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ABSTRACT Path planning is an important problem in autonomous control technology. This paper aims
to overcome the shortcomings of the wolf pack algorithm (WPA), such as slow rate of convergence and
low convergence precision, by improving the three intelligent behaviors of the WPA, namely, scouting,
summoning, and beleaguering. To improve the scouting behavior, interactive scouting is proposed to increase
the interactivity among wolf pack. Furthermore, to improve the summoning behavior, a prey-based adaptive
step model is established to improve the searching ability. Finally, calculation rules of new beleaguering
behavior are designed, which enhance the local fine search ability considerably. A fast path planning method
based on dubins path was proposed, which applied the dubins path planning to meet angle control constraint
and tunes the turning radius to meet control constraint. The dubins path planning method based on the
modified WPA is proposed by establishing the underwater environment threat model under the condition
of autonomous underwater vehicle constraint. The path between the path points is the shortest, the threat
is minimal, and the energy consumption is the least without the consideration of ocean current. Simulation
results show that the modified WPA has a high rate of convergence and good local search capability in the
high-precision, high-dimensional, and multi-peak function; moreover, it does not converge prematurely.

INDEX TERMS AUV, path planning, modified wolf pack algorithm, autonomous underwater vehicles.

I. INTRODUCTION
Resource depletion, population growth, and environmental
degradation are three major problems that have plagued
humankind for a long time. With the progress of science
and the development of human society, resource depletion
has emerged as the primary problem that could threaten the
survival of humankind [1]. It is well known that 70% of the
earth’s surface is covered by water. Although the underwater
environment is rich in resources, it is extremely difficult for
human beings to harness those resources. With the devel-
opment of automation technology and the advancement of
unmanned technology, the risk associated with underwater
exploration has been reduced considerably. Among the avail-
able technologies, autonomous underwater vehicles (AUV)
are highly advantageous for the exploration of underwater

resources owing to their low cost and superior
performance [2].

In unmanned underwater control domain, an efficient and
accurate path planning method is crucial, because it enables
an AUV to complete a task successfully while exhibiting
excellent performance in underwater exploration. The path
planning is the planning of an optimal path for the AUV
from the deployment platform to the intended target with
the shortest distance and minimum risk under the limitations
of AUV performance and marine environment complexity
[3]–[5]. Schematic diagram is shown in figure 1.

There are some typical path planning algorithms such
as A∗ modifications, JPS, D∗, Phi∗ and RRT algorithms
[9]–[14]. Existing path planning methods mainly involve
land-based 2D planar path planning [25]. Compared with
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FIGURE 1. Path planning diagram.

2D environments, 3D environments have not been investi-
gated extensively, especially with regard to underwater 3D
path planning [5]. Owing to the non-linearity of underwa-
ter motion and the high complexity of the marine environ-
ment, land-based algorithms cannot be employed directly
for underwater applications. A few solutions have been pro-
posed for AUV. Cao et al. [6] proposed a new path planning
method using a genetic algorithm combined with 3D dubins
motion for an underwater glider in a 3D environment and this
method can save the consumption of energy in a further way.
Dong et al. [7] proposed a new path planning algorithm
based on an extreme learning machine, which is different
from analytic functions. However, this method has some
limitations that the map of the environment must be built
and the vehicle has been able to localize itself, the high-
level task of path planning must be achieved in order for the
platform to complete its mission objectives. Gautam et al. [8]
solved the path planning problem by combining biologically
inspired algorithms such as the flower pollination algorithm
and the genetic algorithm. This method turns out to be better
in computational complexity and simulation environment.

3D path planning problems are eventually converted into
mathematical problems involving solving functions and intel-
ligent algorithms are inevitably applied [15], [24]. By imitat-
ing the characteristics of wolf pack and exploiting concept
of the survival of the fittest, the present paper proposes an
improved wolf pack algorithm (WPA) [21]–[23]. To over-
come the shortcomings of the wolf pack algorithm, such as
slow rate of convergence and low convergence precision, by
improving the three intelligent behaviors of wolf pack algo-
rithm, namely scouting, summoning, and beleaguering. To
improve the scouting behavior, interactive scouting is pro-
posed to increase the interactivity among wolf pack. Further,
to improve the summoning behavior, a prey-based adaptive
step model is established to improve the searching abil-
ity. Finally, calculation rules of new beleaguering behavior
are designed, which enhance the local fine search ability con-
siderably. The simulation results show that the modified wolf
pack algorithm has high rate of convergence and good local
search capability in the high-precision, high-dimensional,
multi-peak function, moreover, it does not converge prema-
turely. Artificial wolves can not only perceive information
from their companions but also transmit prey information,
which allows for effective control of the balance between
global searching and local searching. In addition, the raiding

step length was modified from a fixed value to an adaptive
value to improve the global prey searching ability, preventing
the algorithm from falling into local optima. In order to
meet AUV constraints, a fast path planning method based on
dubins path which applied the dubins path planning to meet
angle control constraint and tune the turning radius to meet
control constraints was proposed.

The remainder of this paper is organized as follows.
Section II establishes the mathematical models, including the
constraint function model of the underwater environment and
the fitness function model that ensures good performance of
AUV. Section III describes the modified wolf pack algorithm
and explains how to apply this algorithm to 3D underwater
path planning. Section IV describes the simulation of the
modified wolf pack algorithm, and compares the modified
wolf pack algorithm with the original wolf pack algorithm in
terms of path planning. The simulation results show that the
modified wolf pack algorithm requires fewer parameters for
3D underwater path planning, has better global search ability,
can be quickly optimized without falling into local optima,
and exhibits stronger computational robustness in complex
environments. Finally, Section V concludes the paper and
briefly explores directions about how to evolve the energy
saving performance on MAUV for future work.

II. ESTABLISHMENT OF MATHEMATICAL MODELS
Three-dimensional underwater path planningmainly refers to
the planning of an optimal path for an AUV from the deploy-
ment platform to the intended target with the least energy
consumption, minimum risk, and stealthiest route under the
limitations of AUV performance and marine environment
complexity. Therefore, the path planning problem can be
transformed into the optimal control problem with composite
constraints. In order to use the proposed algorithm to optimize
the calculation, besides to establishing the AUV underwater
kinetic equation, the constraint function model and the fitness
function model must be established.

A. CONSTRAINT FUNCTION MODEL
1) ENVIRONMENTAL THREATS CONSTRAINT
The AUV enters a predetermined sea area from the deploy-
ment platform to carry out resource exploration or cruises
through the target area to find enemy targets using the
sonar system. Therefore, it is faced with many environmental
threats. Data of potential threats in the target area can be
measured through the deployment platform and information
fusion can yield accurate information. In this study, the terrain
obstacles and threats such as underwater continental shelf,
continental slope and trench are translated into mountain
peaks of various shapes [20].

Equating the environmental and terrain threats to particular
terrain, and superimposing the location and action onto a
digital map are equivalent to changing the virtual terrain, and
treating the terrain as a prohibited area. After this processing,
the known terrain obstacles and threats in the region are
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merged into integrated terrain information, which simplifies
the path planning problem considerably. According to the
equivalent method, the threats and terrain obstacles in the
underwater environment are modeled. The constraint func-
tion model is expressed as follows:Z (x, y) = h0 +

N∑
j=1

hmax
j · e

−[
kxj ·(x−x

max
j )

xmax
j

]2−[
kyj ·(y−y

max
j )

ymax
j

]2

Z (x, y) < hmax

(1)

where h0 is the height of the seabed plane relative to the
reference terrain, and N is the number of threats in the seabed
environment, i.e., the number of slopes and terrains. When N
increases, the environment becomes more complex and more
threats. Further, hmax

j is the height of the vertex of the jth
equivalent threat, xmax

j and ymax
j are the corresponding X-axis

and Y-axis coordinates of the jth equivalent threat point, kxj
and kyj are the corresponding X-axis and Y-axis slopes of the
jth equivalent threat, respectively. The larger the values of
kxj and kyj , the steeper is the axis, i.e., the faster is the rise,
and vice versa. In addition, x and y are the corresponding
X-axis and Y-axis coordinates, Z is the depth corresponding
to each point on the plane, and hmax is the maximum depth
of the ocean relative to the reference terrain. The equivalent
constraint function model of environmental constraints and
terrain threats is shown in figure 2.

FIGURE 2. Environmental constraints and terrain threats.

2) AUV PERFORMANCE CONSTRAINTS
In practice, AUV limits the maximum turning angle. The
previous path planning method cannot be directly applied,
need to be smooth improvement. In this section, according
to the AUV performance constraints, the dubins path is used
to smooth the path.

a: DUBINS PATH
In the previous path planning study, the curve of the path
planning often has a large corner between the path points.
Under the realistic condition, there are position information
and velocity information at each position of AUV for every
time, previous path planning study can’t meet the require-
ments of path planning in realistic condition. Therefore, it
is necessary to find the optimal path between the initial

TABLE 1. Situations of existing motion types.

position (starting position) and the end position under the
direction [17].

The optimal path based on dubins is the constraint on the
maximum turning angle of AUV, only the path that satisfies
the maximum turning angle is the feasible path. The optimal
dubins path exists among six types, which can be divided
into two families. The first family starts with a left (L) or
right (R) turning, follows by a straight segment (S), and
ends up with a left or right turning (denoted by LSR, LSL,
RSL and RSR, respectively). In the other family, an arc of
circle can be followed with opposite directions instead of the
straight segment (denoted by RLR and LRL) under certain
circumstances.

The existence of each situation is based on the initial
conditions, varies from 4 to 6 types accordingly. Establishing
the earth-frame at the initial point A with x-axis pointing
to the initial heading, and define B = (xf yf ), ψf are the
destination and final heading; rmin is the turning radius. The
centers of the left/right turn in dubins motion are denoted by
OAL , OAR, OBL and OBR. The existences of motion types are
shown in table 1.

According to the table above, the first family starts with
a left (L) or right (R) turning, follows by a straight segment
(S), and ends up with a left or right turning, besides LSR and
RSL, there always exist a dubins path, LSR and RSL path
need to exist OALOBR < 2rmin and OAROBL < 2rmin. In
the other family, the distance between the centers of the two
minimum radii requires more than four times the minimum
turning radius.

Therefore, the final path planning needs to meet the AUV
minimum turning radius of the constraints.

This paper describes the problem by taking the dubins
curve of LSR motion type as an example. LSR path as shown
in figure 3.

As shown in figure 3, the AUV starts at M with the angle
α and the speed vector a1. When the AUV takes O1 as the
center and r1 as the radius around θ1, the AUV moves in a
straight line until it enters the radius of round 2. Like the
motion of round 1, the AUV eventually moves along the a2,
and complete the switch of direction.

In the figure 3, α and β are the AUV initial angle, and
the specified termination angle, r1s, r1f, r2s and r2f are the
vectors of arc to center. a1 and a2 are the starting vector and
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FIGURE 3. LSR path.

the terminal vector of the two arcs respectively. a is a tangent
vector connecting two arcs, and the length of the vector is a.
r1, r2, θ1 and θ2 denote the radius of the arcs and the turning
angles.M (x0, y0) and T (xe, ye) represent the coordinate of the
starting point and the turning end point respectively.

where rmin = 8000, x0 = 40000, y0 = 30000, α = 135◦,
and β = 180◦. The LSR path with the minimum turning
radius is the path with the shortest distance between the two
points that satisfies the angle constraint. As the radius of the
turn increases, the paths that satisfies the angle constraint and
sailing distance are shown in figure 4 and figure 5.

FIGURE 4. Schematic diagram of path variation with rmin.
With the increase of the turning radius, the LSR range is

linearly increased. When the radius increases to two rounds,
the straight-line distance is zero, and then the radius is
increased to meet the requirement of CLC (circle-line-circle)
smooth connection. The path is CC (circle-circle) path, and
the range meets the angle of the maximum range of con-
straints. Sailing distance is the maximum range that satisfies
the angle constraint. The minimum turning radius must be
maintained between the two stroke points to minimize the
range, so that the length of the sailing distance is highly
dependent on the performance of AUV. When the perfor-
mance of AUV is higher, and the smaller the minimum turn-
ing radius is satisfied, a more excellent path can be obtained.

FIGURE 5. Variation of navigation distance with rmin.

b: DUBINS PATH PARAMETER CALCULATION
The previous path planning algorithm divides the space into
the form of grid. Path planning is achieved by extending
nodes and grids. However, the method of node connection is
difficult to adapt to the specific direction of movement and
motor performance limits, and the path must be smooth. The
dubins curve is calculated by using the constraints of AUV.
The path is shown in figure 3, and the dubins path parameters
are solved in this section.

According to the definition of α, β, θ1, θ2 and the con-
straints, we can get equation 2.

θ1 − θ2 = −α + β (2)

The starting point isM , the end point is T , and the position
transformation vector p can be written as follows:

p = r1s − r1f + a+ r2s − r2f (3)

where ris and rif(i = (1, 2)) are the two center vectors of
the ith arc.

r1s = r1

[
cos(π2 + α)
sin(π2 + α)

]
= r1

[
− sinα
cosα

]
(4-a)

r1f = R(θ1)r1s = r1R(θ1)
[
− sinα
cosα

]
(4-b)

a = aR(θ1)
[
cosα
sinα

]
(4-c)

r2s = −
r2
r1
r1f = −r2R(θ1)

[
− sinα
cosα

]
(4-d)

r2f = −
r2
r1
R(−θ2)r1f = −r2R(−θ2)Rθ1)

[
− sinα
cosα

]
(4-e)

p =
[
xe − x0
ye − y0

]
(4-f)

where R(θ ) is the rotation matrix, and θ is a positive value
representing counterclockwise rotation.

R(θ ) =
[
cos θ − sin θ
sin θ cos θ

]
(5)
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According to equation 4, equation 3 can be written as
follows:[

xe − x0
ye − y0

]
= r1

[
− sinα
cosα

]
− r1R(θ1)

[
− sinα
cosα

]
+ aR(θ1)

[
cosα
sinα

]
− r2R(θ1)

[
− sinα
cosα

]
+ r2R(−θ2)R(θ1)

[
− sinα
cosα

]
(6)

xe−x0 = −r1 sinα−(r1+r2)(− cos θ1 sinα−sin θ1 cosα)
+ a(cos θ1 cosα − sin θ1 sinα)
+ r2(−cos(θ1−θ2) sinα−sin(θ1−θ2) cosα) (7-a)

ye−y0 = r1 cosα − (r1 + r2)(cos θ1 cosα − sin θ1 sinα)
+ a(sin θ1 cosα − cos θ1 sinα)
+ r2(cos(θ1−θ2) cosα − sin(θ1 − θ2) sinα) (7-b)

Simplify the formula 7, and together with equation 2, we
can get equation 8.

xe − x0 = −r1 sinα + (r1 + r2) sin(α + θ1)
+a cos(θ1 + α)− r2 sinβ

ye − y0 = r1 cosα − (r1 + r2) cos(α + θ1)
+a sin(θ1 + α)+ r2 cosβ

θ1 − θ2 = −α + β

(8)

The minimum turning radius r as a constraint can be cal-
culated as follows:

r1 = r2 = rmin =
V 2

amax
(9)

Here, V is the sailing speed, and amax is the maximum accel-
eration that AUV can use for turning.

According to equation 9, we can get the formula as follows:

(xe−x0+rmin sinα+rmin sinβ) sin(α+θ1)
−(ye − y0 − rmin cosα − rmin cosβ) cos(α + θ1) = 2rmin

(10)

To facilitate writing, define intermediate variables:

c1 = xe − x0 + rmin sinα + rmin sinβ

c2 = ye − y0 − rmin cosα − rmin cosβ (11)

According to equation 10, equation 11 can be simplified as
follows:

c1√
c21 + c

2
2

sin(α+θ1)−
c2√
c21+c

2
2

cos(α+θ1)=
2rmin√
c21 + c

2
2

(12)

Define the intermediate variable γ ,

cos γ =
c1√

c21 + c
2
2

sin γ =
c2√

c21 + c
2
2

(13)

γ =


γ0 sinγ > 0& cos γ > 0
2π + γ0 sinγ < 0& cos γ > 0
π − γ0 cos γ > 0

(14)

According to equation 14, equation 12 can be defined as
follows:

sin(α + θ1 − γ ) =
2rmin√
c21 + c

2
2

(15)

Considering the interval of the trigonometric function, the
general solution of θ1 can be obtained from rmin > 0:

θ1 =


2kπ + arcsin

2rmin√
c21 + c

2
2

+ γ − α

(2k + 1)π + arcsin
2rmin√
c21 + c

2
2

+ γ − α

(16)

The complete path of the dubins curve can be obtained
from the above calculations. According to the formula 16 and
formula 8 can be obtained θ2 and a, thus dubins curve path
parameters have been solved.

B. FITNESS FUNCTION MODEL
The AUV needs to consider not only the energy consumption
from source to destination but also the degree of danger
during the voyage. Therefore, it needs to determine the short-
est travelling distance and effectively avoiding the threat of
collision. If the entire path is divided into n + 1 segments, then
the fitness function model will be equivalent to the following
equation:

F =
n+1∑
i=1

(ω1li + ω2fi + ω3Ei) (17)

where li is the length of the ith segment, fi is the degree
of danger of the ith segment, and Ei is the energy consumed
of the ith segment. ω1 is the travel distance parameter, ω2 is
the travel threat parameter, and ω3 is the energy consumption
parameter. When ω1 is large, the AUV tends to travel through
the shortest path. Otherwise, it takes the longest path. When
ω2 is large, the AUV tends to avoid the environment threat by
circumventing it. On the other hand, the AUV tends to pass
through the environment whenω2 is small, avoiding the threat
by moving up or down. When ω3 is large, the AUV tends to
pay attention to the minimum consumption of AUV energy
and vice versa. When ω2 = 0, the path planning of the AUV
depends entirely on the travelling distance. ω3 will determine
the impact of energy on path planning.

In the path planning methods, we need to pay attention
to AUV path length and energy consumption. Furthermore,
it is necessary to determine the best sailing depth when the
AUV travels under water. The risk factors increase with the
depth, and frequent up and down motions are not conducive
to effective AUV control. Such fluctuations have a significant
impact on the AUV performance. Hence, equation 17 can be
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rewritten as follows:

F =
n+1∑
i=1

[ω1

√
(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2

+ω2

√
zi − hideali

2
+ ω3Ei] (18)

where hideali is the ideal depth, meaning that it is safest
to travel at this depth. When ω1 is large, the AUV tends to
travel through the shortest path. Otherwise, it travels through
the longest path. When ω2 is large, the AUV tends to avoid
the threats. Therefore, in this study, to ensure that the AUV
travels through the shortest distance most safely, a large value
is assigned to ω1 and ω3 to achieve the shortest path and
minimal energy consumption, and a small value is assigned
to ω2 to avoid the threats.

In equation 18, Ei can be represented by the following two
parts:

Ei = Eb + Er (19)

where Eb and Er represent the energy consumed by the
buoyancy and rotary actuators.

When the height of the floating (dive) in the ith path is D,
there are:

Eb =
2m
ηbρ

(ρgD+ P0) (20)

where m is the quality of AUV, ηb is a constant described
by the buoyancy engine, ρ represents the density of the fluid
in which it is located, g denotes the gravitational acceleration,
and P0 is the standard atmospheric pressure.
When the starting position and the end position of ith path

changed, the energy consumed by the rotational actuator is
expressed as:

Er =
1
2ηr

a2rγ
4 (21)

where γ = (γ1 − γ0), γ1 and γ0 are the heading angles of
the end position and the starting position in the current path,
ηr is a constant associated with the rotational actuator, and ar
is a constant value.

III. PRINCIPLE OF WOLF PACK ALGORITHM AND THE
PATH PLANNING METHOD
A. WOLF PACK ALGORITHM
The development of intelligent algorithms, especially swarm
intelligence, has significantly affected our lives in various
aspects. In particular, it has promoted industrial development
and production. The main feature of an intelligent algorithm
is solution-finding performance. Wolf pack algorithm is a
swarm intelligence optimization algorithm that was originally
proposed in 2013. Since then, it has been employed in various
fields, such as medicine, 3D sensor optimization, artificial
neural networks, water conservation, and hydro power opti-
mization [14], [18], [19]. Owing to its highly promising
results, it has become one of the most popular intelligent

computing algorithms with excellent prospects [16]. Accord-
ing to the wolf pack hunting behavior and prey distribu-
tion method, the algorithm abstracts four types of intelligent
behaviors: scouting, summoning, beleaguering and popu-
lation renewing. According to these behaviors, wolf pack
algorithm exhibits the cooperation characteristics of wolf
pack and fully traverses all solutions in the given space. A
wolf pack consists of a lead wolf, scout wolves and fero-
cious wolves. The hunting process model is shown in
figure 6.

FIGURE 6. Hunting process model.

As is show in the figure 6, scout wolves and ferocious
wolves perceived companion information, by explore the
environment to perceive the prey and make the decision to
move to the prey, then the lead wolf can compare the wolf
pack information to complete the task of catching prey.

Through information transmission among one another as
well as the perception of environmental information, the
wolves coordinate and cooperate to complete the hunting
process. Although many problems remain to be solved in
the study of wolf pack algorithm, this paper presents a
modified wolf pack algorithm to improve the convergence
speed and convergence precision of the original wolf pack
algorithm.

1) BASIC CONCEPT
Assuming that the wolf pack is in an (N × D)-dimensional
space, where N is the total number of wolves and D is the
number of variables to be optimized, Xi = [x1, x2, · · · , xD]
represents the position of the ith artificial wolf in the D-
dimensional space, and xD denotes the location of the Dth
variable to be optimized within its optimal range. At this
time, the function to be optimized is Y = f (X ), where Y
represents the prey odor concentration of the artificial wolf,
i.e., the fitness function value. The wolf population is N, and
the lead wolf is the wolf that is closes to the prey among all
the wolves, i.e., it has the maximum value of the optimization
function. There is only one lead wolf. Scout wolves search for
prey in the given space. The number of scout wolves’ T takes
integer value in the range [N/(α + 1),N/α], where α is the
scout wolf ratio factor, which determines the proportion of
scout wolves in the wolf pack. Ferocious wolves hunt down
the prey. The number of ferocious wolves’ S equals the total
number of wolves minus the lead wolf and scout wolves,
expressed as N − T − 1.
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2) MODIFIED SCOUTING BEHAVIOR
When modifying the scouting behavior, the scout wolf is
treated as a basic unit in the calculation. First, the prey odor
concentration of scout wolf i distributed in the hunting space
is perceived. If the prey odor concentration of scout wolf i is
greater than the odor concentration at the position of the lead
wolf, i.e., Yi > Ylead , then scout wolf i replaces the lead wolf
to perform the summoning behavior, i.e., Ylead = Yi. During
the scouting behavior, if the prey odor concentration of scout
wolf i is lower than the odor concentration at the position of
the lead wolf, i.e., Yi < Ylead , then scout wolf i will take one
scouting step forward (stepa from its position according to
equation 22) in the p direction and record its current location
xnewid . Then, it will perceive the odor concentration for the next
step and record the odor concentration of the current position.

xnewid = xid + sin(2π + p/h) · stepa (22)

where h is the search direction factor, and the greater
the value of h, the finer the search is. However, if the
value of h is too large, the algorithm operation will be pro-
longed, and it increases the likelihood of the algorithm falling
into local extremum. To reduce the value of h, the search
becomes coarser and the computation time becomes shorter.
To enhance the communication between the lead wolf and
the scout wolves as well as the diversity of the wolves while
scouting, equation 23 is used to continue the search.

xnew
′

id = xid + ϕid (xbest,d − xid )+ φid (xjd − xhd ) (23)

where ϕid is a random number in the range [0 1], φid is
a random number in the range [-1 1], xjd and xhd are the
positions of scout wolf k and scout wolf h during scouting,
respectively. After the calculation of equation 23, the commu-
nication among the population is enhanced and the diversity
of the population is improved. By selecting the direction of
the highest odor concentration, taking a step forward, and
updating the location of the wolf, through the previous calcu-
lation, one can obtain T+1 odor concentrations Y [1 . . . T+1].
If the odor concentration is greater than that of the lead
wolf, i.e., Yinew > Ylead , then the scout wolf will replace
the lead wolf to perform the summoning behavior. Next, the
current position of the scout wolf will be updated and the next
scouting task will be performed until the maximum number
of scouts, Tmax is reached, after which the wolf pack will
transition into the summoning behavior.

3) MODIFIED SUMMONING BEHAVIOR
In the original summoning behavior, when the lead wolf
initiates the summoning behavior, the ferocious wolves will
rapidly move to the location of the lead wolf at a fixed raiding
step. During the process of moving toward the lead wolf
according to equation 24, the position of ferocious wolf i in
the D-dimensional space is given by

xk+1id = xkid + stepb · (g
k
d − x

k
id )/

∣∣∣gkd − xkid
∣∣∣ (24)

where xk+1id is the position of ferocious wolf i in the D-
dimensional space at the k+1th iteration, xkid is the position
of ferocious wolf i in the D-dimensional space at the kth
iteration, stepb is the raiding step, and gkd is the position of
the lead wolf in the D-dimensional space at the kth iteration.

However, such raiding can be regarded as an open-loop
process. If feedback is added to the raiding process, the infor-
mation exchange between the ferocious wolves, the lead wolf
can be increased, and the size of the step can be automatically
adjusted. When the odor concentration perceived by the fero-
cious wolf is approximately equal to the odor concentration
perceived by the lead wolf, the step size should decrease to
slowly approach the lead wolf. When the odor concentration
perceived by the ferocious wolf is significantly different from
the odor concentration perceived by the lead wolf, the step
size should increase, so that the ferocious wolves can get to
the position of the lead wolf rapidly. Equation 24 is improved
to obtain equation 25.{

xk+1id = xkid + step
k+1
bid

stepk+1bid = w · stepkbid · (g
k
d − x

k
id )/

∣∣gkd − xkid
∣∣ (25)

According to equation 25, the calling behavior is initiated,
where w is the odor weight, which lies in the range [0, 1].
Further, w is a self-adaptive value depending on the odor
concentration. The calculation formula for w is given by

w =

wmax −
(wmax−wmin) · (Fk−Fkmin)

(Fkavg−F
k
min)

, Fk ≤ Favg

wmax,Fk > Favg
(26)

wherewmax andwmin is themaximum andminimum values
of the scale factor, Fk is the lead wolf prey odor concentration
in the Kth iteration, Favg is the average of the current prey
odor concentration, and Fkmin is the minimum value of the
prey odor concentration in the Kth iteration. If the leader
of the prey odor concentration is greater than the average
concentration, w = wmax. In contrast, we will reduce the
value of w according to the formula 26.

Ferocious wolves approach the lead wolf from all direc-
tions. In this process, if a ferocious wolf perceives a higher
odor concentration than the lead wolf, i.e., Yi > Ylead , then
the ferocious wolf will replace the lead wolf and continue the
summoning behavior. Otherwise, the raiding will continue
until the distance between the ferocious wolves and the lead
wolf d ≤ dnear . At the same time, the algorithm enters the
beleaguering behavior. The calculation of dnear is shown in
equation 27.

dnear =
1

D · ω
·

D∑
d=1

|max
d
−min

d
| (27)

where dnear is the distance between the ferocious wolf
and the lead wolf when initiating the beleaguering behav-
ior, and ω is the distance determination factor, whose value
directly determines whether the beleaguering behavior is to
be entered. The larger the value of ω, the faster the conver-
gence is. However, an excessively large ω will make it very
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difficult for the algorithm to enter the beleaguering behav-
ior. Further, maxd and mind are the maximum and minimum
values in the D-dimensional variable range respectively.

4) MODIFIED BELEAGUERING BEHAVIOR
When the ferocious wolf is very close to the lead wolf, it
means that it is not far from the prey, thus, close beleaguering
is needed to capture the prey. It can be assumed that the direc-
tion of the lead wolf, which has the highest prey odor concen-
tration, is the prey direction, and that artificial wolves need
to advance at small steps to carefully search for the prey odor
concentration nearby, i.e., the fitness function value. Equation
28 is used to represent the modified beleaguering behavior of
the wolf pack.

xk+1id = xkid + ξ
k
· λ · stepc · |Gkd − x

k
id | (28)

where xkid is the position of the k-generation artificial wolf
in the D-dimensional space, stepc is the beleaguering step
length, and Gkd is the position of the k-generation lead wolf
in the D-dimensional space. Further, λ is a random number
in the uniform distribution [-1, 1], and ξ k is the beleaguering
adjustment value. The setting method is as follows:{

ξ0 = M
ξ k = c · ξ k−1

c ∈ [0.9, 0.999] , M = 1 (29)

In the beleaguering process, if the odor concentration per-
ceived by an artificial wolf is greater than the target odor con-
centration, then the position of the artificial wolf is updated
to the position of the target, otherwise, the target position is
not changed.

5) WOLF POPULATION REGENERATION
In nature, only wolves with strong capabilities can survive,
weaker wolves will starve to death. In order to avoid falling
into local optima, K new artificial wolves will be randomly
generated to replace K artificial wolves with the lowest capa-
bilities in the population. The larger the value of K, the greater
is the diversity and vitality of the wolf population. However,
if K is excessively large, the algorithm will be biased to
random search. On the other hand, if K is too small, the
algorithmwill fall into local optima. Therefore, K should take
integer values in the range [N/2× β,N/β], where β is the
population regeneration factor.

B. PATH PLANNING STEPS
The deployment platform is the starting point S for path
planning. The end point E is predicted as the end of path
planning. The segment from the X-axis coordinate of point
S to the X-axis coordinate of point E is divided evenly into
n parts, yielding points xi, i=[1,2...n]. The algorithm will
find the optimal point (yi, zi) in the x = xi plane, and Pi is
the optimal curve between the two planes. The calculation
method for the optimal curve is given. The distance from the
starting point to the end point is P.

Step 1. Parameter setting: Set the parameters required for
algorithm operation, such as the starting point coordinates
and end point coordinates of the AUV. Set the number of
artificial wolves N, the ratio factor of scout wolves α, the pop-
ulation regeneration factor β, the maximum scouting number
Tmax , the scouting step length stepa, the raiding step length
stepb , the beleaguering step length stepc, and the distance
determination factor ω. The initialization of the parameters
terminates when the maximum number of iterations Kmax is
set.

Step 2. Generate lead wolf: First, calculate the fitness
function value of N artificial wolves, and obtain the prey
odor concentration at the locations of the N wolves. Select
the artificial wolf with the highest prey odor concentration
as the lead wolf and the T artificial wolves with the highest
concentrations (except the lead wolf) as the scouting wolves.
The remaining artificial wolves are the ferocious wolves.
Record the odor concentration and location of each artificial
wolf, and proceed to step 3.

Step 3. Scouting behavior: T artificial wolves perform the
scouting behavior according to equation 25. When the prey
odor concentration of scout wolf i exceeds the odor concen-
tration perceived by the lead wolf, or the maximum scouting
number is reached, proceed to the summoning behavior.

Step 4. Summoning behavior: The artificial wolf with the
highest odor concentration initiates the summoning behavior
as the lead wolf. The ferocious wolves raid the vicinity of
the lead wolf in large steps according to equation 28. During
the raiding process, if a ferocious wolf perceives a higher
odor concentration than the prey odor concentration at the
location of the lead wolf, then this ferocious wolf replaces
the lead wolf to initiate the summoning behavior. Otherwise,
the ferocious wolves continue raiding until the distance from
the lead wolf is smaller than the beleaguering distance dnear .

Step 5. Beleaguering behavior: After entering the belea-
guering behavior, the wolves are very close to the prey.
According to equation 28, update the location of the belea-
guering artificial wolves.

Step 6. Population regeneration: Update the wolf pack
according to the population regeneration principle and initial
parameter settings so that the entire population can maintain
vitality.

Step 7. Determine the constraints: Determine whether the
location of artificial wolf xid is in the equivalent constraint
conditions, and whether the points on the segments formed
by connecting the adjacent points are outside the bounds of
the equivalent constraint conditions. If the conditions are met,
then set xid as the location of the artificial wolf, otherwise,
take the location of the artificial wolf with the highest prey
odor concentration (highest fitness function value) that satis-
fies the conditions.

Step 8. Determine whether the iteration condition is satis-
fied: Determine if the maximum number of iterations Kmax is
reached at this time. If it is reached, the algorithm output the
optimal solution, otherwise, return to step 3 to continue the
iterative operation.
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FIGURE 7. The path planning flowchart.

The path planning flowchart is shown in figure 7.
Step 9. The dubins path parameters between each path

point are calculated by the description in Section II to gen-
erate the dubins path.

In general, the algorithm performs a calculation firstly and
generate the lead wolf, then scout wolves scout the prey, and
ferocious wolves beleaguering the prey when the lead wolf is
summoning. Finally, the wolf pack population is regenerated.
The modified WPA enhance the interactive communication
of wolf pack by improving the three intelligent behaviors of
wolf pack algorithm.

IV. ALGORITHM VERIFICATION AND SIMULATION
The experimental environment consisted of MATLAB R©

2013b installed on a computer withWindows R©7HomeBasic
(64-bit) operating system, Intel R©CoreTM i3-2330M CPU
(2.20 GHZ), and 4 GB RAM.

This simulation is divided into two parts. Firstly, the paper
verifies the search ability of wolf pack algorithm (using mod-
ified wolf pack algorithm) on high dimensional functions.
Compared with other intelligent algorithms in the search
results, the paper shows the advantage of wolf pack algorithm
in high-dimensional path planning. Secondly, the paper com-
pares the path planning results with wolf pack algorithm and
modified wolf pack algorithm, and verifies the advance of the
modified wolf pack algorithm.

A. MODIFIED WOLF PACK ALGORITHM VERIFICATION
According to the rules of modified wolf pack algorithm, the
procedure of the improved wolf pack algorithm is prepared
by MATLAB. The modified wolf pack algorithm is used

TABLE 2. Search function.

TABLE 3. The parameters of the algorithm.

to solve some complex equations. The selected equations
involve multidimensional, multi-peak and other complex sit-
uations to judge wolf pack algorithm and other optimization
algorithms which is more advantageous. The single peak
means that the function has only one extreme value, and the
multimodal function has multiple extremes, which leads to
the failure of the most optimal search in the algorithm with
low global search capability. The multidimensional and mul-
timodal function will be more difficult, and the requirements
of the algorithm is even higher. The search function is shown
in table 2.

Using the modified wolf pack algorithm, genetic algo-
rithm, and particle swarm algorithm to optimize the function
of 10 times, determines the advantages and performance of
each algorithm. The parameters of the algorithm are shown
in table 3, and the results are shown in table 4.

And we found that all three of these algorithms are
very precise, but for different functions have different
characteristics.
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TABLE 4. Calculation results.

It can be found that the relative effect of the particle swarm
optimization algorithm is the best among the three algorithms
for the single peak and low dimension function. Not only
the search precision is very high, but also the calculation
time is shorter. Compared with the particle swarm algorithm
and the genetic algorithm, the function calculation time of
the modified wolf pack algorithm does not show its absolute
advantage. However, according to the data in the table, with
the increase of the dimension of the calculation function,
the difficulty of the calculation increases, and the advantage
of modified wolf pack algorithm is emerging. In the Sphere
function, only the particle swarm algorithm finds the nearest
minimum, and the results obtained by the genetic algorithm
can be considered to be failed. Continue to increase the
function dimension to 120 dimensions, in addition to the
modified wolf pack algorithm, other algorithms all failed,
and the simulation time is very long. The result shows that
the modified wolf pack algorithm has advantages in the high-
precision, high-dimensional, multi-peak function.

Through the average value, we can find that the calculation
error of the modified wolf pack algorithm is very small, and
there is an unparalleled advantage for the robustness compar-
ison of genetic algorithm and particle swarm algorithm for
different functions.

In the case of low priority, the search time of particle
swarm algorithm is the shortest, the search time of genetic
algorithm is the slowest, and the time of modified wolf pack

algorithm is centered in three algorithms. However, with the
increase of the dimension, the simulation time of the particle
swarm optimization algorithm is relatively increased due to
the decrease of the optimization effect, and it is very likely
to fall into the local optimal solution. The simulation time
and the optimization result of the genetic algorithm is very
balanced.

Therefore, we can conclude that the modified wolf pack
algorithm has stronger robustness and stability compared
with particle swarm algorithm and genetic algorithm. The
search time of low dimension is not prominent, but the result
is satisfactory, and it is especially suitable for high dimension,
multi-peak complex function, not easy to fall into the local
optimal solution, and the modified wolf pack algorithm has a
good global search capability.

B. COMPARISON BETWEEN WOLF PACK ALGORITHM
AND MODIFIED WOLF PACK ALGORITHM
The simulation environment is the equivalent threat shown in
figure 2. The environment space is a 50km × 50km × 50km
underwater space. The deployment platform is (3, 15, 40),
the predetermined destination position is set to (30, 10, 10),
and the X-axis segment between the deployment platform and
the destination is divided into 31 segments, i.e., n = 30. In
the course of navigation, the algorithm primarily follows the
main environment, i.e., it avoided the obstacles.

The main parameters of the modified wolf pack algorithm
are set as follows: the number of artificial wolves N=300, the
maximum number of iterations Kmax = 300, the maximum
scouting number Tmax = 30, the distance determination
factor ω = 50, the scouting step length stepa = 0.2, the
raiding step length stepb = 0.4, the beleaguering step length
stepc = 0.1, the ratio factor of scout wolves α = 4, and the
population regeneration factor β = 5.
The simulation results are shown in figure 8 and figure 9.
As shown in figure 9, the convergence curve of the fit-

ness function tends to stabilize after 150 iterations, and the
minimum value is reached after 220 iterations. The final
optimization results are shown in the table 5.

The advantages of the modified wolf pack algorithm are
verified by comparing the algorithm with the original wolf
pack algorithm when solving the path planning problem. The
parameters are consistent for both algorithms, and the results
of path planning are shown in figure 10.

Compared to the figure 8, it can be seen from figure 10
that original wolf pack algorithm has obvious bending and
corner, indicating that the wolf pack algorithm in the final
calculation did not find the optimal solution, the final part
of the calculation is still not convergence. Therefore, the
modified wolf pack algorithm curve is smoother, and AUV
sport control is friendlier.

The comparison of path planning using the modified wolf
pack algorithm and the original wolf pack algorithm are
shown in table 5.

It can be seen from the simulation that both the modi-
fied wolf pack algorithm and the original wolf pack algo-
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FIGURE 8. (a) Path-planning simulation diagram based on modified wolf
pack algorithm. (b) Path-planning simulation diagram based on modified
wolf pack algorithm.

FIGURE 9. Convergence curve of fitness function.

TABLE 5. Performance comparison between modified wolf pack
algorithm and original wolf pack algorithm.

rithm can effectively avoid collision with threats and com-
plete the task using the shortest path possible. However, as
shown in table 5, the modified wolf pack algorithm out-
performs the original wolf pack algorithm in terms of path
length and convergence speed. The modified wolf pack algo-
rithm finds the shorter path length with less time consumed,
and the results mean that it will be more energy-efficient
for AUV.

The artificial wolves can not only perceive information
from their companions but also transmit prey information,
which allows for effective control of the balance between
global searching and local searching. In addition, the raiding
step length is modified from a fixed value to an adaptive
value to improve the global prey searching ability, preventing

FIGURE 10. (a) Path planning diagram of original wolf pack algorithm.
(b) Path planning diagram of original wolf pack algorithm.

the algorithm from falling into local optima. For the reasons
given above, the modified wolf pack algorithm has faster rate
of convergence and higher convergence precision.

V. CONCLUSIONS
Starting from a real-life application, this paper aimed to
develop an easy-to-implement path planning method for
underwater resource exploration. First, the seabed environ-
ment is equated to the threat model and it serves as a con-
straint function along with the seabed depth. Then, the opti-
mal path is obtained by solving the fitness function using
the modified wolf pack algorithm. The simulation results
show that the modified wolf pack algorithm has high rate
of convergence and good local search capability in the high-
precision, high-dimensional, multi-peak function. Moreover,
it does not converge prematurely. Artificial wolves can not
only perceive information from their companions but also
transmit prey information, which allows for effective control
of the balance between global searching and local searching.
In addition, the raiding step length is modified from a fixed
value to an adaptive value to improve the global prey search-
ing ability, preventing the algorithm from falling into local
optima. In order to meet constraints of AUV, a fast path plan-
ning method based on dubins path is proposed, which applies
the dubins path planning to meet angle control constraint and
tune the turning radius to meet control constraint. However,
some problems remain to be solved in the modified wolf
pack algorithm. Specifically, there are too many parameters
that need to be set in the modified wolf pack algorithm. The
setting of some parameters affects the convergence speed
and the accuracy of the results significantly, and improper
parameter setting may result in low accuracy or convergence
that is too fast or too slow.
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Therefore, in the future we plan to improve the parameter
setting of the algorithm and change the current state in which
the parameters are difficult to set. Furthermore, the wolf pack
algorithm has excellent engineering prospects. The wolf pack
algorithm can solve complex multidimensional functions and
it does not fall into local optima easily, hence, various engi-
neering applications of wolf pack algorithm can be optimized,
e.g., by solving the controller parameters or normalization
coefficient. Finally, duo to the wolf pack algorithm is still
a relatively new algorithm, there is relatively few applica-
tions, and the algorithm is considerably extensible. Through
additional research, the calculation accuracy and efficiency of
wolf pack algorithm can be enhanced further by using some
reduction of space representation such as quadtree, octree,
and rectangular symmetry reduction etc.
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