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ABSTRACT Sparsely spread code division multiple access (SCDMA) is a non-orthogonal superposition
coding scheme that allows concurrent communications between a base station and multiple users over a
common channel. However, the detection performance of an SCDMA system is mainly determined by its
signature matrix, which should be sparse to facilitate the belief propagation (BP) detection. On the other
hand, to guarantee good maximum likelihood (ML) detection performance, the minimum Euclidean distance
for the equivalent signal constellation after multi-user superposition should be maximized. In this paper, a
code distance analysis is proposed for SCDMA systems with a finite number of users and spreading lengths.
Based on this analysis, good signature matrices whose factor graphs have very few short cycles and possess
large superposed signal constellation distances are designed. The proposed signature matrices have both
good BP and ML detection performances. Moreover, their BP detection performances exactly converge to
their ML detection performances with few iterations. It is worth pointing out that the proposed signature
matrix design could be directly applied to the 5G non-orthogonal multiple access systems.

INDEX TERMS Non-orthogonal multiple access, sparsely spread, signature design, code distance.

I. INTRODUCTION
The future fifth generation (5G) mobile networks are
expected to provide an unprecedented capacity in support-
ing the rapid growth of mobile data traffic with very lim-
ited spectrum resources. New multiple access techniques,
i.e., non-orthogonal multiple access (NOMA), which allow
multiple concurrent communications, have been recognized
as one of most efficient solutions to fulfill these require-
ments [1]–[9] . Recently, NOMA is realized by employing
non-orthogonal sparse codes for different users, such as in
sparsely spread code division multiple access (SCDMA)
[10], [11], low-density spreading [12], and sparse code multi-
ple access [7]–[9], [13]. All of these techniques rely on sparse
signature sequences and near-optimal joint multi-user belief
prorogation (BP) detections on sparse graphs. Therefore, we
collectively call these techniques SCDMA. SCDMA yields
many advantages with respect to the capacity load and detec-
tion complexity over conventional dense CDMA and other
orthogonal multiple access schemes.

In the downlink of a general SCDMA system, a base sta-
tion simultaneously communicates with multiple users. Data

streams for the multiple users are first spread (encoded) into
vectors by multiplying their signature sequences, which are
sparse and whose elements are usually selected from a given
alphabet set. Multiple data streams after spreading are super-
imposed at the base station and broadcasted to the users over
a common channel, i.e., using the common resources such as
time slots and frequency channels. A multi-user BP detection
is performed at each user to recover the data streams.

The performance of SCDMA detection is mainly deter-
mined by a signature matrix that consists of all the users’
signature sequences as its row vectors. Generally, the signa-
ture matrix should have a good sparse property, i.e., without
short cycles in the formed factor graph, to achieve a good
BP detection performance. Theoretically, if its factor graph
has no cycles, the BP detection converges to the maximum
likelihood (ML) detection performance [14]. Moreover, the
equivalent signal constellation after spreading and superposi-
tion should have large Euclidean distances which ultimately
determine the performance bound of ML detection. This
motivates us to design the elements in the signature matrix
in SCDMA.
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Signature design has been investigated for dense spreading
in conventional CDMA [15]–[17], where an orthogonal or
low-correlated sequence set is constructed to maximize an
equivalent CDMA channel capacity. The problem becomes
more complicated for sparse spreading in SCDMA since
the design should be implemented under the sparsity con-
straint of the signature matrix. The problem becomes even
more difficult when a two-dimensional modulation scheme
is employed as in the scenarios of [7] and [13]. Refer-
ences [18] and [19] show that a user constellation rota-
tion significantly affects detection performance of multi-
user superposition codes. Convolutional codes are employed
by each user in [18] and [19] and the multiple access
scheme is referred to as trellis code multiple access (TCMA),
which can be regarded as a spatial case of the scenarios in
[7] and [13] with unitary spreading length. Reference [20]
considers two-user TCMA and designs the user constellation
rotation by maximizing an equivalent channel capacity. Ref-
erences [7] and [13] consider a general multi-user SCDMA
with a non-trivial spreading length. For a given regular factor
graph structure, References [7] and [13] show that a Latin-
rectangular signature matrix significantly outperforms a ran-
domly generated signature matrix due to a large minimum
code distance property. However, most above works design
good signature matrix based on practical system error rate
simulation. Relatively few works propose efficient methods
to find an optimal signature matrix with the maximum min-
imum code distance for a given SCDMA system. Moreover,
improving the minimum code distance may only guarantee
that the code has a good ML detection performance. How
to design a code with both good BP and ML detection per-
formances is also a challenging problem. Regarding to the
performance analyses for SCDMA systems, the widely used
methods, such as statistical mechanics-based analysis [10]
and density evolution [11], rely on the assumption of a large
number of users and a infinite spreading length. Relatively
few analyses are proposed for practical SCDMAsystemswith
finite number of users and spreading length.

In this paper, we consider SCDMA systems with a
two-dimensional quadrature amplitude modulation (QAM)
and develop a theoretical framework for signature design.
We propose a code distance analysis for SCDMA systems
with a finite number of users and spreading lengths. For
a given sparse factor graph structure of an SCDMA code,
we design the optimal signature matrix with the maximum
minimum code distance. Since it is very difficult to give
a general formula to find the optimal signature matrix, we
propose some rules to simplify the design. Code designs for
both cycle-free graph and graphwith few cycles are proposed.
We construct two SCDMA code families whose factor graphs
have very few short cycles. The optimal signature labeling is
hence proposed based on the graph structure. The constructed
SCDMA codes outperform the existing codes in terms of both
the word error rate (WER) performance and detection com-
plexity. Our numerical results show that their BP detections
exactly converge to their ML detection performances with

few iterations. Simulations for turbo-coded SCDMA systems
with variety communication rates are given to validate our
design in more practical applications.

The remainder of the paper is organized as follows.
Section II describes the SCDMA system model and detection
algorithms. Section III defines the SCDMAcode distance and
some properties on code distance are shown. Section IV gives
the optimal signature matrix design. Section V gives two
constructions of code families with few short cycles in their
factor graph and large minimum code distance. Section VI
gives simulations for our design in both uncoded and turbo-
coded SCDMA systems. Section VII concludes this paper.

II. SCDMA AND DETECTIONS
A. SYSTEM MODEL
Figure 1 shows a K -user downlink SCDMA transmitter
model at the base station. There are K data streams to be
transmitted to the K mobile users. After forward error cor-
rection (FEC) encoding, each user’s data stream is modulated
and spread by multiplying its signature sequence. Figure 1
illustrates the spread processing for an individual symbol
of each user’s data stream. Here we consider QAM with
xk ∈ X 1
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where i is the imaginary unit. The output after spreading is
(s1,k , . . . , sN ,k )xk for xk , where (s1,k , . . . , sN ,k ) with sn,k = 0
or sn,k = eiθ , θ ∈ [0, 2π ), n = 1, . . . ,N , is called a signature
sequence of user k . Here we considered unitary energy for
each nonzero element of the signature sequence. It should
be emphasized that the spreading vector is sparse, i.e., the
majority of elements might be 0. The number of nonzero
elements in a spreading vector is called an effective spreading
length.

FIGURE 1. A K -user SCDMA transmitter model.

The K users’ data streams after spreading are superim-
posed and transmitted over N orthogonal channel resources,
e.g., OFDMA tones or MIMO spatial layers. The transmitted
vector is represented as

c1
c2
...

cN

 =

s1,1 s1,2 · · · s1,K
s2,1 s2,2 · · · s2,K
...

...
. . .

...

sN ,1 sN ,2 · · · sN ,K



x1
x2
...

xK

 (1)

which is referred to as an SCDMA codeword. Note that there
is a total of 4K number of SCDMA codewords corresponding
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to the 4K different variations of (x1, . . . , xK )T, where ()T

is the transpose of a matrix. Matrix S = [sn,k ] is sparse
and is referred to as a signature matrix. By multiplexing K
users over N channel resources, the load of the SCDMA
code is K/N . Since for K/N ≤ 1, we can use orthogo-
nal spreading sequences to achieve near single-user perfor-
mance, in this paper, wemainly consider overloaded SCDMA
with K/N > 1.

Each user receives a noise-corrupted codeword y = hc+ z,
where c = (c1, . . . , cN )T, y = (y1, . . . , yN )T, h is a channel
gain, and z = (z1, . . . , zN )T is a complex Gaussian noise
vector with each element an independent and identically dis-
tributed (i.i.d.) mean-0 variance-N0 complex Gaussian vari-
able, i.e., zn ∼ CN (0,N0). A joint K -user SCDMA detection
is performed to recover the data streams.

Each SCDMA code can be represented by a sparse factor
graph. Figure 2 gives an example of factor graph represen-
tation for a (K = 6)-user (N = 4)-resource SCDMA code
proposed in [7] and [8], where data nodes x1, . . . , xK denote
data symbols of K users, and code nodes c1, . . . , cN denote
N SCDMA coded symbols. There is an edge between cn and
xk , denoted as en,k , if sn,k 6= 0. Let E be the set that includes
all the edges in the factor graph. Edge en,k ∈ E is labeled
by signature element sn,k . Each code node is a superposition
of its neighboring data nodes, i.e., cn =

∑
{k|en,k∈E} sn,kxk .

The degree of a node is the number of edges incident with
the node. The graph is called code-node regular of degree d
if all the the code nodes have degree d . Figure 2 is code-node
regular of degree 3. If a factor graph is cycle-free, we call it a
tree graph, and the corresponding code is referred to as a tree
SCDMA code.

FIGURE 2. A factor graph representation of a 6-user 4-resource
SCDMA code.

B. SCDMA DETECTIONS
In this section, after we briefly review two detection algo-
rithms of SCDMA, the ML and BP detections, we will give
an approximate BP detection whose detection complexity

linearly increases with the user number. For all these three
detections, we assume the receiver knows channel gain h
perfectly.

1) ML DETECTION
Based on y, the ML detection is

ĉ = argmax
c

Pr(y|c) = argmin
c
‖y− hc‖ (2)

where the ML detection is reduced to the minimum dis-
tance detection due to the memoryless Gaussian channel.
If more than one codeword satisfies (2), we randomly select
one of them as our decision with equal probability. Here
we assume that all SCDMA codewords are transmitted with
equal probability, and thus, (2) is equivalent to the maximum
a posteriori probability detection. Based on the estimated
SCDMA codeword ĉ, we can uniquely determine the trans-
mitted data stream. The complexity of ML detection isO(4K )
for SCDMA with QAM.

2) BP DETECTION
A suboptimal scheme with lower complexity is BP detection.
This detection is performed on the factor graph. The whole
detection is performed iteratively in a belief-propagation
manner. In each iteration, each node of the factor graph
performs a local processing and exchanges message with its
neighboring nodes.

a: Code Node Processing
Consider the processing at code node cn. Let P`−1xk ,cn (xk = α),
a priori probability of xk = α, α ∈ X , be the message output
from data nodes xk , k ∈ κ = {k|en,k ∈ E} to code node cn at
the (`−1)-th iteration. Let κ\k be the set obtained by deleting
k from κ . Based on this priori probability, and the channel
observation yn, code node cn outputs a probability message
of

P`cn,xk (xk = α)

=

∑
αj∈X ,j∈κ\k

Pr(yn|xj=αj, j ∈ κ\k , xk=α)
∏
j∈κ\k

P`−1xj,cn(xj=αj)

=
1
πN0

∑
αj∈X ,j∈κ\k

exp

(
−

|yn −
∑

j∈κ\k sn,jαj − sn,kα|
2

N0

)

×

∏
j∈κ\k

P`−1xj,cn (xj = αj)

to data node xk , k ∈ κ , which is a probability of xk = α,

α ∈ X .

b: Data Node Processing
Data node xk combines the message obtained from the code
nodes in its neighborhood and outputs a probability message
of

P`xk ,cn (xk = α) =
∏

{j|ej,k∈E,j 6=n}

P`cj,xk (xk = α), α ∈ X

to its neighboring code node cn, n ∈ {n|en,k ∈ E}.
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c: Hard Decision
After a fixed number L of iterations, a hard decision is made
for xk as

x̂k = argmax
α∈X

∏
{j|ej,k∈E}

PLcj,xk (xk = α). (3)

The complexity of BP detection is dominated by the com-
plexity of code node processing, whose complexity is O(4d ),
where d is the maximum code node degree. The specific
detection complexity is determined by the code node degree
profile and the iteration number that is required for the
detection.

Note that if the factor graph of an SCDMA code is a tree
graph, its BP detection will converge to its ML detection
with a finite number of iterations. Many works show that
short cycles, such as length-4 cycles, significantly degrade the
performance of BP detection [21]. Therefore, in this paper we
only consider factor graphs without length-4 cycles.

3) APPROXIMATE BP DETECTION
In the BP detection, the processing at the code node is a MAP
processing, where the accurate probability about the esti-
mated data is calculated. In this section, we give an approx-
imate BP detection with a simplified code node processing.
We regard the summation of interferences for each data as
complex Gaussian, so we only need to track a mean and
variance message.

Take the processing at code node cn as an example. The
associated receive at this node is

yn =
∑

{k|en,k∈E}

sn,kxk + zn = sn,kxk + ξk (4)

where ξk =
∑

j∈κ\k sn,jxj + zn is the equivalent noise for xk .
We approximately regards ξk as a complex Gaussian variable,
i.e., ξk ∼ CN (µk ,Nk ) with

µk = E[ξk ] =
∑
j∈κ\k

sn,jE[xj] =
∑
j∈κ\k

sn,j
∑
α∈X

P`−1xj,cn (xj = α)α

Nk = E[|ξk − µk |2] =
∑
j∈κ\k

E[|xj − E[xj]|2]+ N0

=

∑
j∈κ\k

(
1−

∣∣E[xj]∣∣2)+ N0

=

∑
j∈κ\k

1−

∣∣∣∣∣∑
α∈X

P`−1xj,cn (xj = α)α

∣∣∣∣∣
2
+ N0

where E[∗] takes the expectation of a random variable.
Therefore, code node cn outputs a probability message of

P`cn,xk (xk = α) =
1
πNk

exp
(
−
|yn − sn,kα − µk |2

Nk

)
, α ∈ X

to data node xk , k ∈ κ .
The approximate BP detection may work well when the

code node degree is large or the noise level is high since at
these two cases, interference term ξk is more like Gaussian.

The processing complexity of the code node reduces
to O(d), where d is the maximum code node degree.

III. SCDMA CODE DISTANCE AND PROPERTIES
In this section, we first define an SCDMA code distance and
distance enumerator function, which is used to formulate a
union bound for ML detection. Some properties about the
SCDMA code distance enumerator function and the mini-
mum code distance are derived.
Definition 1: Distance between two SCDMA codewords

c, c′ ∈ C is

d(c, c′) = ||c− c′||

where C is the SCDMA code set. �
Definition 2:

dmin = min
c,c′∈C,c6=c′

d(c, c′) (5)

is called the minimum distance of SCDMA code C. �
Applying (1) to (5), we obtain the following lemma

straightforwardly.
Lemma 1: Let 4X 1

= {0,±
√
2,±
√
2i,
√
2 ±

√
2i,

−
√
2±
√
2i} and4XK be the universal set of lengthK vectors

over 4X . The minimum distance of the SCDMA code with
spreading signature matrix S is

dmin(S) = min
u∈4XK ,u 6=0

F(S,u)

F(S,u) 1=

√√√√√ N∑
n=1

∣∣∣∣∣
K∑
k=1

sn,kuk

∣∣∣∣∣
2

where u = (u1, . . . , uK ) and 0 = (0, . . . , 0). �
To give a global description of the code distance spectrum

of an SCDMA code, we have the following definition.
Definition 3: The distance enumerator function for an

SCDMA code with signature matrix S is

A(S,Z ) =
1
|C|

∑
c∈C

∑
c′∈C,c′ 6=c

Zd(c,c
′)

=
1
4K

∑
u∈XK

∑
u′∈XK ,u′ 6=u

ZF(S,u−u
′) (6)

where Z is a dummy variable, and |C| = 4K for QAM is the
cardinality of the code set. �
Equation (6) in fact gives an average distance spectrum for

all the codewords in the code set.
The distance enumerator function of SCDMA code can be

used to calculate a multi-user union bound developed in [22].
It is an WER upper bound on ML detection.

Let A(S,Z ) =
∑

d A(d)Z
d be the distance enumerator

function of an SCDMA code with signature matrix S, where
A(d) can be regarded as the average number of codeword
pairs with distance d . The WER PW under ML detection is
upper bounded by
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Union Bound [22]:

PW ≤ A(0)+
∑
d>0

A(d)Q
(

d
√
2N0

)
. (7)

Note that (7) has a form different from that in [22] since the
definition of code distance in this work has a form different
from that in [22].

We give the following properties for the SCDMA code
distance enumerator function and minimum code distance.
Lemma 2 (Row Rotation Invariance):

A(S ′,Z ) = A(S,Z ) (8)

holds for s′n,k = eiθnsn,k , θn ∈ [0, 2π ), k = 1, . . . ,K ,
n = 1, . . . ,N . �

Proof: Equation (8) holds because

F(S ′,u) =

√√√√√ N∑
n=1

∣∣∣∣∣
K∑
k=1

eiθnsn,kuk

∣∣∣∣∣
2

=

√√√√√ N∑
n=1

∣∣∣∣∣
K∑
k=1

sn,kuk

∣∣∣∣∣
2

= F(S,u)

holds for any u ∈ 1XK . �
Lemma 3 (Column Rotation Invariance):

A(S∗,Z ) = A(S,Z ) (9)

holds for any s∗n,k = eimkπ/2sn,k ,mk ∈ Z , k = 1, . . . ,K ,
n = 1, . . . ,N , where Z is a set of integer numbers. �

Proof: Equation (9) holds because

F(S∗,u) =

√√√√√ N∑
n=1

∣∣∣∣∣
K∑
k=1

ei
mkπ
2 sn,kuk

∣∣∣∣∣
2

=

√√√√√ N∑
n=1

∣∣∣∣∣
K∑
k=1

sn,ku∗k

∣∣∣∣∣
2

= F(S,u∗)

where u∗k = ei
mkπ
2 uk ∈ 1X , holds for any u ∈ 1XK . �

Lemma 4 (Add a User or Resource): For a give signature
matrix S, it holds that

dmin(S̄c) ≤ dmin(S) ≤ dmin(S̄r )

where S̄r and S̄c are signature matrices obtained by adding a
row (resource) and column (user) to S, respectively. �

Similarly, we can obtain an opposite proposition of
Lemma 4 by deleting a user or resource.
Corollary 1: For a give signature matrix S,

dmin(S) ≤
√
2w (10)

where w is the minimum effective spreading length. �
Proof: Equation (10) is obtained from the fact that

√
2w

is the minimum distance achieved by the matrix obtained
by deleting all the columns of S except the one with the
minimum effective spreading length. �
Lemma 5 (Concatenation of Signature Matrices):

dmin(S) ≥

√√√√ n∑
j=1

dmin(Sj)2

where S = [ST1 , S
T
2 , · · · , S

T
n ]

T is a concatenation of
Sj, j = 1, . . . , n. �

IV. OPTIMAL SIGNATURE MATRIX
For a given factor graph structure, we design the optimal
signature matrix with the maximum minimum SCDMA code
distance.

For factor graphG, we have an infinite number of SCDMA
codes by varying its edge labels, i.e., the phases of nonzero
elements of the signature matrix. Let SG be the universal set
that includes all the possible signature matrices, edge labels,
associated with G. We aim to find the SCDMA code with the
maximum minimum code distance.

Since a disconnected factor graph can be considered as
multiple independent SCDMA codes, in the following we
only consider connected factor graphs.
Definition 4:

Sopt = arg max
S∈SG

dmin(S)

is called an optimal signature matrix of G. �
For a factor graph, there are an infinite number of optimal
signature matrices due to Lemmas 2 and 3.

For a given factor graph G, finding Sopt in SG is a non-
convex problemwith high complexity. However, ifG is cycle-
free, the problem can be simplified. We first give the follow-
ing theorem.
Theorem 1: If G is a cycle-free factor graph, for each

signature matrix S ∈ SG, there exists a matrix S∗ ∈ S∗G ={
S
∣∣sn,k = eiθk , θ1 = 0, θ2, . . . , θK ∈ [0, π2 ), for en,k ∈ E

}
with A(S∗,Z ) = A(S,Z ). �

Proof: We first prove that for each S ∈ SG there
exists S ′ ∈ S ′G = {S|sn,k = eiθk , θ1 = 0, θ2, . . . , θK ∈
(−∞,∞), for en,k ∈ E} with A(S ′,Z ) = A(S,Z ). Using the
row rotation invariance property of Lemma 2, we just need to
show that for a given S ∈ SG, there exists an S ′ ∈ S ′G which
is a row rotation of S. Assume that S is given. We determine
S ′ as follows. Since zero elements in S ′ are predetermined by
the factor graph G, we only determine the nonzero elements
in S ′ in the following steps:

i. For each n ∈ {n|en,1 ∈ E}, the n-th row of S ′ is a rotation
of the n-th row of S, i.e., s′n,k = sn,k/sn,1 for en,k ∈ E .

ii. Find a column of S ′ that has only one determined
nonzero element and at least one undetermined element.
Assume that the m-th column is found and the only deter-
mined nonzero element is s′j,m. For each n ∈ {n|en,m ∈ E,
n 6= j}, the n-th row of S ′ is a rotation of the n-th row of S,
i.e., s′n,k = s′j,msn,k/sn,m for en,k ∈ E .

iii. If all elements of S ′ are determined, terminate the
procedure, otherwise, repeat step ii.

We show that Step ii can always be successfully carried
out if there exist undetermined elements in S ′. First, if there
exists an undetermined element in S ′, we can always find
a column with both determined and undetermined nonzero
elements since G is connected and the nonzero elements
are determined in a row-by-row manner according to the
procedure. Moreover, if a column has both determined and
undetermined nonzero elements, the number of determined
nonzero element must be one. Suppose that there are more
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than one determined nonzero elements in columnm in Step ii,
i.e., elements s′j,m 6= 0 and s′j′,m 6= 0, j′ 6= j, are determined.
Since the labeling begins from the edges incident with data
node x1 (in Step i), there should exist two paths from data
node x1 to both code nodes cj and cj′ , i.e., there exists a path
between cj and cj′ that goes through x1. Since there exists
another path of cj → xm → cj′ between cj and cj′ , which
results in a cycle in G. This conflicts with the fact that G is
cycle-free. Therefore, Step ii can always be successful.

It also holds that S ′ ∈ S ′G, since Step i guarantees that
the nonzero elements in the first column are 1, and Step
ii guarantees that nonzero elements in each column are the
same. Note that each column except the first with more than
one nonzero elements will be found in Step ii, otherwise, we
can show that a cycle exists in the graph similarly. Since S ′ is
a row rotation of S, A(S ′,Z ) = A(S,Z ).

Directly applying the column rotation invariance property
of Lemma 3, we can get a matrix S∗ ∈ S∗G through column
rotations from S ′ with A(S∗,Z ) = A(S ′,Z ) = A(S,Z ). Thus,
the theorem is proved. �
Corollary 2: If G is a cycle-free factor graph, there exists

an optimal signature matrix with Sopt ∈ S∗G. �
We consider a special tree factor graph with K data nodes

and one code node with load K in which the signature matrix
becomes a vector. This is the scenario considered in TCMA
[18], [19]. We first consider the simplest case of K = 2.
Theorem 2: For the SCDMA factor graph with user num-

ber K = 2 and resource number N = 1, Sopt = [1, e−iπ/6]
is an optimal signature matrix with dmin(Sopt) =

√
3− 1. �

Proof: See Appendix A. �
Using (6), the distance enumerator function of the two-user

SCDMA code with the optimal signature matrix is calculated

as: 2Z
√
3−1
+

1
4Z
√
6−
√
2
+5Z

√
2
+

9
4Z

2
+Z
√

8−2
√
3
+Z
√
6
+

2Z
√
3+1
+Z
√

8+2
√
3
+

1
4Z

2
√
3
+

1
4Z

2
√

2+
√
3, which could be

used to estimate the WER performance based on the union
bound (7).

Signature matrix [1, eiπ/4] is used in [18] and [19]
for a two-user TCMA system. It is suboptimal since it
gives a smaller minimum distance of 2 −

√
2. We illus-

trate the superimposed constellations for both the cases
in Fig. 3.

It is difficult to formulate the optimal signature matrix for
N = 1,K > 2. We obtain the optimal signature matrix and
minimum distance, denoted as δK , for K ≤ 6 in TABLE 1
by numerical search. The minimum distance decreases as the
number of users K increases.
In general, a signature matrix of a multi-resource SCDMA

systemwith each row an optimal signature vector for a single-
resource SCDMA system may not be optimal. We only have
the following lower bound on the minimum code distance of
such a signature matrix.
Definition 5: Let α ⊂ N

1
= {1, 2, · · · ,N } be an index

subset. Subgraph G\α is obtained by deleting all the data
nodes that are adjacent to the code nodes with index in α and
edges induced from these data nodes. �

FIGURE 3. Constellation diagram of two SCDMA code sets for
K = 2,N = 1. One is for the optimal signature matrix [1, eiπ/6] and the
other is for signature matrix [1, eiπ/4] used in [18] and [19] .

TABLE 1. Optimal signature matrix and minimum distance for
N = 1,K ≤ 6.

Lemma 6: Let factor graphG be code-node regular degree
of q, q > 1. Let S ∈ SG be a signature matrix whose rows
are optimal signature vectors of single-resource SCDMA
systems. It holds that

dmin(S) ≥ min
α⊂N

√
n1(G\α)δ12 + n2(G\α)δq2

where n1(G\α) and n2(G\α) are the numbers of code nodes in
G\α with degree one and larger than one, respectively. �

Proof: See Appendix B. �
Note that Lemma 6 can be extended to the case of irreg-

ular code-node degree factor graph with a more complex
expression.
Example 1 (An Optimal K-User, (K − 1)-Resource Tree

SCDMA Code): We have the following K -user (K − 1)-
resource tree SCDMA code with each row an optimal two-
user single-resource signature vector,

SoptK−1,K =


1 eπ/6

eπ/6 1
1 eπ/6

eπ/6 1
· · ·

.
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This SCDMA code has a load of K/(K −1). Using Lemma 6
we have dmin(S

opt
K−1,K ) ≥ min{

√
K − 1(

√
3 − 1),

√
2}. Also

based on the proof of Theorem 2 inAppendixA,we know that
dmin(S

opt
K−1,K ) = min{

√
K − 1(

√
3 − 1),

√
2} exactly holds.

For K ≥ 5, the minimum distance is
√
2 which achieves the

upper bound of Corollary 1. In fact, we can further show that
SoptK−1,K is also an optimal signature labeling for K < 5. �
For a factor graph with cycles, we can find an edge set so

that after deleting the edges in the set, the remaining graph
is a tree. We simplify its labeling based on the following
theorem.
Theorem 3: Let G be a factor graph with cycles and

ϕ ⊂ E be an edge subset that after deleting the edges ϕ, the
remaining graph is a tree. For each signature matrix S ∈ SG,
there exists a matrix S∗ ∈ S∗G(ϕ) = {S|sn,k = eiθk , θ1 =
0, θ2, . . . , θK ∈ [0, π2 ), for en,k ∈ ϕ̄, and sn,k = eiθn,k , θn,k ∈
[0, 2π ), for en,k ∈ ϕ} with A(S∗,Z ) = A(S,Z ). �

Proof: See Appendix C. �
Corollary 3: For factor graphGwith cycles and ϕ defined

in Theorem 3, there exists an optimal signature matrix with
Sopt ∈ S∗G(ϕ). �
Example 2 (Optimal Labeling for Factor Graph in Fig. 2):

Based on Corollary 3, we can simplify the labeling for the
6-user and 4-resource SCDMA factor graph in Fig. 2 pro-
posed in [7] and [8] as

S4,6 =


1 eiθ2 eiθ3 0 0 0
1 0 0 eiθ4 eiθ5 0
0 eiθ2 0 eiθ3,4 0 eiθ6

0 0 eiθ3 0 eiθ4,5 eiθ4,6

 (11)

where θj ∈ [0, π/2), j = 2, . . . , 6 and θ3,4, θ4,5, θ4,6 ∈
[0, 2π ) since after deleting the edges in set ϕ =

{e3,4, e4,5, e4,6}, the factor graph will be a tree. Its load is 1.5.
We can find 4 length-6 cycles in its factor graph. Through
an exhaustive search based on (11), we obtain the following
optimal signature matrix

Sopt4,6=


1 ei0.1431π ei0.2021π 0 0 0
1 0 0 ei0.3127π ei0.3765π 0
0 ei0.1431π 0 ei0.5736π 0 ei0.2667π

0 0 ei0.2021π 0 ei0.3935π ei0.3078π



which has the minimum distance dmin(S
opt
4,6) = 1.3726. Note

that the Latin-rectangular labeling proposed in [7] and [13],
which uses the elements {1, eiπ/6, eiπ/3}with permutation for
each row, only gives the minimum distance of 1.1658. �

V. TWO CONSTRUCTIONS OF CODE FAMILIES
In this section, we give two constructions of code families
whose factor graph has very few short cycles. We give exam-
ples to obtain the optimal signature labeling for these two
constructions.

Construction 1 (A Kq-User, (K − 1)q-Resource SCDMA
Code Family):

S(K−1)q,Kq =



I v1I vK−1P
v1I v2I

v2I
. . .

. . . vK−2I
vK−2I vK I


where vk = [eiθ

k
1 · · · eiθ

k
q ], θ1j , · · · , θ

K−1
j ∈ [0, π/2)

for j = 1, . . . , q, and θKj = θK−1j ∈ [0, π/2), for
j = 1, . . . , q − 1, θKq ∈ [0, 2π ), I is a q × q identity matrix,
and P is the following q× q permutation matrix

P =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0

 . (12)

This SCDMA code family has a load of K/(K − 1). Vectors
vj, j = 1, . . . ,K , should be optimized to achieve the maxi-
mum minimum distance. It is easy to see that there is only
one length-2(K −1)q cycle in its corresponding factor graph.
Since if we delete one edge in ϕ = {e(K−1)q,Kq} the graph
will be cycle-free, we have used the simplified labeling for
the remaining tree graph based on Corollary 3. �
Example 3 (An Optimal 6-User, 4-Resource SCDMA

Code): Consider K = 3, q = 2 in Construction 1. The graph
will be cycle-free by deleting ϕ = {e4,6}. Through a full
search, we obtain the following optimal 6-user, 4-resource
SCDMA code:

S̄opt4,6 =


1 0 eiπ/6 0 0 eiπ/6

0 1 0 eiπ/6 eiπ/3 0
0 0 eiπ/6 0 eiπ/3 0
0 0 0 eiπ/6 0 −1


with the minimum distance dmin(S̄

opt
4,6) = 1.2679. �

Remark 1 If we delete the edges corresponding to vK−1P
in Construction 1, the graph will become a tree, and
the maximum minimum code distance will reduce to
min{
√
K − 1(

√
3− 1),

√
2}, which is achieved by allocating

single-resource optimal signature vector to each row as in
Example 1. Introducing the part of vK−1P in Construction 1
increases the minimum code distance for K < 5, and thus,
improves the performance of ML detection. �
Example 4 (An Optimal 8-User, 6-Resource SCDMA

Code): Similarly, by considering K = 4, q = 2 in Construc-
tion 1, we obtain the following optimal 8-user, 6-resource
SCDMA code:

Sopt6,8 =



1 0 eiπ/6 0 0 0 0 eiπ/6

0 eiπ/3 0 eiπ/6 0 0 eiπ/6 0
0 0 eiπ/6 0 eiπ/3 0 0 0
0 0 0 eiπ/6 0 eiπ/3 0
0 0 0 0 eiπ/3 0 eiπ/6 0
0 0 0 0 0 eiπ/3 0 eiπ/6

.
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Its load is 4/3 and the minimum distance is dmin(S
opt
6,8) =√

2, which achieves the upper bound of Corollary 1. �
The following construction gives a higher load SCDMA

code family than that given by Construction 1.
Construction 2 (A Kq-User, (K − 2)q-Resource SCDMA

Code Family):

S(K−2)q,Kq=


P1,1 v1P1,2 v2P1,3

v1P2,1 w1P2,2 v3P2,3
v2P3,1 w2P3,2 v4P3,3

v3P4,1 w3P4,2 v5P4,3
· · ·


where vk = [eiθ

k
1 · · · eiθ

k
q ], θkj ∈ [0, π/2), k = 1, . . . ,K − 1,

wk = [eiτ
k
1 · · · eiτ

k
q ], τ kj ∈ [0, 2π ), k = 1, 2 . . . ,K − 3,

j = 1, . . . , q, and Pk,j, k = 1, . . . ,K−2, j = 1, 2, 3, are q×q
permutation matrices. This SCDMA code family has a load
of K/(K − 2). Permutation matrices Pk,j should be carefully
selected to avoid short cycles, and vectors vk ,wk should
be optimized to achieve the maximum minimum distance.
Since if we delete edges corresponding to wkPk+1,2, k =
1, 2 . . . ,K − 3, in Construction 2 the graph will be cycle-
free, we have used the simplified labeling for the remaining
tree graph. �
Example 5 (An Optimal 8-User, 4-Resource SCDMA

Code): Consider K = 4, q = 2 in Construction 2. By
selecting P1,1 = P1,2 = P1,3 = P2,1 = P2,3 = I and
P2,2 = P defined in (12), the generated factor graph has
only one length-8 cycle. Since the graph will be cycle-free by
deleting the edge in ϕ = {e3,6}, using Theorem 3, we obtain
the following optimal signature matrix

Sopt4,8=


1 0 eiθ2 0 eiθ4 0 0 0
0 eiθ1 0 eiθ3 0 eiθ5 0 0
0 0 eiθ2 0 0 eiθ3,6 eiθ6 0
0 0 0 eiθ3 eiθ4 0 0 eiθ7


where (θ1, . . . , θ7) = (0.2618π, 0.1435π, 0.1279π,
0.2297π, 0.3505π, 0.3935π, 0.361π ) and θ3,6 = 0.2269π .
Its load is 2 and the minimum code distance is dmin(S

opt
4,8) =

0.8305. �
Remark 2: If we allocate the single-resource optimal sig-

nature vector for each row of S(K−2)q,Kq in Construction 2,
using Lemma 6, we can show that the minimum distance
dmin(SKq,(K−2)q) ≥ min{d3

√
K − 2,

√
2}. For K ≥ 13, the

minimum distance is
√
2, which achieves the upper bound of

Corollary 1. �
Note that although full search is auxiliarily used to obtain

the optimal matrix in both constructions, its complexity is
tractable due to the use of Corollary 3. For example, let1θ be
the search step interval, the required tentative searching times
in Examples 3, 4, and 5 are about (K − 1) π

21θ +
2π
1θ

.

VI. SIMULATIONS
In this section we provide error performance simulations for
the (uncoded) SCDMA codes designed in Sections IV and V
and turbo-coded SCDMA over the AWGN channel.

FIGURE 4. WER of optimal tree SCDMA codes, i.e., two and three-user
single-resource optimal codes obtained in TABLE 1 and optimal codes
constructed in Example 1 with K = 3,4, under ML detection and their
union bounds (dashed lines). The WER of two-user suboptimal signature
[1,eiπ/4] used in [18] and [19] and its union bound (dashed line) are also
illustrated. Note that the union bounds are mostly overlapped with the
simulation results.

A. UNCODED SCDMA
Figure 4 illustrates theWER curves (solid lines) and the union
bounds (dashed lines) for optimal tree SCDMA codes, i.e.,
two and three-user single-resource (N = 1) optimal codes
obtained in TABLE 1 and optimal codes constructed in Exam-
ple 1 with K = 3, 4, under ML detections. For these codes,
the ML and BP detections have exactly the same perfor-
mance. It shows that the code with a higher load has a higher
WER because a higher load results in smaller minimum code
distances and more error events (larger distance enumera-
tor coefficients). The two-user optimal signature [0, eiπ/6]
has an asymptotic performance gain of near 2 dB over the
suboptimal signature of [0, eiπ/4] used in [18] and [19]. All
simulations coincide well with their union bound (7) in most
the area except a little mismatch in the low WER regime.
Therefore, the union bound gives a good estimation for the
WER of ML detection.

Figure 5 illustrates the WER of 6-user 4-resource SCDMA
codes: the optimal codes obtained in Examples 2, 3, and the
code with Latin-rectangular labeling proposed in [7] and [13]
under BP detections and their union bounds. The code
obtained in Example 2 with the optimal signature has the
best union bound since it has the maximum minimum code
distance. The union bound is near 1 dB better than that
of the code with Latin-rectangular labeling proposed in [7]
and [13]. For the WER simulation under BP detection with
L = 4 and 8 iterations, the optimal signature has asymp-
totic performance gains of about 1 dB and 0.5 dB over the
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FIGURE 5. WER of 6-user 4-resource SCDMA codes (the optimal codes
obtained in Examples 2, 3, and the code with Latin-rectangular labeling
proposed in [7] and [13]) under BP detections with L = 4,6,8 iterations
and their union bounds.

Latin-rectangular labeling. However, both of their WER
under BP detection with 8 iterations are more than 1 dBworse
than their union bounds due to too many short cycles in their
factor graph. Although the code designed in Example 3 of
Construction 1 has a slightly worse union bound than that
of the code obtained in Example 2, its BP detection with 6
iterations converges to its union bound, which means that
its BP detection may converge to its ML detection. It has
a performance gain of more than 1 dB under BP detection
over the optimal code obtained in Example 2 with even fewer
iterations.

Figure 6 illustrates the WER of the optimal 8-user
6-resource and 8-user 4-resource SCDMA codes designed
in Examples 4 and 5 under BP detections with L = 2, 4, 6
iterations and their union bounds. With 6 iterations, their BP
detections converge to or even exceed their union bounds
which means that their BP detections may converge to their
ML detections.

Let’s consider their BP detection complexities. As
mentioned in Section II-B.2, the complexity of an SCDMA
decoding is manly determined by the code node degrees
and the iteration numbers. The factor graph of the code in
Example 2 has 4 degree-3 code nodes, and its BP detection
requires 8 iterations to converge (according to our simulation
observations). The factor graphs of the codes designed in
Examples 3–5 have 2, 2, and 4 degree-3 code nodes, respec-
tively, and their BP detections only require 6 iterations to
converge. Let CEg.j denote the detection complexity of the
code designed in Example j. Based on a full consideration of
their code node degree profile and iteration number, we can
rank their complexities as CEg.2 > CEg.5 > CEg.4 > CEg.3.

FIGURE 6. WER of the optimal 8-user 6-resource and 8-user 4-resource
SCDMA codes obtained in Examples 4, 5 under BP detections with
L = 2,4,6 iterations and their union bounds.

B. TURBO-CODED SCDMA
In this section, we give bit-error-rate (BER) simulations of
turbo-coded SCDMA systems with QAMmodulation, where
the FEC code in Fig. 1 is realized by a turbo code. Here
the turbo code we considered consists two 8-state paral-
lel concatenated convolutional codes with generator matrix
[1, 1+D+D3

1+D2+D3 ], which is used in 3GPPLTE networks. By punc-
turing its parity bits, we can obtain different turbo encoding
rates: 1/3, 1/2, 2/3, 4/5. For all the simulations, the data
stream length for turbo encoding of each user is 1024. For
both BP and approximate BP detections, the global decoding
iteration (each global iteration includes a turbo decoding
iteration and an SCDMA iteration) number is 30, which is
enough for all the considered decodings converge to their best
performances.

Moreover, codes given by Example 1 and Construc-
tions 1, 2 have irregular effective spreading profiles, i.e.,
effective spreading lengths for symbols of different users
may be different. To realize user fairness, we alternately
use column permutations of a signature matrix so that
each user’s symbol is spread with equal effective spreading
length in average sense. For example, the signature matrix
given in Example 3 has effective spreading length profile
(1, 1, 2, 2, 2, 2) for the six users. In our simulations, we divide
the modulated symbol stream within a turbo codeword of
each user into three sub-streams with equal length. The first
sub-streams of the six users are spread based on signature
matrix S̄opt4,6 in Example 3. For the second and third sub-
streams we use permuted matrices S̄opt4,6P(1, 3)P(2, 4) and
S̄opt4,6P(1, 5)P(2, 6), respectively, whereP(i, j) is a 6×6 column
permutation matrix that swaps columns i and j. The permuted
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signature matrices have the same distance property with
the original matrix but have the effective spreading length
profiles (2, 2, 1, 1, 2, 2) and (2, 2, 2, 2, 1, 1), respectively. By
doing this, the average effective spreading length for each
symbol, which is the same for each user, becomes 1/3 + 2 ·
1/3 + 2 · 1/3 = 5/3. Therefore, the detection error rate of
each user will also be the same.

FIGURE 7. BER of turbo-coded (with turbo coding rates 1/3 and 1/2)
6-user 4-resource SCDMA codes (the optimal code obtained in Example 2
and the code with Latin-rectangular labeling proposed in[7] and [13])
under BP and approximate BP (ABP) detections with 30 iterations.

Figure 7 illustrates BER of rate-1/3 and 1/2 turbo-coded
6-user 4-resource SCDMA systems under BP and approxi-
mate BP (ABP) detections, where the optimal SCDMA code
obtained in Example 2 and the code with Latin-rectangular
labeling proposed in [7] and [13] are considered. The sum
communication rates of these two turbo-coded SCDMA sys-
tems are 1/3 · 3/2 · 2 = 1 bit/resource and 1/2 · 3/2 · 2 =
3/2 bit/resource. The rate-1/3 turbo-coded SCDMA system
with the optimal SCDMA code designed in Example 2 has a
performance gain of about 0.1 dB over the same rate SCDMA
system with Latin-rectangular labeling under both BP and
ABP decodings. This gain increases if we considered a higher
rate turbo code, which works at a higher Eb/N0 regime, i.e.,
the gain increases to 0.2 ∼ 0.4 dB for the rate-1/2 turbo-
coded SCDMA system. Comparing with BP decoding, the
performance loss of the ABP is about 0.1 dB for rate-1/3
turbo-coded SCDMA system in the low Eb/N0 regime since
the interference term in (4) is very similar to Gaussian. This
performance loss increases to 0.4 ∼ 0.55 dB in the high
Eb/N0 regime for the rate-1/2 turbo coded SCDMA system.

Figure 8 illustrates the BER of rate-2/3 and 4/5 turbo-
coded SCDMA systems under BP detection, where the
optimal codes obtained in Examples 2, 3 and the code
with Latin-rectangular labeling are considered. The rate-2/3

FIGURE 8. BER of turbo-coded (with turbo coding rates 2/3 and 4/5)
SCDMA codes (the optimal codes obtained in Examples 2, 3 and the code
with Latin-rectangular labeling) under BP detection with 30 iterations.

turbo-coded SCDMA system with the optimal SCDMA
codes designed in Examples 3 has a slightly better BER
than the code designed in Examples 2 and has a perfor-
mance gain of about 0.5 dB over the code with the Latin-
rectangular labeling. They have the sum communication rate
of 2 bit/resource. For an even higher encoding rate, i.e.,
a rate-4/5 turbo-coded SCDMA system that works in the
higher Eb/N0 regime, this gain increases and the code in
Example 3 has larger performance gains of about 0.4 dB and
1 dB over the code in Example 2 and the code with the Latin-
rectangular labeling. In this case, the sum communication rate
reaches 12/5 bit per channel use.

Figure 9 compares four pairs of turbo-coded SCDMA
systems:

a) Rate-2/3 turbo-coded SCDMA systems with the
(K = 3)-user 2-resource optimal tree SCDMA code con-
structed in Example 1 and (K = 6)-user 4-resource SCDMA
code designed in Example 3. Their communication rate is 2
bit/resource.

b) Rate-4/5 turbo-coded SCDMA systems with the
(K = 4)-user 3-resource optimal tree SCDMA code con-
structed in Example 1 and (K = 8)-user 6-resource SCDMA
code with the optimal SCDMA code designed in Example 4.
Their communication rate is 32/15 bit/resource.
c) Rate-4/5 turbo-coded SCDMA systems with the

(K = 3)-user 2-resource optimal tree SCDMA code con-
structed in Example 1 and (K = 6)-user 4-resource SCDMA
code designed in Example 3. Their communication rate is
12/5 bit/resource.

d) Rate-4/5 turbo-coded SCDMA systems with the two-
user single-resource optimal SCDMA code obtained in The-
orem 2 and (K = 8)-user 4-resource SCDMA code designed
in Example 5. Their communication rate is 16/5 bit/resource.
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FIGURE 9. BER of turbo-coded (with turbo coding rates 2/3 and 4/5)
SCDMA codes (the optimal codes obtained in Examples 1, 3-5, and
two-user single-resource SCDMA with optimal [Theorem 2] and
suboptimal [18], [19] labeling) under BP detection with 30 iterations.

Each pair has the same communication rate but the code
with more users has a steeper BER curve, better asymptotic
BER performance, due to the joint multi-user processing
gain. The rate-4/5 turbo-coded two-user single-resource opti-
mal SCDMA code still has a 1 dB performance gain over
the same rate turbo-coded suboptimal SCDMA code used
in [18] and [19].

VII. CONCLUDING REMARKS
We proposed a code distance analysis and signature optimiza-
tion for practical SCDMA systems with a finite number of
users and spreading lengths. Good SCDMA codes that work
well under both BP and ML detections with low detection
complexities are constructed. The constructed codes can sup-
port very diverse high-rate services and can be applied to to
the future 5G NOMA systems.

In our code distance analysis, we only considered uncoded
SCDMA systems, i.e., without FEC code, and SCDMA
with QAM and equal power for each user. One possible
extension is to do distance analysis for coded SCDMA
systems, which leads to a joint FEC and SCDMA code
design. The new system can be treated as a concate-
nated code. Some works related to a concatenated code are
given in[22]–[24]. Another possible extension is to con-
sider a more general modulation and unequal-power user
transmission.

Although we focused on SCDMA systems, our design is
also applicable to several similar well-documented system
proposals, such as TCMA, low density spreading, and super-
position modulation.

APPENDIX A
PROOF OF THEOREM 2
Proof:We first prove that there exists an optimal signature

matrix in [1, eiθ ], θ ∈ [0, π/4). According to Corollary 2,
optimal signature matrix exists in [1 eiθ ], θ ∈ [0, π/2).
Moreover, signaturematrices S = [1, ei(π/4+θ )], θ ∈ [0, π/4)
and S∗ = [1, ei(π/4−θ )] give the same distance enumerator
function since for any u = [u1, u2] ∈ 4X 2,

F(S∗,u) = |u1 + ei(π/4−θ )u2| = |u1 + e−i(π/4−θ )u2|

= |u1 + ei(π/4+θ )u2e−iπ/2| = F(S,u∗)

holds with u∗ = [u1 u2e−iπ/2] ∈ 4X 2, where u is the
complex conjugate of u.
To continue prove Theorem 2, we simplify the expression

of minimum distance as

min
u∈4X ,u6=0

|u1 + s2u2|

= min
{

min
u2∈4X

|
√
2+ s2u2|, min

u2∈4X
|
√
2(1+ i)+ s2u2|

}
due to the following facts:

for u1= 0, min
u2∈4X ,u2 6=0

|u1+s2u2|=
√
2≥ min

u2∈4X
|
√
2+s2u2|,

for u1=±
√
2,±
√
2i, min

u2∈4X
|u1+s2u2|= min

u2∈4X
|
√
2+s2u2|,

for u1=±
√
2(1+ i),±

√
2(1− i),

min
u2∈4X

|u1 + s2u2| = min
u2∈4X

|
√
2(1+ i)+ s2u2|.

Since for any s2 = eiθ , θ ∈ [0, π/4), the following
holds

min
u2∈4X

|
√
2+ s2u2|

=
√
2min {|1− s2|, |1+ (−1+ i)s2|} ,

min
u2∈4X

|
√
2+
√
2i+ s2u2|

=
√
2min {|1+ i− s2|, |1+ i− (1+ i)s2|} ,

|1− s2| ≤ |1+ i− (1+ i)s2|,

|1+ (−1+ i)s2|

= | − s2(1+ (−1+ i)s2)| = |1+ i− s2|

we obtain the final expression of minimum distance as

dmin(S) =
√
2min {|1− s2|, |1+ i− s2|} .

Since for s2 = eiθ , θ ∈ [0, π/4), |1 − s2| increases as θ
increases, and |1+i−s2| decreases as θ increases, the optimal
s2 should satisfy |1 − s2| = |1 + i − s2|, which leads to
s2 = eiπ/6, i.e., Sopt = [1, eiπ/6] with dmin(Sopt) =

√
3− 1.

The theorem is proved. �

APPENDIX B
PROOF OF LEMMA 6
Proof: Let β ⊆ K 1

= {1, . . . ,K } be an index subset. Let
U(β) = {u|u ∈ 1XK , uk 6= 0 for k ∈ β, uk = 0 for k ∈ β̄},
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where β̄ is the complementary set of β. From Lemma 1,

dmin(S) = min
β⊆K,β 6=φ

min
u∈U (β)

F(S,u)

= min
β⊆K,β 6=φ

min
u∈U (β)

√√√√√∑
n∈γ

∣∣∣∣∣∣
∑
k∈β

sn,kuk

∣∣∣∣∣∣
2

where γ = {n|n ∈ N, sk,n 6= 0 for some k ∈ β}. Since each
row of S is a length-q optimal signature vector for a single-
resource SCDMA system, for a given n ∈ γ ,∣∣∣∣∣∣
∑
k∈β

sn,kuk

∣∣∣∣∣∣ ≥ 1{|β∩{k|sn,k 6=0}|=1}δ1 + 1{|β∩{k|sn,k 6=0}|>1}δq

hold for any u ∈ U(β), where 1{E} = 1 if E holds, otherwise,
1{E} = 0. Since δ1 > δq,

∣∣∣∑k∈β sn,kuk
∣∣∣ decreases as |β ∩

{k|sn,k 6= 0}| increases. Moreover, since |β ∩{k|sn,k 6= 0}| ≤
dn, where dn is the degree of the n-th code node in G\γ̄ , we
have ∣∣∣∣∣∣

∑
k∈β

sn,kuk

∣∣∣∣∣∣ ≥ 1{dn=1}δ1 + 1{dn>1}δq√√√√√∑
n∈γ

∣∣∣∣∣∣
∑
k∈β

sn,kuk

∣∣∣∣∣∣
2

≥

√
n1(G\γ̄ )δ12 + n2(G\γ̄ )δq2

for any u ∈ U(β). Since by varying β, γ̄ can be any proper
subset of N, by denoting α = γ̄ we obtain

min
β⊆K,β 6=φ

min
u∈U (β)

√√√√√∑
n∈γ

∣∣∣∣∣∣
∑
k∈β

sn,kuk

∣∣∣∣∣∣
2

≥ min
α⊂N

√
n1(G\α)δ12 + n2(G\α)δq2.

The lemma is proved. �

APPENDIX C
PROOF OF THEOREM 3
Proof: We first prove that for each S ∈ SG there exists

S ′ ∈ S ′G(ϕ) = {S|sn,k = eiθk , θ1 = 0, θ2, . . . , θK ∈
(−∞,∞), for en,k ∈ ϕ̄, and sn,k = eiθn,k , θn,k ∈

(−∞,∞), for en,k ∈ ϕ} with A(S ′,Z ) = A(S,Z ). We just
need to show that for a given S ∈ SG, there exists an S ′ ∈ S ′G
which is a row rotation of S. Assume that S is given. We
determine S ′ as follows. Since the zero elements in S ′ are
predetermined by the factor graph G, we only determine the
nonzero elements in S ′. The procedure is similar as that in the
proof of Theorem 1 except some modifications.

i. For each n ∈ {n|en,1 ∈ ϕ̄}, the n-th row of S ′ is a rotation
of the n-th row of S, i.e., s′n,k = sn,k/sn,1 for en,k ∈ E .
ii. Find a column of S ′ that satisfies the following two

conditions. a) The column has a determined labeling for an
edge in ϕ̄. b) The column has at least one undetermined
labeling for an edge in ϕ̄. If the m-th column is found and

s′j,m is the determined labeling for ej,m ∈ ϕ̄, For each n ∈
{n|en,m ∈ ϕ̄, n 6= j}, the n-th row of S ′ is a rotation of the n-th
row of S, i.e.,s′n,k = s′j,msn,k/sn,m for en,k ∈ E .

iii. If all the labelings for the edges in ϕ̄ are determined,
terminate the procedure, otherwise, repeat step ii.

Note that if there are still undetermined labelings for edges
in ϕ at the end of the procedure, we simply use the same
labeling as in S. Moreover, the above procedure only applies
to the case that the remaining graph after deleting edges in ϕ
is connected, otherwise, if it contain multiple trees, we can
label each of them independently in a similar way.

Step ii can always be successful since the remaining graph
with edges in ϕ̄ is a tree. Step ii guarantees that labeling in
each column for the edges in ϕ̄ are the same.

Applying the column rotation invariance property of
Lemma 3, we can get a matrix S∗ ∈ S∗G(ϕ) = {S|sn,k =
eiθk , θ1 = 0, θ2, . . . , θK ∈ [0, π2 ), for en,k ∈ ϕ̄, and sn,k =
eiθ
′
n,k , θ ′n,k ∈ [0, 2π ), for en,k ∈ ϕ} through column rotations

from S ′ with A(S∗,Z ) = A(S ′,Z ) = A(S,Z ). Thus, the
theorem is proved. �
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