint is
imposed on the richness of the source signals, whilst [19]
does. This makes the proposed algorithm be able to perform
two UBSS problems shown in Fig. 1, which will be further
illustrated in the simulation section, while [19] only can deal
with blind separation of four source signals in the left column
of Fig. 1.

The basic idea of the proposed approach is to trans-
form the original UBSS problem into a series of non-
underdetermined problems via grouping all mixture vectors
x(k), k = 1, 2, . . . ,K into multiple different sets, in each
of which only Q(Q < M ) source signals are active. After
this grouping step, what we need to deal with in each set
is a non-underdertermined BSS problem with Q sources
and M (M > Q) mixtures. Thus, the conventional non-
underdetermined blind identification algorithms, such as the
JADE algorithm [35], can be applied to each set to estimate
the steering vectors aθ1 , aθ2 , . . . , aθQ associated with the Q
active sources sθ1 (k), sθ2 (k), . . . , sθQ (k) in that set. Then, the
estimate of the mixing matrix A can be computed by collect-
ing and clustering the steering vectors obtained from all sets.
Once themixingmatrix is estimated, the source signals can be
recovered from their mixtures by exploiting the assumptions
A2) and A4). The above idea is also used by the work of
Karoui et al. in [34], which and the present paper share a
common target, i.e., solving a globally underdetermined but
locally (over)determined BSS problem. Their main differ-
ences lie in two aspects.

Firstly, in the stage of estimating the mixing matrixA, [34]
requires that there exist some single-source zones for each
source, where only the considered source signal is active, and
all other sources are inactive. On the contrary, our method
only require that there are some sample segments for each
source, where at mostM−1 sources including the considered
source are active.

Secondly, during recovering sources after estimating the
mixing matrix, [34] exploits the non-negativity property of
remote sensing images to achieve the recovery of sources,
while our proposed estimations for source signals depend on
a sparsity constraint regarding source signals.

In the following, we shall present the new UBSS approach
in detail, which consists of three main procedures.

A. GROUPING THE MIXTURE VECTORS
We first construct some M × (M − 1) mixture matrices Xp
(p = 1, 2, · · · ), each of which is composed of the samples of
the mixture vector x(k) observed at M − 1 adjacent sample
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points, i.e.,

Xp =
[
x(P0) x(P0 + 1) . . . x(P0 +M − 2)

]
M×(M−1) (2)

where P0 = (p − 1) × (M − 1) + 1. Corresponding to the
mixture matrix Xp, a source matrix Sp is defined as follows:

Sp

=


sθ1 (P0) sθ1 (P0+1) . . . sθ1 (P0+M−2)
sθ2 (P0) sθ2 (P0+1) . . . sθ2 (P0+M−2)
...

...
...

...

sθQ (P0) sθQ (P0+1) . . . sθQ (P0+M−2)


Q×(M−1)

(3)

where sθ1 (k), sθ2 (k), . . . , sθQ (k) are the active sources in the
sample interval [P0,P0 +M − 2], and Q stands for the num-
ber of these active sources.

Clearly, the assumption A5) results in Q < M on some
sample segments. In the following analysis, we will only con-
sider those sample segments satisfying the assumption A5)
for the time being. From (1), we have the following relation:

Xp = ApSp (4)

where

Ap =
[
aθ1 , aθ2 , . . . , aθQ

]
M×Q (5)

is composed of all the steering vectors associated with the
active sources in the time interval [P0,P0 +M − 2]. In (4),
additive noises are not considered for the convenience of
analysis. Regarding the effects of noises, a detailed discussion
will be provided in the next section.

Note that the source matrix Sp has Q rows and M − 1
columns withQ ≤ M−1, and its rows correspond to different
source signals, which are mutually independent according to
the assumption A3). Thus, we have the following lemma.
Lemma 1: The row vectors in the matrix Sp are linearly

independent with the probability one.
On the other hand, due to the assumption A2) and Q < M ,

it is clear that the matrix Ap must be of full column rank, i.e.,

rank
[
Ap
]
= Q. (6)

According to Lemma 1, it holds from (4) and (6) that

rank
[
Xp
]
= rank

[
Ap
]
= Q (7)

and

span
{
Xp
}
= span

{
Ap
}
. (8)

From (7) and (8), we can see that the column vectors in
any given mixture matrix Xp span a Q-dimensional sub-
space (Q < M ). Clearly, the subspace clustering algori-
thms [27], [28] can be used to group these mixture matrices
into different sets such that the mixture matrices in each set
share the same Q-dimensional column space, which means
that only Q source signals are active in these mixtures.
Next, we will provide a simpler scheme to group the mix-

ture matrices into different sets. From (4) and (5), we can
obtain the following theorem.

Theorem 1: Suppose that the sets S̃p and S̃q contain all
the active sources in the mixture matrices Xp and Xq, respec-

tively. Then, it holds that S̃p is a subset of S̃q if and only if

span
{
Xp
}
⊆ span

{
Xq
}
. (9)

Proof: See Appendix A.
Theorem 1 provides a theoretical foundation for grouping

the mixture matrices into different sets such that each set has
the same active sources. The process of obtaining one such
set is as follows. First, for a given mixture matrix Xq, find all
the mixture matrices Xpi (i = 1, 2, . . . , ) satisfying (9). Then,
construct the set Gq by Gq =

{
Xq,Xp1 ,Xp2 , . . .

}
. Based on

Theorem 1 and the assumption A4), it is clear that the number
of active sources in the mixture set Gq must be less than the
number of mixtures, i.e., Q < M . This implies that in the
mixture set Gq, we only need to solve a non-underdermined
blind problem.
It is notable that the above theoretical analysis does not

consider the existence of noises. Next, let us consider how to
derive an effective approach to group the mixture matrices in
noisy environments. From (1), (4) has the following form in
noisy environments:

Xp = ApSp + Np (10)

where

Np =
[
n(P0) n(P0 + 1) . . . n(P0 +M − 2)

]
. (11)

Clearly, due to the existence of noises n(k), all mixture matri-
ces Xp defined in (10) must be of full column rank. Consid-
ering that the dimension of the matrix Xp isM × (M −1), we
can easily see that the orthogonal complement vp of column
spaces of Xp is a one-dimensional subspace. From the above
observations, it is easy to see that if Xp and Xq in (10) have
the same set of active sources, that is, Ap = Aq, then their
orthogonal complements vp and vq will be close to each other
in noisy environment with high or moderate SNRs. The above
conclusion can be summarized as the following Proposition 1,
which provides a theoretical foundation for developing an
effective approach to group the mixture matrices in noise
environment.
Proposition 1: Suppose that the vector vp is the orthogonal

complement of column space of the mixture matrix Xp. It
holds that Xp and Xq have the same set of active sources, if

‖vTp · Xq‖

‖vp‖ · ‖Xq‖F
< ε (12)

where ε is a positive and small threshold.
On the other hand, let us consider those sample segments

violating the assumption A5). Clearly, for the mixture matrix
Xp associated with these sample segments, few other matrices
Xq can satisfy the condition in (12). Based on the above
conclusions, we propose a detailed procedure to group the
mixture matrices, which is shown in Table I. Through this
grouping procedure, we can obtain the sets G1,G2, . . . ,GJ ,
each of which consists of a number of mixture matrices
containing Q(Q < M ) identical active sources.
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TABLE 1. Procedure of grouping mixture matrices.

B. IDENTIFYING THE MIXING MATRIX
Since in each set Gj, the number of active sources is less than
that of mixtures (namely, Q < M ), we only need to solve
a non-underdetermined blind problem. Thus, the existing
non-underdetermined blind identification algorithms, e.g.,
the JADE algorithm [35], can be employed to estimate the
steering vectors associated with all active sources in each set
Gj(j = 1, . . . , J ), respectively. For example, suppose that
sj1 (k), sj2 (k), . . . , sjQ (k) are the active sources in the set Gj,
and their corresponding steering vectors are aj1 , aj2 , . . . , ajQ ,
respectively. Clearly, we can obtain the estimates of these
steering vectors from the mixture matrices contained in the
set Gj by using an existing blind identification algorithm.
In order to avoid the gain ambiguity in estimating the steering
vectors, we normalize all the estimated steering vectors to a
unit sphere, and make their first elements be non-negative.

After estimating the steering vectors associated with all
active sources in each set G1,G2, . . . ,GJ , we can cluster all
these estimated steering vectors into N groups. Then, we
take the centers of these groups as the column vectors of
the estimation Ã for the mixing matrix A. To this point, the
estimation of the mixing matrix A is completed.

C. RECOVERING THE SOURCE SIGNALS
Although the mixingmatrixA has been estimated, recovering
the source signals is not a trivial task in the underdetermined
case as the mixing matrix is not invertible. In order to achieve
source recovery, we need the assumption A4), and proceed
with the definition of a set T as follows.
Definition 1: T is a set composed of all M × (M − 1)

submatrices of the matrix A, i.e.,

T =
{
T (i)

∣∣∣T (i)
=
[
aθ1 , aθ2 , . . . , aθ(M−1)

]}
. (13)

Clearly, T contains CM−1N matrix elements. With respect to
the set T , we have the following conclusion.
Theorem 2: Under the assumption A4), for any given mix-

ture vector x(k), there must exist a matrix element T (∗)
=[

aα1 , aα2 , . . . , aαM−1
]
in the set T , such that[

IM×M − T (∗)pinv
(
T (∗)

)]
· x(k) = 0M×1. (14)

Proof: See Appendix B.
After finding the matrix element T (∗) satisfying (14) from

the set T , let us construct an N -dimensional vector ŝ(k),
which is built bymaking its αith element equal the ith element
of pinv

(
T (∗)

)
x(k) for i = 1, 2, . . . ,M − 1, and its all other

components be zero. Then, based on Theorem 2, we propose
another theorem as follows.
Theorem 3: Under the assumption A4), for any time

instant k , if in the set T , the matrix element T (∗) satisfies
(14), then theN -dimensional vector ŝ(k) is equal to the source
signal vector s(k) with probability one.

Proof: See Appendix C.
Theorem 3 clearly shows that the matrix element T (∗)

satisfying (14) can be used to find the estimate of the original
source signal vector s(k). This paves the way for recovering
s(k) from the observed mixture vector x(k) by exploiting the
estimated mixing matrix A. It should be noted that in a noisy
environment, the element T (∗) satisfying (14) can be found
by the following criterion:

T (∗)
=arg min

T (l)∈T

∥∥∥[IM×M−T (l)pinv
(
T (l)

)]
x(k)

∥∥∥2. (15)

In summary, our proposed UBSS algorithm is formulated
as follows:
• Step 1. Construct a series of mixture matrices
Xp (p = 1, 2, · · · ) by

Xp = [x(P0), x(P0 + 1), . . . , x(P0 +M − 2)]M×(M−1)

where P0 = (p− 1)× (M − 1)+ 1.
• Step 2. Use the procedure provided in Table I to group
all mixture matricesXp (p = 1, 2, · · · ) into different sets
G1,G2, . . . ,GJ .

• Step 3. In each set Gj(j = 1, . . . , J ), use a blind iden-
tification approach, e.g., the JADE algorithm [35], to
estimate the steering vectors associated with the active
sources in Gj.

• Step 4. Normalize all of the estimated steering vectors
and ensure that the first element of each normalized
steering vector is nonnegative.

• Step 5. Cluster the normalized steering vectors obtained
in all sets Gj(j = 1, . . . , J ) into N groups. Then, take
the centers of these groups as the column vectors of the
estimation Ã for the mixing matrix A.

• Step 6. Utilize the estimate of the mixing matrix A to
construct the set T according to Definition 1.

• Step 7. For each mixture vector x(k) ( k = 1, 2, . . . ,K ),
find the matrix element T (∗) satisfying (15) from the
set T .

21736 VOLUME 5, 2017



P. Chen et al.: Underdetermined Blind Separation by Combining Sparsity and Independence of Sources

• Step 8. Suppose that T (∗) contains the αith column of
the matrix A, i = 1, 2, . . . ,M − 1, and the (M − 1)-
dimensional vector r(k) = [r1, r2, . . . , rM−1]T =

pinv
(
T (∗)

)
x(k). Then the source signal vector can be

estimated as ŝ(k) =
[
ŝ1, ŝ2, . . . , ŝN

]T , in which ŝαi =
ri(for any i = 1, 2, . . . ,M − 1) and ŝi = 0(for any i /∈
{α1, α2, . . . , αM−1}).

Discussions about the problem of permutation and gain
ambiguities: It is well-known that the solution for the
BSS problem suffers from permutation and gain ambigui-
ties. Next, we will explain in detail that the effectiveness
of our proposed algorithm is not affected by the above
problems.

As shown in Step 2, our proposed algorithm group firstly
sample points. After then, Step 3 uses the JADE algorithm to
estimate the mixture matrix in each set. Clearly, each column
vector in these estimated matrices is identical to some column
vector in the true mixture matrix A with different gains.
In order to remove the ambiguity with these different scale
gains and negative gains, we normalize all of these estimated
column vectors from all sets to the unit sphere, and make the
first element of these vectors be nonnegative, as shown in
Step 4. Next, Step 5 clusters these column vectors to obtain an
estimation Ã for the truemixture matrixA. Finally, exploiting
this estimated mixture matrix Ã and the assumption A4), we
can recover source signals in each sample point, as shown in
Step A6, Step A7 and Step A8.

In summary, in each set, we only estimate some column
vectors of the mixture matrix, and source recovery is not
considered for the time being. After normalizing all these
estimated column vectors, we cluster these vectors to obtain
the estimation Ã for the true mixture matrix A. Finally,
source signals are recovered by using the estimated mixture
matrix Ã. From the above analysis, it is easy to find that the
permutation and gain ambiguities cannot affect the effective-
ness of the proposed algorithm.

IV. SIMULATIONS
In this section, we will use some simulation exam-
ples to illustrate the effectiveness of the proposed algo-
rithm. In all examples, the JADE algorithm [35] will
be used to solve locally non-underdetermined problem in
each set.
Example 1: In the first simulation, we will consider to use

our proposed algorithm to achieve blind identification of a
underdetermined mixture system with M = 3 outputs and
N = 4 inputs. In this system, the 3 × 4 mixing matrix is
given by:

A=

 6.1560 −5.3550 6.2050 4.9960
5.7850 7.0110 5.5270 −6.1030
6.0020 6.2240 −6.1770 5.6450

, (16)

and 4 source signals are taken from four speech segments,
whose waveforms are shown in Fig. 2. The parameter ε in
Table I is taken as ε = 0.12. By using from Step 1 to Step 5
in our proposed algorithm, we can obtain the estimation Ã for

FIGURE 2. Speech source signals.

the mixing matrixA. After removing the order indeterminacy
and normalizing each column in Ã and A, we compute ÃTA
to obtain the following results:

ÃTA =


0.9913 0.4608 0.1809 0.3485
0.3638 0.9692 −0.0945 −0.5327
0.1383 −0.4207 0.9835 −0.4004
0.2734 −0.1832 −0.5262 0.9824

.
(17)

It is easy to see that all diagonal elements in the matrix ÃTA
is very closed to 1, which means that the i-th(i = 1, 2, 3, 4)
column in Ã is a good estimation for the corresponding
column in A.
Next, let us consider another set of four source signals, each

of which consist of 1200 samples, The waveforms of these
four random-generated source signals are illustrated in Fig. 3.
We can achieve the task of blind channel identification by
using from Step 1 to Step 5 in our proposed algorithm, and
obtain the following estimation for the mixture matrix after
removing the indeterminacy of order and scale:

Ã =

 5.1149 −6.0321 6.1838 5.3403
6.5224 6.2444 5.9155 −5.7987
6.0867 6.3349 −5.8037 5.6318

. (18)

In this simulation test, the threshold ε is taken as 0.01.
We use the index θ (a,b) to evaluate the distance between two
vectors a and b, which is given by

θ (a,b) = 1−

∣∣aTb∣∣
‖a‖ · ‖b‖

. (19)

Clearly, the smaller the index θ (a,b) is, the closer the vector
a lies to b. With regard to column vectors in the mixing
matrix A in (16) and the estimated matrix Ã in (18), we have
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FIGURE 3. Randomly generated source signals.

the following results for the performance index θ (a,b):

θ (A(:, 1), Ã(:, 1)) = 0.0076, (20)

θ (A(:, 2), Ã(:, 2)) = 0.0046, (21)

θ (A(:, 3), Ã(:, 3)) = 0.0014, (22)

θ (A(:, 4), Ã(:, 4)) = 0.0011. (23)

The above simulation results show that our proposed algo-
rithm can obtain satisfactory channel identification perfor-
mance for randomly-generated source signals.

In order to evaluate further the performance of channel
identification of the proposed algorithm, we compare this
algorithm with FOBIUM algorithm and TIFROM algorithm.
FOBIUM algorithm is a non-sparsity UBSS algorithm based
on fourth-order cumulant [5], [36], and TIFROM algorithm is
a classical time-frequency representations-based UBSS algo-
rithm [31]. In this example, we use the following performance
index

error =
1
N
·

N∑
i=1

θ (A(:, i), Ã(:, i)) (24)

whereN denotes the number of columns in themixingmatrix.
Fig. 4. shows the above performance indexes of these three
algorithms over different noise levels, which are evaluated
by 100 Monte Carlo runs. From the simulation results shown
in Fig. 4., it is seen that our proposed algorithm can achieve
satisfactory performance for channel identification.
Example 2: Let us consider a UBSS problem with M = 3

mixtures, and N = 4 source signals t1(k), t2(k), t3(k), t4(k)
whose waveforms are shown in the right column in Fig. 1.
As discussed in Section II, since these four source signals
do not satisfy the assumption A1) and the assumption pre-
sented in [16]–[18] that only one source is active at each
time instant, UBSS cannot be achieved by the methods

FIGURE 4. Performance comparison among the proposed algorithm,
FOBIUM Algorithm and TIFROM Algorithm.

FIGURE 5. Simulation result in separating the four source signals shown
in the right column of Fig. 1 from their three mixtures. First row: source
signals. Second row: mixture signals. Third row: recovered source signals.

in [16]–[18] and [19]. In contrast, the proposed UBSS algo-
rithm can separate the source signals t1(k), t2(k), t3(k), t4(k)
from their underdetermined mixtures as it does not rely on
the assumption A1) and the restrictive sparsity constraint
required by [16]–[18]. Fig. 5 illustrates the separation result
by our algorithm, where the source signals, the observed
mixture signals and the recovered source signals are shown
in the first, second and third rows, respectively.

Next, in order to further illustrate the effectiveness of the
proposed UBSS algorithm, we consider another UBSS task
with four source signals shown in the first row of Fig. 6.
The randomly-generated mixing matrix is of dimension 3×4
and three observed mixing signal are shown in the second
row of Fig. 6. The proposed UBSS algorithm is used to
separate these four source signals from their three mixtures.
The recovered source signals are displayed in the third row
of Fig. 6. From the above two simulation results, we can see
that the proposed algorithm has achieved satisfactory UBSS
performance.
Example 3: In this example, Monte Carlo runs are used to

evaluate the performance of the proposed algorithm versus
signal to noise ratio (SNR). The mean squared error (MSE)
is utilized as the performance index, which is defined as
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FIGURE 6. Simulation result in separating randomly-generated source
signals. First row: source signals. Second row: mixture signals.
Third row: recovered source signals.

FIGURE 7. Performance comparison under different source signals.

follows [10]:

MSE(dB) = 10log10

(
minδ

∑K
k=1

∣∣δŝ(k)− s(k)∣∣2∑K
k=1 |s(k)|

2

)
(25)

where ŝ(k) is the estimate of the source signal s(k), δ is a scalar
reflecting the scalar ambiguity, and K denotes the number
of samples. In this example, additive noise signals with the
normal distribution are considered. The parameter ε in Table
I is taken as ε = 0.2. Fig. 7. shows the performance of the
proposed algorithm evaluated over 100 Monte Carlo runs in
the following three scenarios:

Case 1: The source signals are s1(k), s2(k), s3(k), s4(k)
shown in the left column of Fig. 1.

Case 2: The source signals are t1(k), t2(k), t3(k), t4(k)
shown in the right column of Fig. 1.

Case 3: The source signals are the four randomly generated
signals shown in the first row of Fig 6.

It can be seen from Fig. 7 that as expected, MSE decreases
with the increase of SNR in all three cases. The proposed
algorithm achieves satisfactory separation performance.

Next, we compare the performance of the proposed algo-
rithm with that of the UBSS algorithm in [19]. For this
purpose, we use s1(k), s2(k), s3(k), s4(k) shown in the left

FIGURE 8. Performance comparison between the proposed algorithm and
the algorithm in [19].

column of Fig. 1 as source signals since they satisfy the
assumptions about source signals required by the two algo-
rithms. Fig. 8 shows the performances of the two algorithms
under different SNRs. We can see that under lower SNRs,
our algorithm outperforms the one in [19] with large margins.
This is because the proposed algorithm exploits both the
statistical property and the sparsity of the source signals,
whilst the algorithm in [19] only uses the sparsity property to
estimate the mixing matrix and the source signals. With the
rise of SNR, the performance gap between the two algorithms
reduces gradually.

Example 4: In this example, we will consider a more
real application environment, where some microphones are
placed on different positions to receive the mixed audio sig-
nals. In the simulation, a number of computers are used to
play different sound files at the same time for 90 seconds.
Our proposed algorithm is used to separate these source audio
signals from the mixture signals received by microphones,
and the performance of source recovery is evaluated by using
MSE(dB) defined in (25). The above simulation test is exe-
cuted four times in different scenarios:

Scenario 1: 3 microphones and 5 source signals;
Scenario 2: 3 microphones and 6 source signals;
Scenario 3: 2 microphones and 3 source signals;
Scenario 4: 2 microphones and 4 source signals.

TABLE 2. Performance comparisons of the proposed UBSS algorithm
under different scenarios.

Performance of the proposed algorithm with different
scenarios is shown in Table II. It is easy to see that the
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proposed algorithm can achieve satisfactory performance
under different scenarios, which has a close relationship with
the difference between the number of source signals and that
of mixture signals.

V. CONCLUSION
This paper addresses the problem of underdetermined blind
separation of N sources from theirM instantaneous mixtures
(N > M ). By combining both sparsity and independence of
source signals, the proposed UBSS approach transforms the
original underdetermined problem into a series of overdeter-
mined BSS problems. This object is achieved by grouping all
the observed mixture vectors into a number of different sets
such that each set only contains Q(Q < M ) active sources.
In each set, we only need to solve an overdetermined blind
source separation problem with M outputs and Q(Q < M )
mutually independent inputs, which can be easily tackled by
some ICA techniques.

By exploiting the statistical independence of sources, this
work relaxes the sparsity restriction about sources to some
extent. At the same time, our UBSS approach does not impose
any richness constraint on sources, which is required by [19].
The effectiveness of the new approach is illustrated by theo-
retical analysis and simulation results.

APPENDIX A
PROOF OF THEOREM 1
Proof of Necessity: From (4) and (5), it is easy to find that

the necessity must hold.
Proof of Sufficiency: Assume that the sufficiency does not

hold, i.e., when span
{
Xp
}
⊆ span

{
Xq
}
, S̃p is not a subset

of S̃q. This means that there exists at least one source signal
s∗(k) satisfying s∗(k) ∈ S̃p and s∗(k) /∈ S̃q. Thus, the steering
vector a∗ associated with s∗(k) is not a column vector in the
matrix Aq but a column vector in the matrix Ap, where Ap
and Aq consist of all the steering vectors associated with the
active sources in the sets S̃p and S̃q, respectively. From (8),
we obtain

span
{
Xp
}
=span

{
Ap
}

and span
{
Xq
}
=span

{
Aq
}
. (26)

Considering that a∗ is a column vector in the matrix Ap,
it follows from (26) that

a∗∈span
{
Ap
}
=span

{
Xp
}
⊆span

{
Xq
}
=span

{
Aq
}
. (27)

Since a∗ is not a column vector in the matrix Aq, a∗ ∈
span

{
Aq
}
in (27) means that a∗ and all the Q column vectors

in Aq are linearly dependent. Due Q ≤ M − 1, clearly, the
above conclusion contradicts with the assumption A2). This
completes the proof.

APPENDIX B
PROOF OF THEOREM 2
According to the assumption A4), at any given sample
point k , the number of active sources must be less than the
number of mixtures, i.e., Q < M . This means that the source
signal vector s(k) contains at most M − 1 nonzero elements.

From the definition of the set T , it is easy to see that there
exists a matrix element T (∗) in T satisfying

As(k) ∈ span
{
T (∗)

}
(28)

or equivalently,

As(k) = T (∗)s′ (29)

where s′ is an (M − 1)-dimensional column vector.
From (1) and (29), it follows[

IM×M − T (∗)pinv
(
T (∗)

)]
x(k)

= x(k)− T (∗)pinv
(
T (∗)

)
As(k)

= x(k)− T (∗)pinv
(
T (∗)

)
T (∗)s′

= As(k)− T (∗)s′

= 0M×1. (30)

This completes the proof.

APPENDIX C
PROOF OF THEOREM 3
Given any sample point k , suppose that r(k) is an
(M − 1)-dimensional column vector given by

r(k) = pinv
(
T (∗)

)
x(k) = [r1, r2, . . . , rM−1]T . (31)

Then, the vector ŝ(k) can be expressed as

ŝ(k) =
[
ŝ1, . . . , ŝα1 , . . . , ŝα2 , . . . , ŝαM−1 , . . . , ŝN

]T
= [0, . . . , r1, . . . , r2, . . . , rM−1, . . . , 0] . (32)

From the assumption A4), at any given sample point k , the
number of active sources must be less than the number of
mixtures, i.e.,Q < M . This means that the number of nonzero
elements in the vector s(k) is less than M . Thus, we have
from (1) and Definition 1 that there must exist a matrix
element T (l) in the set T such that

x(k) = As(k) ∈ span
{
T (l)

}
, 1 ≤ l ≤ CM−1N . (33)

Clearly, all the mixture vectors x(k) = As(k), k = 1,
2, . . . ,K must be contained in the set X defined below:

X =
CM−1N⋃
l=1

span
{
T (l)

}
.

LetX0 be the union of all the intersections of any two different
subspaces span

{
T (i)

}
and span

{
T (j)

}
, i.e.,

X0 =

CM−1N⋃
i,j=1(i 6=j)

[
span

{
T (i)

}⋂
span

{
T (j)

} ]
. (34)

It is clear that X0 has a measure zero in X , which means that
any mixture vector x(k) is in the set X0 with probability zero.
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Moreover, according to Theorem 2, one can find a matrix
element T (∗) satisfying (14) in the set T . Then, from (31),
we have

x(k) = T (∗)pinv
(
T (∗)

)
x(k)

= T (∗)r(k). (35)

It holds from (32) and (35) that

Aŝ(k) =
[
aα1 , aα2 , . . . , aαM−1

]
· r(k)

= T (∗)r(k)

= x(k). (36)

Furthermore, from (33), there must exist an (M − 1)-
dimensional vector s̄(k) such that

x(k) = As(k) = T (l)s̄(k). (37)

Based on (36) and (37), we obtain

A
[
s(k)− ŝ(k)

]
= 0. (38)

According to the number of nonzero elements in the vector
s(k) − ŝ(k), denoted by L, the following three cases are
considered.
Case 1: M < L ≤ N
By combining (36) and (37), we have{

x(k) = Aŝ(k) = T (∗)r(k)
x(k) = As(k) = T (l)s̄(k).

(39)

If T (∗)
= T (l) in (39), then the indices of all nonzero

elements in the vectors s(k) and ŝ(k) are included in
the set {α1, α2, . . . , αM−1} due to T (∗)

= T (l)
=[

aα1 , aα2 , . . . , aαM−1
]
. Thus, the number of nonzero elements

in the vector s(k)− ŝ(k) cannot exceedM−1, i.e., L ≤ M−1,
which contradicts with M < L ≤ N . On the other hand, if
T (∗)
6= T (l) in (39), then the vector x(k) is included in the

set X0 given in (34). Since X0 has a measure zero in X , this
event happens with probability zero.
Case 2: 1 ≤ L ≤ M
In this case, the vector s(k) − ŝ(k) contains L nonzero

elements. From (38), it follows that there exist L lin-
early dependent column vectors in the matrix A. Since
1 ≤ L ≤ M , this conclusion obviously contradicts with the
assumption A2).
Case 3: L = 0
If L = 0, it means that s(k) − ŝ(k) is a zero vector,

i.e., s(k) = ŝ(k).
Based on the analysis outcomes from the above three cases,

we can conclude that ŝ(k) must be equal to the source signal
vector s(k) with probability one. This completes the proof.
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