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ABSTRACT As the complexity of cyber-attacks keeps increasing, new robust detection mechanisms need
to be developed. The next generation of Intrusion Detection Systems (IDSs) should be able to adapt their
detection characteristics based not only on the measureable network traffic, but also on the available high-
level information related to the protected network. To this end, we make use of the Pattern-of-Life (PoL) of
a computer network as the main source of high-level information. We propose two novel approaches that
make use of a Fuzzy Cognitive Map (FCM) to incorporate the PoL into the detection process. There are
four main aims of the work. First, to evaluate the efficiency of the proposed approaches in identifying the
presence of attacks. Second, to identify which of the proposed approaches to integrate an FCM into the
IDS framework produces the best results. Third, to identify which of the metrics used in the design of
the FCM produces the best detection results. Fourth, to evidence the improved detection performance that
contextual information can offer in IDSs. The results that we present verify that the proposed approaches
improve the effectiveness of our IDS by reducing the total number of false alarms; providing almost
perfect detection rate (i.e., 99.76%) and only 6.33% false positive rate, depending on the particular metric
combination.

INDEX TERMS Basic probability assignment, contextual information, Dempster-Shafer theory, Fuzzy

cognitive maps, intrusion detection systems, network security, pattern-of-life, port scanning attack.

I. INTRODUCTION

Cyber-security has increasing importance to Internet users.
Providing strong and reliable security mechanisms has
become vital in all areas of society. The implementation of
Intrusion Detection Systems (IDSs) is fundamental in secu-
rity infrastructures in order to provide extra level of assur-
ance, identifying evidence of attacks or intrusion attempts.
As the complexity of these attacks keeps increasing, new and
more robust detection mechanisms need to be developed.

As we previously discussed in [1] and [2], the next genera-
tion of IDSs should be designed to include reasoning engines
supported by modules that could assess the quality of the
analysed datasets [3], manage contextual and non-contextual
information about the network, handle uncertainty or deal
with incongruent decisions between different IDSs. In order
to accommodate all these functionalities, the architecture
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of advanced IDSs would be noticeably different from the
design of more conventional IDSs. The design of the domain
anomaly detection system presented in [4] can be considered
as a reference model.

Current IDSs use measurable network traffic informa-
tion from the protected system or signatures of already
known cyber-attacks during the intrusion detection process.
However, these systems do not generally take into account
available high-level information (i.e. above the network
operation) regarding the protected system [5]. Ideally, the
available high-level information (i.e. contextual informa-
tion, situational awareness and cognitive information, per-
taining to the experts’ judgment on the network behaviour)
should be incorporated within the intrusion detection process.
IDSs should be able to adapt their detection character-
istics based not only on the measureable network traffic
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information, but also on the context in which these systems
operate, and the information provided by the network users
or administrators.

In the experiments that we previously presented in [2], we
made use of the Pattern-of-Life (PoL) of the network usage
as the main source of high-level information. In particular, we
correlated the number of network users with the time of the
day and the usage of the network resources to characterise the
PoL of the network usage and to generate useful contextual
information. The results that we presented in [2] evidenced
that this available high-level information can be used to
improve efficiency of an IDS. In order to incorporate the PoL
into the detection process, a Fuzzy Cognitive Map (FCM) [6]
can be used in conjunction with an anomaly-based IDS. The
FCM is used to fine-tune the techniques used by the anomaly-
based IDS to assign evidence of attack. The use of contextual
information enhances the generation of a reference of normal
network traffic behaviour, making the detection of malicious
data more accurate, thereby improving the detection results.

Nonetheless, the work in [2] left a number of areas open for
research, which are addressed in this paper. One of these open
areas is to identify and evaluate how and at which stage of the
data fusion process, augmenting the contextual information
is most beneficial. Another open area is the selection of the
metric used to represent the PoL of the network usage in
the design of the FCM. In our prior work, we made use of
the throughput in the construction of the FCM design [2].
However, we did not explore the use of alternative metrics in
the design of the FCM, or assess how the use of these metrics
may affect the detection accuracy. Therefore, in this work,
we extend the analysis of our previously proposed approach
for using FCMs to augment the detection process by adding
contextual information.

Our contribution can be summarised as follows:

First, we propose two novel approaches that employ an
FCM to incorporate the contextual information from the PoL.
into the detection process. These two approaches exploit the
alternative stages at which this information can be added to
the detection process. The first approach is based on the use of
the output of the FCM to construct an additional metric to be
fused by Dempster-Shafer (D-S) Theory of Evidence [7], and
the second approach is based on the adjustment of the values
resulting from the D-S data fusion process. The performance
of these two approaches is evaluated and compared against
the framework previously proposed in [2], which is based on
the adjustment of certain values involved in the data fusion
process, as well as the performance of the D-S based IDS
without the use of the FCM. Additional description of the
proposed approaches is presented in Section I'V.

Second, we have designed three different FCMs by using
three different metrics that characterise the PoL. of the
network traffic. These metrics are Throughput (THR), the
number of transmitted bytes per second; Communication
Rate (COM), the number of frames transmitted per second;
and Destination Port Distribution (DPD), the number of
unique destination ports per second. The metric Source Port
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Distribution (SPD), the number of unique source ports per
second, was also extracted from the analysed dataset and
used by the IDS during the detection process. However, since
the metrics DPD and SPD have very similar profiles, the
FCM construction based on SPD is not presented in this
work. Further details about these metrics will be presented
in Section VIIL.C.

Third, we have significantly extended the results initially
presented in prior work [2]. We have evaluated and compared
the performance of our proposed approaches using the differ-
ent FCM designs. These results provide substantial insight
about the behaviour of the IDS when the contextual infor-
mation is taken into account. Similarly, we have presented
extensive analysis of the presented results.

Finally, the method implemented to construct the
FCM extracts high-level information from the network users,
with a process that is completely transparent to them.
In detail, we have correlated the number of researchers
present in the monitored offices with the time of the day
and the usage of the network resources. Additionally, the
network administrator may also contribute to the FCM design
by providing prior knowledge about the expected usage of the
network resources. This knowledge is provided in the form of
different thresholds for each of the metrics, which represent
the expected usage of the network resources at a particular
time of the day.

The main aims of the experiments that we present in this
work are summarised as follows:

o To demonstrate the improved detection performance of

our IDS using an FCM to include contextual information
from the PoL of the network usage into the detection
process.

« To identify which of the proposed approaches to inte-
grate the FCM into the D-S based IDS framework pro-
duces the best results.

« To indicate which of the network metrics used to design
the different FCMs produce the best detection results.

« To evaluate the efficiency of the proposed IDS in identi-
fying the presence of probing attacks, and reducing the

number of false alarms.
The remainder of the paper is organised as follows.

In Section II, the most relevant previous work is reviewed.
An explanation of the detection methodology used by our
IDS is presented in Section III. The proposed use of an FCM
within an IDS is introduced in Section IV. In Section V, a
description of the FCM is provided. The process of charac-
terising and designing the PoL with an FCM is presented in
Section VI. The network testbed, the implemented attacks,
and the evaluated dataset are described in Section VIIL
Section VIII describes the results and provides an analy-
sis of the different findings. Finally, conclusions are given
in Section IX.

Il. RELATED WORK

With the increasing complexity of cyber-attacks, the next
generation of IDSs need to detect network attacks, not only
by using measurable information from the network, but also
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by integrating human cognition and contextual information
into the detection process to improve their effectiveness.

According to [8], contextual information could be defined
as any information that surrounds a situation of interest,
which helps to understand and to characterise the situation.
Snidaro et al. [8] present an extensive and very detailed
survey about current research on context-based information
fusion systems. This work explains that data fusion systems
that use contextual information to improve the quality of the
fused output have gained importance in the last few years.
It also emphasises that contextual information should be an
important asset at any level of modern fusion systems.

In [9], the authors proposed an IDS that relies on contextual
information to classify the alerts as relevant or irrelevant.
The alerts generated by the IDS are processed along with
high-level information about hosts present in the network and
known vulnerabilities to generate a relevance score about the
alerts. Then, a threshold is used to classify alerts as relevant
or irrelevant according to the relevance score. Their results
demonstrate the effectiveness of using contextual information
in the detection process to increase the efficiency of the IDSs.

Xu et al. [10] present a context-sensitive detection system
based on the use of Hidden Markov Models (HMMs). The
host-based system models the system call sequences of a
program to detect anomalous patterns. This work uses the
caller function of each library or system call as context. The
HMM technique can compute the likelihood of occurrences
of the observed call sequences. However, this is achieved after
a training process using only normal program traces.

An ontology is another technique used to provide con-
textual information to intelligent systems. Ontologies have
proven to be powerful tools to specify and structure knowl-
edge, or to provide formal specification of different enti-
ties in a system and their relationships. For instance,
Sadighian et al. [5] propose a security approach based on the
use of ontologies to add context information into a process
that fuses the outcome of heterogeneous distributed IDSs.
By using this high-level information, the authors reduce the
false positive alerts.

A technique that also provides the capability of integrating
contextual information from the network user to the detection
process is the FCM. FCMs have been previously described
and used in [6], [11], and [12] to model human knowledge.
Stylios and Groumpos [6] provide a detailed description of
the FCM and its mathematical foundation. Although the work
presented in [12] does not focus on network security, it com-
prehensively describes the FCM concept with clear exam-
ples. Similarly, Ndousse and Okuda [11] provide a detailed
description of an FCM and examples that use an FCM to
model fault propagation in interconnected systems.

The work presented in [13] focuses on developing
an actionable model of situation awareness for army
infantry platoon leaders that could replicate human cognition
using FCMs. Their FCM design is based on a goals submap,
a tree-like diagram that structures the goals and subgoals
of the platoon, and the relationships between these goals.
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One of the characteristics of the FCM presented in [13] is that
the people responsible for designing the FCM do not provide
weight values to the concepts, but rank the importance of each
modelled concept. A similar approach is presented in [14], in
which situation awareness is represented using an FCM. Also,
the authors of [14] use ontologies to replicate situations.

In [15], the authors compare the roles of an FCM
and another graphical knowledge representation technique,
namely a Bayesian belief network, from the perspective of
knowledge engineering and representation. This work also
describes a knowledge acquisition system that systematically
acquires design knowledge from multiple experts from which
the FCM is constructed. The authors of [16] highlight the
time consuming issues related to the manual construction of
large FCMs. In order to solve these issues, the authors present
a framework to semi-automate the construction of FCMs,
extracting information from a database and other sources of
information.

In [17], the authors use an FCM to model causal knowledge
within network data. Based on this knowledge, their system
calculates the severity/relevance of the modelled network
data to attacks. This approach would allow their IDS to
discard irrelevant events and focus only on important ones.
However, in contrast to the approach that we propose, this
research does not use an FCM to modify parameters in the
detection process, but as an events filtering process prior to
the actual detection.

IIl. INTRUSION DETECTION METHODOLOGY

The methodology that we present in this work builds upon the
design of an unsupervised anomaly-based IDS that we previ-
ously presented in [18]. This IDS is based on the combined
use of multiple metrics from multiple layers of the network
stack to carry out the detection. It uses D-S [7] as a data
fusion technique, and is able to detect different types of cyber-
attacks in real-time. The goal is to create an overall belief on
whether there is an attack in the network traffic.

As many researchers have previously shown [19], [20],
the combined use of multiple metrics from the same or dif-
ferent network stack layers may result in higher Detection
Rate (DR) with lower numbers of false alarms for an IDS.
Each metric provides different levels of evidence about the
real nature of the network traffic. Hence, the higher the
number of metrics used, the greater the chances to identify
the presence of attack.

A. DEMPSTER-SHAFER THEORY OF EVIDENCE

D-S is a data fusion technique that combines evidence
of information from multiple and heterogeneous events in
order to calculate the belief of occurrence of another event.
D-S theory starts by defining a frame of discernment
® = {61, 6, ..., 0y}, which is the finite set of all possible
mutually exclusive outcomes of a particular problem domain.
With regards to this work, we want to identify whether
the analysed network traffic is malicious or non-malicious.
Therefore, the frame of discernment is comprised of
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A = Attack and N = Normal. Assuming ® has two outcomes
(A, N}, the possible hypotheses are {A, N, {A|N}, @} £ 2°.
In the case of {A|N}, this subset corresponds to Uncertainty
(either A or N). In addition, @ is the empty set. Each hypoth-
esis is assigned a belief value within the range [0, 1], also
known as a Basic Probability Assignment (BPA), through the
mass probability function m, which expresses the evidence
attributed directly to the hypothesis. This is:

m2® - [0,1] if mH)>0, VHCO i
Y m@E)=1
HCO

Then, D-S uses Dempster’s rule of combination to calcu-
late the orthogonal summation of the belief values from two
different sensors or observers, and fuses this information into
a single belief. This rule is defined in (2), where m(H) and
mo(H) are the beliefs in the hypothesis H, from observers
1 and 2, respectively. Similarly, X N Y = H refers to all
combinations of evidence which yield H; whereas X NY = @
refers to the mutually exclusive subsets of the hypothesis H,
thus their intersection is the empty set.

> xay—n M X) *my (Y)
1= xay—gmi (X) xmo (Y)

Dempster’s rule allows the combination of evidence from
two observers at a time. In order to combine evidence from
more observers, Dempster’s rule can be used in consecutive
iterations. The output of the initial combination process is
used as input evidence in the next iteration, along with the
evidence of information from a third observer. Dempster’s
rule satisfices the associative property, thus the order in which
the belief values are fused does not affect the final combined
belief values. To better understand how Dempster’s rule of
combination is implemented, the reader is referred to the
practical example presented in our previous work [18].

m(H) =

VH#@ (2

B. AUTOMATIC BPA METHODOLOGY

There exist multiple ways of assigning BPA values to each
of the hypotheses in D-S theory, ranging from data mining
techniques to empirical approaches. However, few of them
could be used without a prior thorough training or a fine
tuning period. In [18], we proposed a novel BPA methodology
able to automatically adapt the assignment of its evidence
to the current characteristics of the network traffic, without
intervention from an IDS administrator.

The proposed BPA methodology exploits a Sliding
Window (SW) scheme to compute statistical parameters from
the data, used to generate the different BPA values. Our
system has one SW for each metric used in the detection
process. Although each SW is independent from each other,
each metric is extracted from a common piece of information
(i.e. the same network frame). All the statistical parameters
are computed from the content of the whole SW. However,
only the last metric measurement to enter the SW is analysed
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at a time. The SW slides one slot at a time only if the
final decision indicates that the analysed data are normal.
Otherwise, the SW does not slide and the data identified as
malicious are discarded.

The main benefit of using this scheme is that the SW pro-
vides a countermeasure against attackers trying to skew the
statistical parameters within the SW. However, the efficiency
of this methodology requires a period of non-malicious traffic
when the initial SW is filled. Only if the majority of the
data within the initial SW are non-malicious can the effective
operation of the IDS be expected. This scheme also cre-
ates situations in which the computed statistical parameters
change substantially as different metrics are fused when the
variability of the analysed data is high. In addition, the length
of the SW will generally affect the final detection results. The
analysis of the optimum SW length has been previously inves-
tigated in [21] and it is beyond the scope of this work. In the
experiments conducted for this work, the SW length has been
empirically set to 50 slots, based on previous experience. This
SW length has previously been found to be an appropriate
length for our IDS to provide accurate detection results [21].

The BPA methodology that we proposed in [18] uses
three independent statistical approaches to provide the BPA
values for each analysed metric. The approach that assigns
BPA values to the hypothesis Normal uses the distribution
of the network traffic within the SW. The BPA in Normal
indicates how strong the belief is that the current analysed
data are non-malicious. The content of the SW is divided
in sections using the median (Me) and the first and third
quartiles (Qp and Q3). Then, the parameters Max and Min are
computed using Inter Quartile Range (IQR):

IOR = Q03 — Q1 3
Min = Q1 — 1.5 x IQR )
Max = Q3 + 1.5 x IQR 5)

A particular BPA value is empirically assigned to each
of the portions of the SW as is represented in Fig. 1. The
more distributed the data are within each of the portions of
the SW, the wider the portion. The analysed data receive the
BPA assigned to the portion that it falls in.

Me=m(N) = 0.5

Qi Qs

m(N) =0.4 | m(N) =04

miy =0.15 | m(N) = 0.3 m(N) = 0.3

FIGURE 1. BPA Scale for Belief in Normal Based on the Distribution of
Data.

The approach that assigns BPA values to the hypothesis
Attack uses the Euclidean distance from a defined reference
of normality (i.e. the mean of information within the SW).
The BPA in Attack indicates how strong the belief is that the
current analysed data are malicious. The Euclidean distance
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from the mean to the most distant value in the SW is defined
as the Maximum Distance (Dpax), which defines the upper
limit for the BPA value. Next, the distance from the mean
to the currently analysed data (D) is also calculated. This is
represented in Fig. 2. Finally, the BPA in Arfack is assigned
according to equation (6).

_ |ID| % 0.5

m(A) = (6)
[Dinax |
Point of Current Maximum
Reference Analysed Frame Frame Value
| m_ |
—> Metrics
< D > Value
Dn]ﬂX

FIGURE 2. BPA scale for belief in Attack based on the distance.

Lastly, the BPA in the hypothesis Uncertainty is assigned
based on the belief values assigned in Normal and Attack in
the current SW, as described in (7).

min (m(N), m(A))
m(N|A) = (N
max (m (N) , m (A))

The BPA in Uncertainty indicates how doubtful the system
is regarding whether the current analysed data are malicious
or non-malicious. The numerator is the smallest of the two
hypotheses, whereas the denominator is the largest one.

C. FINAL DECISION ASSESSMENT

Once the BPA values have been assigned, it is required that
all the three conditions in (1) are assured. However, it is
unlikely that the summation of the belief values assigned
by the three previously described approaches add to 1.
In order to guarantee that the third condition in (1) is assured,
we compute an adjustment factor ¢, as described in (8), that
will be subtracted from each of the three BPA values, where
Z is the number of different hypotheses initially considered
within 29,

2 mx) -1

p==——> ®

Then, the BPA values assigned by all the observers are
adjusted and fused. The outcome of the D-S theory is a com-
plete set of BPA values (i.e. one for each hypothesis initially
considered). The analysed information is classified according
to the hypothesis with the highest BPA, which is considered
to be the correct decision. There may be cases in which both
m(N) and m(A) receive the same final BPA values, or in which
the belief in Uncertainty is larger than the other hypotheses.
In the former case, the hypothesis Normal is considered to be
the correct decision, whereas in the latter case, the hypothesis
with the highest BPA between Normal and Attack is selected.

IV. PROPOSED USE OF AN FCM WITHIN AN IDS
This section describes the approaches that we propose by
which an FCM could be integrated within our unsupervised
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anomaly-based IDS. These approaches are all based on the
generation or modification of the BPA values used in a
D-S formulation as described in Section III, by using the out-
come of the FCM. Fig. 3 shows the schematic representation
of the structure of the IDS, including the extraction of the
different metrics, the automatic generation of the BPA values
and the data fusion process. Additionally, the figure also
indicates the different stages in the IDS detection process at
which each of the proposed approaches adds the contribution
of the FCM.

A. BPA ADJUSTMENT USING THE FCM PRIOR

TO DATA FUSION

The first approach represented by the channel (a) in Fig. 3
to incorporate contextual information was initially proposed
and evaluated in [2]. It is based on the adjustment of the
BPA values assigned prior to the data fusion process, by
using the outcome of the FCM. Once the BPA values have
been computed as explained in Section III.B, the outcome
of the FCM is used to adjust these accordingly. This is
done by adding the outcome of the FCM to m(N) and m(A).
Then, m(U) is calculated using the newly computed values of
m(N) and m(A). Finally, the BPAs are adjusted as described
in (8).

Network Traffic Contextual
Information

¥ ¥ ¥

Metric 1 Metric 2 Metric n

Y Y

Sliding Window 1 Sliding Window 2 Sliding Window n LA 4
< ¢ < ‘
tEEl EGE = uazy
b5 3 S = g =4 Cognitive
3 a o 3 a o 3 [ o
@ > 5 o = 5 [ = S Map
2z < <
BPA Values

BPA Values (-l

BPA Values <-|
v Vv

\\ Data Fusion Process /

\ Dempster-Shafer Theory / @

&
¢‘

S Attack N\ - — ™~ ~__ reere—
(@iAitack :4—“1—::: Malicious Dat: i::: Continue
\_Detected / " \_Analysis /

FIGURE 3. Schematic structure of the IDS, including the extraction of the
metrics, the generation of the BPAs, the data fusion process and the
addition of contextual information into the detection process by

using an FCM.

After all the BPA values have been adjusted, the data fusion
process is carried out using Dempster’s rule defined in (2)
and the final decision is taken as described in Section III.C.
It is worth noting that, although the same weight values are
used to adjust all of the considered metrics, it is unlikely for
these metrics to have the same BPA value. Therefore, the
adjustments would impact each of the metrics differently.
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B. USING THE FCM AS ADDITIONAL BPA VALUES

The first of the two novel approaches that we propose to
incorporate contextual information into the detection process
is based on the use of the output of an FCM to construct
an additional metric to be fused by D-S. This is represented
by the green channel (b) in Fig. 3. We propose to use the
outcome of the FCM to assign belief values to the hypotheses
Normal and Abnormal, to yield an extra set of BPAs to be
fused. These values are then used to infer the BPA in the
hypothesis Uncertainty. Once these three values have been
computed, the newly generated BPAs are merged with D-S,
along with the rest of the considered network traffic metrics,
using Dempster’s rule defined in (2). For clarification, the
BPA values computed from the network traffic, as described
in Section III, remain unchanged.

It is worth noting that for this approach, in contrast to the
one that adjusts the BPAs prior to the fusion process,
the contextual information might have less influence over the
final IDS decision, as its contribution is reduced to one set of
BPAs to be fused. In Section VIII, we will discuss in further
detail the contribution of each of the approaches to the final
results.

C. BPA ADJUSTMENT AFTER DATA FUSION PROCESS

The second approach that we propose is also based on the
adjustment of the BPA values. This is represented by the blue
channel (c) in Fig. 3. However, in contrast to the approach
in the red channel (a) that adjusts the BPA values prior to the
fusion process, the outcome of the FCM will be used to adjust
the resulting BPAs, after the D-S data fusion process.

The IDS carries out the detection process using solely the
measurable information as described in Section III. The dif-
ferent metrics are extracted from the network traffic and the
diverse BPA values are computed. Then, all the BPA values
are fused using Dempster’s rule defined in (2). Only after
the data fusion process has ended, the contextual information
is used to adjust the resulting BPA values, by adding the
outcome of the FCM. The adjustment is implemented over the
final outcome of the IDS, hence the addition of the outcome
of the FCM is prone to dominate the entire detection decision.

V. FUZZY COGNITIVE MAP

An FCM is a technique used for prediction and decision mak-
ing, which can be applied to model human knowledge, and to
represent the behaviour of a system as perceived by human
experts. The main goal of modelling a decision problem using
an FCM is to predict the outcome of the evaluated problem
by letting the relevant events interact, and to calculate the
actual degree of influence that one event may have upon the
system [6].

A. MOTIVATION

An FCM is an efficient soft computing tool that sup-
ports adaptive behaviour in complex and dynamic systems,
and provides significant support for decision-makers [22].
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We have made use of an FCM to model the PoL because this
technique provides a number of advantages when compared
against several probabilistic algorithms, (e.g. dealing with
contradictory or conflicting pieces of information [22]).

An FCM provides a useful framework to calculate the
degree of influence that one event or action may have upon
the whole system or upon parts of the system. Also, an
FCM is able to represent dynamic systems that evolve over
time, supporting dynamic timeline structures [22], and to
model new and unseen behaviours of particular scenarios.

Another characteristic is that an FCM provides the poten-
tial to make changes easily and intuitively, and allows addi-
tional pieces of information to be combined at a later time
instance. Moreover, it supports memberships of more than
one set of events and allows the overlapping of different
FCM models [23]. Another important characteristic of this
technique is that the fuzzy degrees of influence in an FCM are
initially assigned using qualitative linguistic variables instead
of hard numerical values. This makes an FCM an excel-
lent solution for agile Command and Control (CC) and/or
Human-Machine Interaction (HMI).

One of the most important characteristics of the FCM is
its capability to combine multiple, incomplete, contradictory
or conflicting pieces of information. An FCM handles con-
flicting or competing information better than probabilistic
systems, which are regulated by the additivity rule. Prob-
abilistic systems have difficulties managing situations that
occur when competing statements are both true [22]. Also,
according to [22], this type of system does not often handle
all forms of uncertainty well, especially when information
is conflicting. As part of the design of an FCM, it is not
necessary that all human experts involved in the process agree
on which events should compose the FCM or what weight
value should be given to each link.

The use of an FCM in this work is motivated by all
the advantages that this technique provides. Nonetheless,
an FCM is not exempt from drawbacks. The design of an
FCM relies not only upon the human’s understanding of
the work domain and knowledge, but also their ignorance,
prejudice, or bias [22]. Also, the design of an FCM is
very context-specific, and may not be easily generalised.
In order for the model to be applied to other situations, a new
FCM design should be constructed. Additionally, as will
be briefly described next in Section V.B, the convergence
of the fixed-point attractor is an open issue in the research
community [24].

B. FCM DESIGN DESCRIPTION

The graphical design of FCMs is characterised by a set of
nodes interconnected by causal connections. An example of
an FCM model is presented in Fig. 4. The nodes in the
FCM represent causal and time-varying concepts, events,
actions or goals that describe the behaviour of the system.
The definition of the main concepts relevant to the sys-
tem is the initial step in the process of creating the FCM.
In our experiments, the nodes have been defined based on the
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FIGURE 4. Simple FCM model in which nodes represent changes in the
modelled system and connections denote relationships between
concepts.

events that characterise the PoL of the network and concepts
that represent prior knowledge of the network administrator.
A very detailed description of the design of FCM models can
be found in [6].

Each node C carries a weight A(t) in the fuzzy
range [0, 1], which indicates the quantitative measure of the
importance that each concept has in the system, at time t. The
connections between nodes represent the causal relationship
between the defined concepts. Each link is assigned a weight
value wj;(t) in the fuzzy interval [—1, 1], which indicates the
relationship and degree of influence from the nodes C; to C;.

There are three possible relationships between concepts:

1) Positive relationship wj > 0, indicates that
A;(t) increases as A;(t) also increases.

2) Negative relationship wj; < 0, indicates that
A;(t) increases as A;(t) decreases.

3) No relationship wjj = 0, indicates that there is no
correlation between A;(t) and A;(t).

The fuzzy degrees of influence wj;(t) are initially assigned
using qualitative linguistic variables by the network users
or administrator, as described in [12], but then transformed
into numerical values. In our experiments, the fuzzy degrees
are assigned by the network administrator. We consider five
linguistic variables, {very low, low, medium, high, and very
high}. In order to transform the variables to numerical degree
of influence values, the five linguistic variables are sorted in
an ascendant order of importance and represented by {1y,
i, Mms Mh, My ). These variables are transformed to the
numerical values wi;(t) associated with each link using (9),
as explained in [15], where 7 is the total number of variables,
and p is the ordinal number that represents the position of the
respective linguistic variable in the list. In our experiments, in
which n = 5, the weights assigned to the variables {7, i,
Wms Uhs Wyp ) Would be {0.1, 0.3, 0.5, 0.7, 0.9}, respectively.

p 1

=—-—-— 9
Mp n on 9

An FCM can be represented by an [m x m] matrix M,
where [M(D)];j = |w;j(t)] which is also known as an adjacency
matrix, and m is the number of nodes in the modelled FCM.
The matrix M describes the relationship between the nodes
and the weight values wij(t) associated with each link.
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An FCM allows different adjacency matrices to be combined
in an adjacency matrix M as follows:

k
1
Ml =7 D w0, Vi (10)
m=1

where k is the number of adjacency matrices to be merged
(i.e. number of network users in the monitored network) and
m is the number of nodes (i.e. concepts) in the modelled FCM.

As an example, Fig. 5 comprises the [6x6] adjacency
matrix of the FCM in Fig. 4.

0 sz(t) W13(t) W14(t) 0 0
W21(t) 0 0 0 0 0
o 0o 0o 0 0 wat)
1o 0 0 0 0 wa)
0 0 wst) 0 0 0
i 0 0 0 WG4(t) WﬁS(t) 0

FIGURE 5. Simple [6x 6] adjacency matrix of the FCM represented
in Fig. 4.

The initial weight value A(t) of all the nodes in a model
at time t = 0 can be represented by the initial vector state A,
where A(0) = (A1(0), A2(0), ..., An,(0)). A;j(0) is the weight
value of node i at time t = 0. Then, the FCMs evolve via an
iterative process in which, at each future time step, the weight
value of each concept A(t) is computed by aggregating the
influence of the interconnected concepts, using an activation
function f. The value of A;i(t) changes at each iteration as
described in (11):

m
A+ D) =fK) =f A+ Y wi®)#4; (1)
J=1j#
1D

where Aj(t+1) is the weight value of node C;j at time t+1,
A;(0) is the weight value of node C; at time t, and wj;(t) is the
degree of influence of node C; on node C;.

Bueno and Salmeron [25] describe four activation func-
tions f; these are the sigmoid, hyperbolic tangent, linear
threshold, and step functions. Among the four, the hyperbolic
tangent activation function, described in (12), is the one used
in our experiments. This is because the hyperbolic tangent
activation function produces weight values A;(t) normalised
in the range [—1, 1]. Hence, this activation function complies
to one of the requirements of the D-S theory, which requires
that the BPA values assigned to each hypothesis could be any
value up to 1.

K _ K

fK) =5 (12)

eK 4 e K

This process continues for a number of iterations until
the FCM reaches one final fixed model, known as a hid-
den pattern or fixed-point attractor. This is when the weight
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values A(t) in all the nodes do not change in successive
iterations. It is also possible that an FCM keeps cycling
between several fixed models, known as a limit cycle, or
it may continue generating different models indefinitely.
Népoles et al. [24] indicate that in non-stable FCMs, a stop-
ping criterion can be set to overcome the convergence prob-
lem of these last two situations. In our experiments, we have
empirically set the stopping criterion at t = 60. However, the
authors also highlight that this approach may be unreliable
due to the lack of convergence.

The problem of the fixed model convergence in non-
stable FCMs has been previously investigated by other
researchers [24], [26]. Napoles et al. [24] describe that non-
stable FCMs are mostly related with antisymmetric adjacency
matrices, which lead the system to a periodic behaviour.
Another factor is the used activation function f. Continuous
functions such as sigmoid and hyperbolic tangent can result
in chaotic behaviours since the FCM could produce infinite
different states [24], [26]. Also, according to [26], a small
change in the initial vector state A can drastically change the
fixed model convergence. Hence, it is clear that the develop-
ment of more efficient strategies to improve the fixed model
convergence of FCM is still required [24], but this is beyond
the scope of this work.

VI. FUZZY COGNITIVE MAP CONSTRUCTION

A. CHARACTERISING THE PATTEN-OF-LIFE

In this work, we have made use of the PoL of the net-
work usage as the main source of contextual information.
Moreover, the network administrator has also contributed
to the design of the FCM by providing its knowledge in
the form of expected network usage levels. The concept of
PoL refers to the information generated by observing
repeated behaviours over an extended period of time. Accord-
ing to Craddock et al. [27], PoL analysis typically involves
the surveillance of a group of people over a period of time
to characterise their behaviours and habits, and determine if
their behaviour is suspicious.

Generally, the PoL of the network usage is directly asso-
ciated with the number of users accessing the Internet.
In order to characterise the PoL of the network usage
and to generate useful contextual information, we have
correlated the number of researchers present in the mon-
itored offices in the Wolfson School at Loughborough
University, UK, with the time of the day and the usage of
the network resources. These are the three parameters used
to characterise the PoL of the network usage and to extract
the contextual information.

Additionally, the design process of the FCM for this work
is also based on three predefined assumptions, which help to
represent the PoL in the design of the FCM:

o An increase in the network usage is expected to
be seen during common office hours (i.e. from
9am to 5pm, weekdays) when most of the network users
are expected to use the network, and a decrease outside
this timeframe.

22184

o Legitimate high network usage outside common office
hours is also feasible because University staff have
unrestricted access to their labs at any time of
the day.

o Lastly, it is expected to see an illegitimate increase in
the network usage during the implementation of the
evaluated attack/threat, which could occur at any time
of the day.

B. DESIGN OF THE FCM USING THE PATTEN-OF-LIFE

In order to characterise the time of the day in the PoL, four
timeframes per day have been defined. These are 00-09h,
09-17h, 17-19h, and 19-24h, distinguishing between week-
days and weekends. As can be seen in Table 1, these time-
frames have been used to define eight of the concepts that
compose the modelled FCM (i.e. C;_g). These timeframes
have been defined after monitoring, for an extended period,
the time when the researchers are more frequently present in
the monitored offices. This pattern can change for multiple
reasons (e.g. bank holidays or festive periods). Therefore, a
more comprehensive methodology to characterise the time of
the day in the FCM, which could seamlessly adapt to any
pattern change, could be developed in future work.

TABLE 1. List of concepts that compose the FCM, building upon the
throughput of the network traffic.

FCM Concepts Concepts Definition
Cl 00 — 09 h / Weekday
C2 09 — 17 h / Weekday
C3 17— 19 h / Weekday
C4 19 — 24 h / Weekday
C5 00— 09 h/ Weekend
C6 09 — 17 h/ Weekend
C7 17— 19 h / Weekend
C8 19 — 24 h / Weekend
Cc9 Throughput < 4 Mbps
C10 4 Mbps < Throughput < 12 Mbps
Cll 12 Mbps < Throughput < 40 Mbps
Ci2 Throughput > 40 Mbps
Cl3 Normal
Cl4 Abnormal

Similarly, in order to characterise the network usage in
the design of the FCM, we require a number of metrics that
could represent the amount of network resources utilised,
such as the throughput of the network traffic. From the
gathered network traffic dataset, four different metrics have
been identified as the most appropriate metrics. These are
THR, the number of transmitted bytes per second; COM, the
number of frames transmitted per second; SPD, the number
of unique source ports per second; and DPD, the number
of unique destination ports per second. Further details about
these metrics will be presented in Section VII.C.

Since the network traffic would present variable levels of
usage depending on the PoL (i.e. the cycles of the PoL), the
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network administrator used each of these metrics to define
a number of thresholds based on its prior knowledge. These
thresholds represent the maximum expected network usage at
given time of the day, according to the network administrator.
Therefore, each of these thresholds allows the system to
characterise the PoL of the network usage. For instance, if
we consider the metric THR to design the FCM, the thresh-
olds 4 Mbps, 12 Mbps, and 40 Mbps have been defined
by the network administrator to characterise the PoL of the
network usage. These thresholds are used, in turn, to define
four additional concepts (i.e. Cg9_12) in the FCM design.
As another example, if the metric DPD was considered
to design the FCM, the network administrator defined the
thresholds 100 and 250 for unique destination ports per
second to characterise the PoL.

Although any of the available metrics can be used in the
construction of the FCM to characterise the network usage,
we decided to utilise only one of the metrics at a time to
reduce the complexity of the FCM. The use of fixed thresh-
olds may not provide a flexible framework that captures the
stochastic nature of the network traffic. Therefore, in future
work, alternative methodologies to dynamically characterise
the PoL of the network usage in the FCM could be also
proposed.

Finally, two additional concepts are defined as the two
possible outcomes of the FCM (i.e. C;3 = Normal and
Cia = Abnormal). The weights A(t) associated with these
two concepts are used to incorporate the contextual infor-
mation extracted from the PoL into the detection process of
our IDS.

The next step in the design process of the FCM is to
define the relationships between concepts and the positive
or negative influence. In our experiments, the FCM concepts
defining the time of the day have direct influence upon the
number of network users in the monitored research office
and, in turn, upon the concepts defining the usage of the
network resources. Thus, the concepts C|_g present positive
relationship over Co_1>. Similarly, the FCM concepts defin-
ing the usage of the network resources (i.e. C9_17) have direct
influence upon the possible outcomes of the FCM. Then, the
concepts Cg_1o also present positive relationship over the
concepts C3_14. Finally, the two possible FCM outcomes
cannot occur at the same time. Hence, the concepts C3 and
C14 present negative relationship with each other.

One adjacency matrix is defined for each network user,
considering the time of the day and the usage of the network
resources. Then, all the adjacency matrices are averaged out
and merged in an adjacency matrix M, as described in (10).
Following upon the concepts described in Table 1, in which
the throughput is used to characterise the PoL of the network
usage, the final [/4x /4] adjacency matrix M would be as
shown in Fig. 6. The weight values in Fig. 6 are the average
values resulting after the different adjacency matrices, one for
each network user, are merged as described in (10).

For instance, the weight value w19 = 0.9 represents a very
high positive relationship from C; to Cy. In other words, this
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FIGURE 6. Merged [74x 14] adjacency matrix of the FCM composed using
the number of network users, time of the day and the throughput.

weight value indicates that it is very likely to measure from
the network traffic a THR lower than 4 Mbps on weekdays,
between midnight and 9 am. Similarly, the weight value
wior4 = 0.3 represents a low positive relationship from
C1o to Cy4. This weight value indicates that THR measure-
ment between 4 and 12 Mbps is unlikely to correspond to an
attack.

In order to understand how the BPAs are adjusted using the
outcome of the FCM, consider the concepts listed in Table 1
and the adjacency matrix M shown in Fig. 6. Consider
the situation in which the network traffic is evaluated
at 12 pm on a weekday (C,), and the throughput reaches
10 Mbps (Cjp). In this situation the initial state vector would
be defined as A(0) = 1[0, 1,0,0,0,0,0,0,0, 1, 0, 0, 0, 0].
As we previously described in Section V.B, we have empiri-
cally set the stopping criterion at t = 60. The resulting state
vector is A(60) = [0, 0.155, 0, 0, 0, 0, 0, 0, 0.379, 0.672,
0.639, 0.581, 0.907, 0.782]. Once the process has ended,
the weights associated with both concepts Cy3, A13(60) =
0.907, and Cy4, A