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ABSTRACT This paper focuses on the problem of vision-based obstacle detection and tracking for
unmanned aerial vehicle navigation. A real-time object localization and tracking strategy from monocular
image sequences is developed by effectively integrating the object detection and tracking into a dynamic
Kalman model. At the detection stage, the object of interest is automatically detected and localized from
a saliency map computed via the image background connectivity cue at each frame; at the tracking stage,
a Kalman filter is employed to provide a coarse prediction of the object state, which is further refined via a
local detector incorporating the saliency map and the temporal information between two consecutive frames.
Compared with existing methods, the proposed approach does not require any manual initialization for
tracking, runs much faster than the state-of-the-art trackers of its kind, and achieves competitive tracking
performance on a large number of image sequences. Extensive experiments demonstrate the effectiveness
and superior performance of the proposed approach.

INDEX TERMS Salient object detection, visual tracking, Kalman filter, object localization, real-time

tracking.

I. INTRODUCTION

In the last two decades, we have seen rapid growth in the
applications of unmanned aerial vehicles (UAVs). In military,
UAVs have been demonstrated to be an effective mobile plat-
form in future combat scenarios. In civil applications, numer-
ous UAV platforms have mushroomed and been applied to
surveillance, disaster monitoring and rescuing [10], package
delivering [1], and aerial photography [22]. A number of
companies are developing their own UAV systems, such as
Amazon Prime Air [1], Google’s Project Wing [12], and
DHL’s Parcelcopter [9]. In order to increase the flight safety,
the UAV must be able to adequately sense and avoid other
aircrafts or intruders during its flight.

The ability of sense-and-avoid (SAA) enables UAVs to
detect the potential collision threat and make necessary avoid-
ance maneuvers. This technique has attracted lots of attention
inrecent years. Among all available approaches, vision-based
SAA system [22], [25] is becoming more and more attractive

since cameras are light-weighted and low-cost, and most
importantly, they can provide richer information than other
sensors. A successful SAA system should have the capability
to automatically detect and track the obstacles. The study of
these problems, as a central theme in computer vision, has
been active for the past decades and achieved great progress.

Salient object detection in computer vision is interpreted
as a process of computing a saliency map in a scene
that highlights the visual distinct regions and suppresses
the background. Most salient object detection methods rely
on the assumption about the properties of objects and
background. The most widely used assumption is contrast
prior [6], [15], [16], which assumes that the appearance
contrasts between the objects and backgrounds are very
high. Several recent approaches exploit image background
connectivity prior [44], [48], which assumes that back-
ground regions are usually connected to the image boundary.
However, those methods lack of the capability to utilize the
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contextual information between consecutive frames in the
image sequence.

On the other hand, given the position of the object of
interest at the first frame, the goal of visual tracking is to esti-
mate the trajectory of the object in every frame of an image
sequence. The tracking-by-detection methods have become
increasingly popular for real-time applications [3], [42], [46]
in visual tracking. The correlation filter-based trackers have
attracted more attention in recent years due to their high
speed performance [5]. However, those classical tracking
methods [7], [8], [13], [20], [31], [33], [34], [45]-[47] require
manual initialization with the ground truth at the first frame.
Moreover, they are sensitive to the initialization variation
caused by scales and position errors, and would return useless
information once failed during tracking [39].

Combining a detector with a tracker is a feasible solution
for automatic initialization [2]. The detector, however, needs
to be trained with large amount of training samples, while
the prior information about the object of interest is usually
not available in advance. Mahadevan and Vasconcelos [24]
proposed a saliency-based discriminative tracker with auto-
matic initialization, which builds the motion saliency map
using optical flow. This technique, however, is computational
intensive and not suitable for real-time applications. Some
recent techniques on salient object detection and visual track-
ing [14], [23], [27], [35] have achieved superior performance
by using deep learning. However, these methods need large
amount of samples for training.

Zhang et al. [44] proposed a fast salient object detection
method based on minimum barrier distance transform. Since
the saliency map effectively discovers the spatial information
of the distinct objects in a scene, it enables us to improve the
localization accuracy of the salient objects during tracking.
In this paper, we propose a scale and rotation adaptive object
tracking framework by integrating two complementary pro-
cesses: salient object detection and visual tracking. A Kalman
filter is employed to predict a coarse location of the object of
interest. Then, a detector is employed to refine the location
of the object. The optimal state of the object in each frame
is estimated relying on the recursive process of prediction,
refining, and correction.

The proposed approach has been compared with the state-
of-the-art detector and trackers on a number of sequences
with challenging situations, including scale variation, rota-
tion, illumination change, and out-of-view and re-apperance.
As an example shown in Fig. 1, for object detection, the single
view saliency detection algorithm (MB+) [44] is not able to
provide high quality saliency maps for the image sequence
because it does not manage to use the contextual information
between consecutive frames; and from the tracking perspec-
tive, the existing trackers are not capable of handling out-
of-view and re-appearance challenges. Our method provides
high quality of saliency map in detection, and accurate scale
and position of the target in tracking.

In summary, our contributions are threefold: 1) The pro-
posed algorithm integrates a saliency map into a dynamic
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FIGURE 1. A comparison of the proposed approach with the
state-of-the-art detector MB+ [44], and trackers CT [46], STC [45], CN [8],
SAMF [20], DSST [7], CCT [47], KCF [13] on a e [1] with challenging
situations, including scale variation, out-of-view and re-appearance.

model and adopts the target-specific saliency map as the
observation for tracking; 2) we develop a tracker with auto-
matic initialization for a UAV sensing system; and 3) the
proposed technique achieves much better performance than
the state-of-the-art trackers from extensive experimental
evaluations.

The remaining parts of this paper are organized as fol-
lows: some related work is briefly reviewed in section II;
in section III, the proposed approach is discussed thoroughly;
in section [V, we demonstrate the quantitative and qualitative
evaluation results, and some limitations; the paper is con-
cluded in section V.

Il. RELATED WORKS

Salient object detection and visual tracking plays important
roles in many computer vision based applications, such as
traffic monitoring, surveillance, video understanding, face
recognition, and human-computer interaction [40].

The task of salient object detection is to compute a saliency
map and segment an accurate boundary of that object. For
natural images, the assumptions on background and object
have been shown to be effective for salient object detec-
tion [6], [48]. One of the most widely used assumptions is
called contrast prior, which assumes high appearance dif-
ference between the object and background. Region-based
salient object detection has become increasingly popular with
the development of the superpixel algorithm [4]. In addi-
tion to contrast prior and region-based methods, several
recent approaches exploit boundary connectivity [44], [48].
Wei et al. [36] proposed a geodesic saliency detection method
based on contrast, image boundary, and background priors.
The salient object is extracted by finding the shortest path
to the virtual background node. Zhu et al. [48] formulated
the saliency detection as an optimization problem and solved
it by a combination of superpixel and background measure-
ment. Cheng et al. [6] computed the global contrast using the
histogram and color statistics of input images. These state-
of-the-art saliency detection methods achieve pixel-level
resolution. Readers may refer to [4] for a comprehensive
review on salient object detection.
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The goal of visual tracking is to estimate the boundary
and trajectory of the object in every frame of an image
sequence. Designing an efficient and robust tracker is a
critical issue in visual tracking, especially in challenging
situations, such as illumination variation, in-plane rotation,
out-of-plane rotation, scale variation, occlusion, background
clutter and so on [39]. Over the past decades, various tracking
algorithms have been proposed to cope with the challenges
in visual tracking. According to the models adopted, these
approaches can be generally classified into generative mod-
els [28], [32], [41], [43], and discriminative models [17],
[24], [46]. Ross et al. [28] exploited an incremental subspace
learning to visual tracking, which assumes that the obtained
temporal targets reside in a low-dimensional subspace.
Sui et al. [32] proposed a sparsity-induced subspace learning
which selects effective features to construct the target sub-
space. Yin et al. [41] proposed a hierarchical tracking method
based on the subspace representation and Kalman filter.
Yu et al. [43] introduced a large-scale fiber tracking approach
based on Kalman filter and group-wise thin-plate spline point
matching.

The discriminative tracking-by-detection approaches have
become increasingly popular in recent years. Zhang et al. [46]
proposed a real-time tracker based on compressive sensing.
Mahadevan and Vasconcelos [24] proposed a saliency-based
discriminative tracker, which learns the salient features based
on Bayesian framework. Kalal ez al. [17] introduced detection
module to its long-term tracker which enables re-initialization
in case of tracking failures.

In particular, the correlation filter-based discrimina-
tive tracking methods have attracted much attention and
achieved significant progress [5]. Henriques et al. [13] pro-
posed a tracker using kernelized correlation filters (KCF).
Zhu et al. [47] extended the KCF to a multi-scale ker-
nelized tracker in order to deal with the scale variation.
Zhang et al. [45] proposed a tracker via dense spatio-
temporal context learning. Danelljan et al. [7] introduced a
discriminative tracker using a scale pyramid representation.
Li and Zhu [20] proposed to tackle the scale variation by
integrating different low-level features. Danelljan et al. [8]
designed a tracker by adaptive extension of color attributes.
Readers can refer to [29] and [40] and the references therein
for details about visual tracking.

llIl. THE PROPOSED APPROACH

The proposed fast object localization and tracking (FOLT)
algorithm is formulated within a robust Kalman filter frame-
work [38], [41] to estimate the optimal state of the salient
object from the saliency map in every frame of a given image
sequence. Our tracking approach relies on a recursive pro-
cess of prediction, object detection, and correction, as shown
in Fig. 2. A linear dynamic (with constant velocity) model
has been employed to represent the transition of the motion
state of the salient object in a scene [38]. The tracker is
initialized on the first frame using the saliency map computed
from the entire image. The motion state is predicted on each
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FIGURE 2. The flow-chart of the proposed fast object localization and
tracking strategy.

frame according to the motion states of previously obtained
object of interest. Under the constraint of natural scenes,
the prediction is not far away from the ground truth [41], how-
ever, it only provides a coarse state estimation (‘‘predicted
bounding box” shown in Fig. 2) about the target location.
We take this predicted coarse location as an initial region
for further estimation during tracking. The refined target is
marked by a bounding box on that frame according to its
motion state. Finally, the Kalman gain and a posteriori error
covariance in the dynamic model are updated. The details
about prediction, object localization and correction scheme
are discussed in the following.

A. DYNAMIC MODEL FORMULATION

In the dynamic model, the object of interest is defined by
a motion state variable s = {x,y, u, v, w, h}, where (x,y)
denotes the center coordinates, (u#, v) denotes its velocities,
and (w, h) denotes its width and height. The state at each
frame ¢ + 1 is estimated using a linear stochastic difference
equation s(f + 1) = Hs(t) + u(t) + o(t), where the prediction
noise o(t) ~ N(0, Q) is Gaussian distributed with covariance
Q and u(r) € R' is a driving function with dimension /. The
vector s € R" describes the motion states of the salient object.
The orthogonal transition matrix H € n x n evolves the state
from the previous frame ¢ to the state at the current frame
t 4+ 1. The vector y(t) € R™ is denoted as an observation or
measurement with dimension m measured in frame 7. In our
notation, we will define s; = s(¢), and y; = y(¢t). With the
driving function removed from our model, the autoregressive
model of the salient object in a frame is built based on the
following linear stochastic model

St+1 = Hsl +ol‘701‘ NN(Ov Q)v (1)
yi = Cs¢ +vi, v ~ N(O, R), 2

where the measurement matrix C is m X m, and the mea-
surement noise v, ~ N(0, R) is Gaussian distributed with
covariance R. The diagonal elements in the prediction noise
covariance matrix Q and measurement noise matrix R repre-
sent the covariance of the size and position.

In the ¢-th frame, given the probability of y; and all the
previously obtained states from the first to (¢ — 1)-th frame,
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denoted as s1.;—1, the optimal motion state of the target in
the 7-th frame, denoted as s;, is predicted by maximizing the
posterior probability p(s¢|y;, s1:+—1). To simplify our model,
we inherit the Markov assumption, which states that the cur-
rent state is only dependent on the previous state. Therefore,
the objective function becomes

5 = arg m;lx p(selye, s:—1)- 3)

Using Bayes formula, the posterior probability becomes:

D(silyes $1-1) = PYelse, St—l)P(St|St—1)’ @)
pOr)
where the denominator p(y,;) is a normalization constant,
which indicates the prior distribution of the observation y;.
The observation y; is not dependent on the previous state s;_1
in the presence of s;, since y; is only generated by the state s;.
Thus equation (4) is reduced to:

P(stlye, si—1) = pOels)p(selsi—1), (5)

where the observation model p(y;|s;) measures the likelihood
to be the target of the measurement y; with the motion state s;.
Finally, we formulate the objective function as

§1 = argmax p(yrls)p(stlsi—1). (6)

The state estimation can be converted to the standard Kalman
filter framework [37] when we assumed that the state tran-
sition model and the observation model follow a Gaussian
distribution.

B. OBJECT TRACKING

The step of object tracking consists of two procedures: to
implement object localization in the search region; and to
infer the target state after conducting the post-processing on
the saliency map.

1) OBJECT LOCALIZATION

A background prior, i.e., the image boundary connectivity
cue [44], is applied to locate the object in each frame.
However, the proposed localization method has two obvious
differences. First, by integrating with the contextual infor-
mation, the proposed approach is capable to localize the
salient object in both individual images and video sequences.
Second, to leverage this cue, the saliency map, which rep-
resents the probability of a certain region in an image to
be a salient object or background, is updated locally based
on the coarse prediction (‘“‘predicted bounding box’* shown
in Fig. 3).

In this paper, we will denote I, as the image on the
t-th frame. Firstly, at the frame ¢, under the constrain of being
anatural image [38], it is reasonable to define a search region,
where the salient object is guaranteed to exist, by expanding
the predicted bounding box with certain percentage §. Next,
the saliency map D in the search region is updated by comput-
ing the minimum barrier distance [30], [44] with respect to a
set of background seed set pixels B (see illustration in Fig. 3).
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(@) (b)

FIGURE 3. lllustration of updating the search region on a 4-adjacent
graph using (a) Raster scanning, to update the intensity value at pixel z
(red box) using its two adjacent neighbors (green boxes) in search region
from “Start” to “End” line by line, (b) Inverse-raster scanning, using the
same updating strategy in opposite direction from “End” to “Start".

While the values for the pixels that are not in the search region
are kept the same. Through those two steps, the position and
scaling of the object is estimated on the frame .

It is assumed under the image background connectivity
cue that background regions are normally connected to the
background seed set B. In this paper, a path p from pixel 1
to pixel n consists of a sequence of pixels, and is denoted as
p = (p(1), p(2), - - - , p(n)). In this sequence, each of the two
consecutive pixels are neighbors. Each pixel in a 2-D single-
channel image I; is denoted as a vertex. The neighboring
pixels are connected by edges. In this work, we consider
4-adjacent neighbors as demonstrated in Fig. 3. For the
image I;, the cost function of computing the distance of a path
from pixel z to the background seed set B is defined as finding
the difference between the maximum and minimum intensity
values in this path. The formula of the cost function is

n
F(p) = IJIIEIIX Ii(p()) — Ijgifllz(p(i)), N
where I;(-) denotes the intensity value of a pixel in frame ¢.
The saliency map D(z) is obtained by minimizing the cost
function F(p),

D(z) = min F(p), (8)

PE®B,;

where p € Op, denotes the set, which includes all the
possible paths from pixel z to the background seed set B. This
formulates the computation of the saliency map as a problem
of finding the shortest path for each pixel in the image I;.
It can be solved by scanning each pixel using the Dijkstra-
like algorithm. We denote (m, z) as the edge between two
connecting pixels m and z, and p(m) as the path assigned to
pixel m, and p,,(z) as the path connected pixel m and pixel z
with edge (m, z). Therefore, the cost function of p,,(z) is
evaluated using

F(pm(2)) = max(Uy(m), I;(z)) — min(L;(m), I;(2)),  (9)

where U;(m) and L;(m) are matrices with the highest and
lowest pixel values for the path p(m), respectively. The initial
values of U and L are identical with the image /. In the
initial saliency map D, the region corresponding to the image
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boundary seed set B is initialized with intensity of zeros,
and the left pixels are initialized with intensity of infinity.
The raster scanning pass and inverse-raster scanning pass
are implemented alternately to update the saliency map D,
as shown in Fig. 3. The number of passes is denoted as N,
and in this paper we select N = 3 based on experimental
results. In the raster scanning pass, each pixel in the search
region is visited line by line. The intensity value at pixel z is
updated using its two neighbors (as illustrated in Fig. 3). The
inverse-raster scanning applies the same updating but in an
opposite order. The updating strategy of saliency map D(z) is

D(z) < min 1 2@ (10)

2) POST-PROCESSING

Two efficient post-processing operations have been imple-
mented to improve the quality of the saliency map, and to
further segment the salient object in every frame. A Threshold
is applied to the saliency map, which transforms the saliency
map to a binary image. Then, the tracking bounding box is
extracted after dilation (see Fig. 2). Global threshold is not
an efficient solution in the scenario where image has non-
uniform illumination and lighting conditions. Hence, it is
wise to employ adaptive threshold [11]. We denote my;, as
the mean value of the set of pixels contained in a neighboring
block, I'yp, centered at coordinates (a, b) in an image. The
size of the block I'yp, is o x «. The following formula defines
the local thresholds

Top = map — A, (1n)

where A is a nonnegative offset. The segmented image is
computed as

1, ifgla,b)>Ty

fla.b)= 0, otherwise, (12)
where g(a, b) is the input saliency map image. Equation (12)
is evaluated for all pixels in the image, and a threshold is
calculated at each position (a, b) using the pixels in the neigh-
boring block of I'yp,. The idea of dilation is applied to enhance
the quality of the thresholded image f (a, b). The dilation of A
by S, denoted by A @ S, is defined as

A®S = {ql(§),NA # 2}, (13)

where § € RPM is a structuring element. After dilation,
the minimum bounding box of the extracted region gives
the state estimation §; of the target. Fig. 4 shows examples
on two sequences (motorcycle_011 and airplane_016). The
tracking bounding box is estimated by passing the original
image through the processes of salient object detection and
post-processing.

C. FAST OBJECT LOCALIZATION TRACKING
In this section, we denote G; and G; as a priori error covari-
ance and a posteriori error covariance, respectively. In the
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FIGURE 4. lllustration of the intermediate processes, including salient
object detection, localization and post-processing in the proposed
tracking approach. The two image sequences are motorcycle_011
(frist row) [19] and airplane_016 (second row) [19]. (a) Original image.
(b) Saliency map. (c) Post-processed image. (d) Tracking result.

Algorithm 1 Fast Object Localization Tracking

Input: image /;, saliency map D, number of pass N
Output: target state §;

1 Set D to oo in search region and B

2 Keep the values in D outside the search region

3 for each frame do

4 Prediction in Kalman filter
5 Object tracking:
6 fori=1:Ndo
7 if mod(i, 2) = 1 then
8 | Raster Scanning using (10)
9 end
10 else
11 ‘ Inverse-Raster Scanning using (10)
12 end
13 end
14 Observation: update measurement using (2)
15 Correction: update (14), (16)
16 end

17 Compute the entire D every 10 frames

correction stage of frame ¢, both of the posterior error covari-
ance and Kalman gain are updated as follows.

1) Compute Kalman gain

HT
Y7 GG TR "
2) Update estimate with measurement y;
5 =8 + K@ —Csp) (15)
3) Compute a posteriori error covariance
G =T - K:H)G, (16)

In summary, through the recursive prediction, object local-
ization, and correction, the salient object in a image sequence
is automatically detected and tracked. The details of the
fast object localization tracking is illustrated in Alg. 1.
The saliency map D is updated on the entire image every
10 frames as a trade-off between the accuracy and the speed.

23973



IEEE Access

Y. Wu et al.: Vision-Based Real-Time Aerial Object Localization and Tracking for UAV Sensing System

IV. EXPERIMENTAL EVALUATIONS

The proposed approach is implemented in C+4 with
OpenCV 3.0.0 on a PC with an Intel Xeon W3250 2.67 GHz
CPU and 8 GB RAM. The dataset and source code of the
proposed approach will be available on the author’s home-
page. The proposed tracker is evaluated on 15 popular image
sequences collected from [18], [19], [21], [39]. There are
a total of over 6700 frames in the dataset. The highest
and lowest frame sizes are 1280 x 720 and 320 x 240,
respectively. The dataset, from tracking perspective of view,
includes different scenarios with challenging situations, such
as scale variation, occlusions, in-plane and out-of-plane rota-
tions, illumination, and background interference, as shown
in Table. 1. The image sequences without sky-region sce-
narios, i.e. Skyjumping_ce, motorcycle_006, surfing, Surfer,
Skater, Sylvester, ball and Dog have been selected to test the
robustness and generality of the proposed approach within
different scenarios. In each frame of these video sequences,
we labeled the target manually in a bounding box, which is
used as the ground truth in the quantitative evaluations.

TABLE 1. Attributes used to characterize each image sequence from a
tracking perspective. We denote scale variation as SV, illumination
variation as IV, background interference as BGI, and in-plane rotation and
out-of-plane rotation as IPR & OPR.

Image Sequence Object of Interest Tracking challenges

Aircraft [26] Propeller plane SV, IPR & OPR
airplane_001 [19] Jet plane SV, IPR & OPR
airplane_006 [19] Jet plane SV, IPR & OPR
airplane_011 [19] Propeller plane SV, IPR & OPR

airplane_016 [19] Propeller plane SV, IPR & OPR, BGI
big_2 [26] Jet plane SV, IPR & OPR, BGI
Plane_ce2 [21] Jet plane SV, IPR & OPR, BGI

Skyjumping_ce [21] |Person SV, 1V, IPR & OPR, BGI
motorcycle_006 [19]|Person and motorcycle |SV, IPR & OPR, BGI

surfing [18] Person SV, IPR & OPR, BGI
Surfer [39] Person SV, IPR & OPR, BGI
Skater [39] Person SV, IPR & OPR, BGI
Sylvester [39] Doll IV, IPR & OPR, BGI
ball [18] ball SV, BGI
Dog [39] Dog SV, OPR

In our implementation, input images are first resized so
that the maximum dimension is 300 pixels. The transition
state matrix H € R%*® and measurement matrix C €
R**6 are fixed during the experiment. The diagonal val-
ues corresponding to the position (i.e., (x,y)) and scale
(i.e., (w, h)) covariance in prediction noise covariance
matrix Q and measurement covariance matrix R are set to 0.01
and 0.1, respectively. Some other parameters for all image
sequences are as follows. The percentage value § = 0.25,
the size of block I'yp is 5 x 5, the offset A = 7, and the
structuring element is § € R>*3.

We compared the proposed approach with seven state-of-
the-art trackers. The seven competing trackers are manually
initialized at the first frame using the ground truth of the target
object. Once initialized, the trackers automatically track the
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target object in the remaining frames. However, the pro-
posed tracker automatically runs to track the target object
from the first frame to the end frame. Three experiments are
designed to evaluate trackers as discussed in [39]: one pass
evaluation (OPE), temporal robustness evaluation (TRE), and
spatial robustness evaluation. For TRE, we randomly select
the starting frame and run a tracker to the end of the sequence.
Spatial robustness evaluation initializes the bounding box
in the first frame by shifting or scaling. As discussed in
Section III, the proposed method manages to automatically
initialize the tracker and is not sensitive to spatial fluctua-
tion. Therefore, we applied one pass evaluation and temporal
robustness evaluation in this section using the same temporal
randomization as in [39], and readers may refer to [39] for
more details.

A. SPEED PERFORMANCE

For salient object detection, the most up-to-date fast detector
MB+ [44] attains a speed of 49 frames-per-second (fps).
In contrast, the proposed method achieves a speed of 149 fps,
three times faster than MB+-, and the detection performance
is better than MB+. For object tracking, the average speed
comparison of the proposed and the seven state-of-the-art
competing trackers is tabulated in Table 2. The average speed
of our tracker is 141 fps, which is at the same level as
the fastest tracker KCF [13], however, KCF adopts a fixed
tracking box, which could not reflect the scale changes of the
target object during tracking. On average, our method is more
than ten times faster than CT [46] and SAMF [20], five times
faster than DSST [7] and CCT [47] and about two times faster
than STC [45] and CN [8].

TABLE 2. Quantitative evaluations of the proposed and the seven
competing trackers on the 15 sequences. The best and second best
results are highlighted in bold-face and underline fonts, respectively.

Ours | CT |STC|CN [SAMF|DSST|CCT| KCF
[46]| [45]] [8]| [20] | [7] | [47]] [13]
Precision of TRE 0.79 (0.51|0.59]0.64| 0.65 | 0.65 |0.66| 0.60
Success rate of TRE | 0.61 |0.45|0.46(0.54| 0.58 | 0.56 |0.57|0.52
Precision of OPE 0.83 (0.44|0.480.44| 0.59 | 0.48 |0.66| 0.48
Success rate of OPE | 0.66 |0.34|0.41(0.42| 0.52 | 0.44 |0.53|0.38
CLE (in pixel) 14.5 |74.4|38.0|55.0| 40.8 | 55.7 |23.2| 45.6
Average speed (in fps)(141.3|12.0|73.6(87.1| 12.9 | 20.8 |21.3|144.8

B. COMPARISON WITH THE

STATE-OF-THE-ART TRACKERS

The performance of our approach is quantitatively evaluated
following the metrics used in [39]. We present the results
using precision, center location error (CLE), and success
rate (SR). The CLE is defined as the Euclidean distance
between the centers of the tracking and the ground-truth
bounding boxes. The precision is computed from the percent-
age of frames where the CLEs are smaller than a threshold.
Following [39], the threshold value is set at 20 pixels for the
precision in our evaluations. A tracking result in a frame is
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considered successful if ng > 6 forathreshold 6 € [0, 1],
where a; and a, denote the areas of the bounding boxes of
the tracking and the ground truth, respectively. Thus, SR is
defined as the percentage of frames where the overlap rates
are greater than a threshold 8. Normally, the threshold 6 is set
to 0.5. We evaluate the proposed method by comparing to the
seven state-of-the-art trackers: CT, STC, CN, SAMF, DSST,
CCT, and KCF.

The comparison results on the 15 sequences are shown
in Table 2. We present the results under one-pass evaluation
and temporal robustness evaluation using the average preci-
sion, success rate, and CLE over all sequences. As shown
in the table, the proposed method outperforms all seven
competing trackers. It is evident that, in the one pass eval-
uations, the proposed tracker obtains the best performance
in the CLE (14.5 pixels), and the precision (0.83), which
are 8.7 pixels and 17% superior to the second best tracker,
the CCT tracker (23.2 pixels in CLE and 0.66 in precision).
Meanwhile, in the success rate, the proposed tracker achieves
the best result, which is a 13% improvement against the sec-
ond best tracker, the SAMEF tracker. Please note that, for the
seven competing trackers, the average performance in TRE
is higher than that in OPE; while for the proposed tracker,
the average precision and success rates in TRE are lower than
those in OPE. One possible reason is that the proposed tracker
tends to perform well in longer sequences, while the seven
competing trackers work better in shorter sequences [39].

TABLE 3. Precision on the 15 sequences of the proposed and the seven
competing trackers. The best and the second best results are highlighted
in bold-face and underline fonts, respectively.

Ours CT STC CN SAMF DSST CCT KCF
0.95 0.28 0.48 0.16 0.59 0.16 0.71 0.48
0.94 0.37 0.25 0.21 040 0.21 0.50 0.02
0.96 0.23 0.44 0.33 0.75 043 0.64 0.60
1.0 0.65 0.30 0.30 0.30 0.30 0.74 0.30
airplane_016 0.94 0.01 0.68 091 0.52 0.81 0.79 0.88
big_2 1.0 0.14 0.96 0.95 0.93 0.96 0.95 0.63
0.94 0.93 0.24 0.10 0.72 0.31 0.27 0.17
0.82 0.09 0.32 0.09 0.92 0.39 0.80 0.86
0.47 0.24 0.30 0.19 0.14 0.16 0.10 0.14

Aircraft
airplane_001

airplane_006

airplane_011

Skyjumping_ce

Plane_ce2

motorcycle_006

surfing 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Skater 0.54 0.02 0.27 0.58 0.44 0.46 0.49 0.43
Surfer 0.59 0.35 0.48 0.51 043 034 046 0.22
Sylvester 0.87 0.62 0.59 0.93 0.85 0.84 0.84 0.84
ball 0.85 1.00 0.29 0.14 0.31 0.19 1.00 0.27
Dog 0.63 0.68 0.57 0.22 0.54 0.69 0.56 0.35

Average precision rate 0.83 0.44 0.48 0.44 0.59 0.48 0.66 0.48

We also report the comparison results in the one pass eval-
uation against the seven competing trackers on all 15 video
sequences in Table 3 and Table 4, respectively. Our approach
obtains the best or the second best performance of 14 in
precision and 9 in success rate out of the 15 sequences.
Fig. 5 plots the average precision and success plots in the one
pass evaluation and temporal robustness evaluation over all
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TABLE 4. Success rates on the 15 sequences of the proposed and the
7 competing trackers. The best and the second best results are
highlighted by bold-face and underline fonts, respectively.

Ours CT STC CN SAMF DSST CCT KCF
0.69 0.31 0.18 0.15 0.50 0.15 0.55 0.34
1.00 0.12 0.29 0.14 0.36 0.15 0.28 0.02
0.48 0.34 0.31 0.22 0.46 037 046 0.25
0.70 0.31 0.30 0.30 0.99 0.30 0.31 0.30

Aircraft
airplane_001

airplane_006

airplane_011

airplane_016 0.74 0.04 0.74 0.81 0.66 0.73 0.81 0.81
big_2 0.66 0.38 0.66 0.56 0.56 0.76 0.69 0.26
Plane_ce2 0.18 0.96 0.44 0.14 0.47 0.33 0.20 0.31

Skyjumping_ce _ 0.82 0.40 0.18 021 032 0.13 040 0.23
motorcycle_006  0.79 033 021 0.40 033 0.17 0.17 0.19

surfing 0.47 0.99 0.99 096 1.00 1.00 1.00 1.00
Skater 0.72 0.28 0.24 0.73 0.71 0.68 0.61 0.70
Surfer 0.68 0.31 0.08 0.51 0.69 0.65 0.70 0.25
Sylvester 0.73 0.71 0.71 0.71 097 0.85 0.92 0.97
ball 0.98 0.72 0.36 0.12 0.97 0.51 1.00 0.67
Dog 0.93 0.37 047 0.35 0.51 0.59 0.35 0.38

Average success rate 0.72 0.44 0.41 042 0.63 0.49 0.58 0.45

FIGURE 5. Average Precision and success rate plots over the
15 sequences in (top) one pass evaluation (OPE) and (bottom)
temporal robustness evaluation (TRE). (best viewed in color).

15 sequences. In the two evaluations, according to both the
precision and the success rate, our approach significantly out-
performs the seven competing trackers. In summary, the pre-
cision plot demonstrates that our approach is superior in
robustness compared to its counterparts in the experiments;
the success rate shows that our method estimates the scale
changes of the target more accurately.

C. QUALITATIVE EVALUATION

In this section, we present some qualitative comparisons of
our approach with respect to the seven competing trackers.
The proposed approach is generic and can be applied to track
any object of interest, including non-rigid and articulated
objects. In this section, we present qualitative results our
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FIGURE 6. Tracking results in representative frames of the proposed and
the 7 competing trackers on eight sequences with different tracking
challenges and scenarios. The first row: Aircraft [26]; the second row:
airplane_001 [19]; the third row: airplane_006 [19]; the fourth row:
airplane_011 [19]; the fifth row: airplane_016 [19]; the sixth row:

big 2 [26]; the seventh row: Skyjumping_ce [21]; The eighth row:
motorcycle_006 [19]. (best viewed in color).

tracker using eight representative image sequences to demon-
strate the effectiveness using the dataset described in previous
section. We assume the target object is in low resolution
when more than one ground truth bounding box has less than
400 pixels. The eight image sequences are categorized into
four groups based on their scenarios and tracking challenges,
as shown in Table 1.

The first group has clear sky as the background, includ-
ing three image sequences, Aircraft, airplane_001 and
airplane_006, which are shown from the first row to the third
row in Fig. 6. All the three image sequences have scale vari-
ation and in-plane and out-of-plane rotations. The propeller
plane in image sequence Aircraft are in high resolution. The
jet planes in the other two image sequences are in low reso-
lution, which increases the difficulty of tracking. Moreover,
the background near the jet plane in the image sequence
Airplane_006 has an appearance similar to the target. The
competing trackers STC, SAMF, DSST, and CCT were pro-
posed to deal with scale variation, but they failed in the three
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image sequences. The predicted bounding box is either too
large or too small. The reason is that their scaling strategy
depends on the hard-coded scaling ratio, which is not adaptive
to rotation and scale variation of the target. In contrast, our
tracker is based on a saliency map, which leads to an accurate
localization of the salient object at each frame. Therefore, it is
adaptive to scale and rotation variations, which gives more
accurate estimation on both the scale and the position of the
target object.

The second group with target object in high resolution
includes three image sequences airplane_011, airplane_016,
and big_2, which are illustrated in the fourth to the sixth rows
in Fig. 6. The three image sequences have scale variation
and in-plane and out-of-plane rotations challenges. More-
over, there still exists background interference caused by the
clouds in the image sequences of airplane_016 and big_2.
The background interference is more severe in the image
sequence big_2 as the jet plane is at a lower altitude during its
flight. Only the proposed tracker tracks the flying propeller
plane accurately with giving the minimum bounding box
of the target object in the image sequence of airplane_011.
While most of the competing trackers are able to track the
aircraft in the image sequences of airplane_016 and big_2,
only the proposed approach has the capability to give the
optimal tracking bounding box in the sky-region scenarios
with clouds interference.

The target object in the third group is a person doing
sky jumping, as shown in the seventh row in Fig. 6. There
exists small scale variation and large in-plane and out-of-
plane rotations. Moreover, the clouds and terrain of the land
in the background would interfere with the tracking perfor-
mance. The competing trackers STC, SAMF, DSST, and CCT
were capable to handle scale changes, but they failed in this
image sequence. The competing trackers fail to handle the
significant appearance changes of rotating motions and fast
scale variations. In contrast, our tracker is robust to large and
fast scale variations.

The proposed tracker can also be used to track the object
of interest on the ground with large scale variation and out-
of-plane rotation, as shown in the eighth row in Fig. 6.
Since the cycler is driving the motorcycle with large rota-
tion, the competing trackers can only track the head of the
motorcycle, however, the proposed tracker is still able to give
the minimum tracking bounding box of the object of interest,
as shown from frame #110 to frame #145.

In summary, the proposed tracker has better performance
than the seven competing trackers in handling large scale vari-
ation, in-plane and out-of-plane rotations with acute angle,
and background cloud interference.

D. LIMITATION

Although the proposed tracking approach outperforms its
competitors in most experiments, it has a key limitation in
handling occlusion challenge. As shown in Fig. 7, the image
sequence airplane_005, where the aircraft is partially
(frame #86) or severely (frame #96) occluded by its ejected

VOLUME 5, 2017



Y. Wu et al.: Vision-Based Real-Time Aerial Object Localization and Tracking for UAV Sensing System

IEEE Access

FIGURE 7. A failure case where the aircraft is partially or severely
occluded in sequence airplane_005 [19] by the smoke and cloud.

smoke and the cloud in the sky, which would cause a tracking
failure. This failure can be automatically corrected by the
tracker after a few frames, as shown in frame #102. How-
ever, this limitation would deteriorate the performance of the
tracker.

V. CONCLUSION

In this paper, we have proposed an effective and efficient
approach for real-time visual object localization and tracking,
which can be applied to UAV navigation, such as obstacle
sense and avoidance. Our method integrates a fast salient
object detector within the Kalman filtering framework. Com-
pared to the state-of-the-art trackers, our approach can not
only initialize automatically, it also achieves the fastest speed
and better performance than the competing trackers. The
source and dataset of the proposed approach will be available
on the author’s website.

Although the proposed tracker performs very well in
most image sequences in our experiments, it cannot handle
occluded scene very well. However, it has the capability
to automatically re-localize and track the salient object of
interest when it re-appears in the field of view again.
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