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ABSTRACT As the complexity of cyber-attacks keeps increasing, new robust detection mechanisms need
to be developed. The next generation of Intrusion Detection Systems (IDSs) should be able to adapt their
detection characteristics based not only on the measureable network traffic, but also on the available high-
level information related to the protected network. To this end, we make use of the Pattern-of-Life (PoL) of
a computer network as the main source of high-level information. We propose two novel approaches that
make use of a Fuzzy Cognitive Map (FCM) to incorporate the PoL into the detection process. There are
four main aims of the work. First, to evaluate the efficiency of the proposed approaches in identifying the
presence of attacks. Second, to identify which of the proposed approaches to integrate an FCM into the
IDS framework produces the best results. Third, to identify which of the metrics used in the design of
the FCM produces the best detection results. Fourth, to evidence the improved detection performance that
contextual information can offer in IDSs. The results that we present verify that the proposed approaches
improve the effectiveness of our IDS by reducing the total number of false alarms; providing almost
perfect detection rate (i.e., 99.76%) and only 6.33% false positive rate, depending on the particular metric
combination.

INDEX TERMS Basic probability assignment, contextual information, Dempster-Shafer theory, Fuzzy
cognitive maps, intrusion detection systems, network security, pattern-of-life, port scanning attack.

I. INTRODUCTION
Cyber-security has increasing importance to Internet users.
Providing strong and reliable security mechanisms has
become vital in all areas of society. The implementation of
Intrusion Detection Systems (IDSs) is fundamental in secu-
rity infrastructures in order to provide extra level of assur-
ance, identifying evidence of attacks or intrusion attempts.
As the complexity of these attacks keeps increasing, new and
more robust detection mechanisms need to be developed.

As we previously discussed in [1] and [2], the next genera-
tion of IDSs should be designed to include reasoning engines
supported by modules that could assess the quality of the
analysed datasets [3], manage contextual and non-contextual
information about the network, handle uncertainty or deal
with incongruent decisions between different IDSs. In order
to accommodate all these functionalities, the architecture

of advanced IDSs would be noticeably different from the
design of more conventional IDSs. The design of the domain
anomaly detection system presented in [4] can be considered
as a reference model.

Current IDSs use measurable network traffic informa-
tion from the protected system or signatures of already
known cyber-attacks during the intrusion detection process.
However, these systems do not generally take into account
available high-level information (i.e. above the network
operation) regarding the protected system [5]. Ideally, the
available high-level information (i.e. contextual informa-
tion, situational awareness and cognitive information, per-
taining to the experts’ judgment on the network behaviour)
should be incorporated within the intrusion detection process.
IDSs should be able to adapt their detection character-
istics based not only on the measureable network traffic
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information, but also on the context in which these systems
operate, and the information provided by the network users
or administrators.

In the experiments that we previously presented in [2], we
made use of the Pattern-of-Life (PoL) of the network usage
as the main source of high-level information. In particular, we
correlated the number of network users with the time of the
day and the usage of the network resources to characterise the
PoL of the network usage and to generate useful contextual
information. The results that we presented in [2] evidenced
that this available high-level information can be used to
improve efficiency of an IDS. In order to incorporate the PoL
into the detection process, a Fuzzy Cognitive Map (FCM) [6]
can be used in conjunction with an anomaly-based IDS. The
FCM is used to fine-tune the techniques used by the anomaly-
based IDS to assign evidence of attack. The use of contextual
information enhances the generation of a reference of normal
network traffic behaviour, making the detection of malicious
data more accurate, thereby improving the detection results.

Nonetheless, the work in [2] left a number of areas open for
research, which are addressed in this paper. One of these open
areas is to identify and evaluate how and at which stage of the
data fusion process, augmenting the contextual information
is most beneficial. Another open area is the selection of the
metric used to represent the PoL of the network usage in
the design of the FCM. In our prior work, we made use of
the throughput in the construction of the FCM design [2].
However, we did not explore the use of alternative metrics in
the design of the FCM, or assess how the use of these metrics
may affect the detection accuracy. Therefore, in this work,
we extend the analysis of our previously proposed approach
for using FCMs to augment the detection process by adding
contextual information.

Our contribution can be summarised as follows:
First, we propose two novel approaches that employ an

FCM to incorporate the contextual information from the PoL
into the detection process. These two approaches exploit the
alternative stages at which this information can be added to
the detection process. The first approach is based on the use of
the output of the FCM to construct an additional metric to be
fused by Dempster-Shafer (D-S) Theory of Evidence [7], and
the second approach is based on the adjustment of the values
resulting from the D-S data fusion process. The performance
of these two approaches is evaluated and compared against
the framework previously proposed in [2], which is based on
the adjustment of certain values involved in the data fusion
process, as well as the performance of the D-S based IDS
without the use of the FCM. Additional description of the
proposed approaches is presented in Section IV.

Second, we have designed three different FCMs by using
three different metrics that characterise the PoL of the
network traffic. These metrics are Throughput (THR), the
number of transmitted bytes per second; Communication
Rate (COM), the number of frames transmitted per second;
and Destination Port Distribution (DPD), the number of
unique destination ports per second. The metric Source Port

Distribution (SPD), the number of unique source ports per
second, was also extracted from the analysed dataset and
used by the IDS during the detection process. However, since
the metrics DPD and SPD have very similar profiles, the
FCM construction based on SPD is not presented in this
work. Further details about these metrics will be presented
in Section VII.C.

Third, we have significantly extended the results initially
presented in prior work [2]. We have evaluated and compared
the performance of our proposed approaches using the differ-
ent FCM designs. These results provide substantial insight
about the behaviour of the IDS when the contextual infor-
mation is taken into account. Similarly, we have presented
extensive analysis of the presented results.

Finally, the method implemented to construct the
FCM extracts high-level information from the network users,
with a process that is completely transparent to them.
In detail, we have correlated the number of researchers
present in the monitored offices with the time of the day
and the usage of the network resources. Additionally, the
network administrator may also contribute to the FCM design
by providing prior knowledge about the expected usage of the
network resources. This knowledge is provided in the form of
different thresholds for each of the metrics, which represent
the expected usage of the network resources at a particular
time of the day.

The main aims of the experiments that we present in this
work are summarised as follows:
• To demonstrate the improved detection performance of
our IDS using an FCM to include contextual information
from the PoL of the network usage into the detection
process.

• To identify which of the proposed approaches to inte-
grate the FCM into the D-S based IDS framework pro-
duces the best results.

• To indicate which of the network metrics used to design
the different FCMs produce the best detection results.

• To evaluate the efficiency of the proposed IDS in identi-
fying the presence of probing attacks, and reducing the
number of false alarms.

The remainder of the paper is organised as follows.
In Section II, the most relevant previous work is reviewed.
An explanation of the detection methodology used by our
IDS is presented in Section III. The proposed use of an FCM
within an IDS is introduced in Section IV. In Section V, a
description of the FCM is provided. The process of charac-
terising and designing the PoL with an FCM is presented in
Section VI. The network testbed, the implemented attacks,
and the evaluated dataset are described in Section VII.
Section VIII describes the results and provides an analy-
sis of the different findings. Finally, conclusions are given
in Section IX.

II. RELATED WORK
With the increasing complexity of cyber-attacks, the next
generation of IDSs need to detect network attacks, not only
by using measurable information from the network, but also
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by integrating human cognition and contextual information
into the detection process to improve their effectiveness.

According to [8], contextual information could be defined
as any information that surrounds a situation of interest,
which helps to understand and to characterise the situation.
Snidaro et al. [8] present an extensive and very detailed
survey about current research on context-based information
fusion systems. This work explains that data fusion systems
that use contextual information to improve the quality of the
fused output have gained importance in the last few years.
It also emphasises that contextual information should be an
important asset at any level of modern fusion systems.

In [9], the authors proposed an IDS that relies on contextual
information to classify the alerts as relevant or irrelevant.
The alerts generated by the IDS are processed along with
high-level information about hosts present in the network and
known vulnerabilities to generate a relevance score about the
alerts. Then, a threshold is used to classify alerts as relevant
or irrelevant according to the relevance score. Their results
demonstrate the effectiveness of using contextual information
in the detection process to increase the efficiency of the IDSs.

Xu et al. [10] present a context-sensitive detection system
based on the use of Hidden Markov Models (HMMs). The
host-based system models the system call sequences of a
program to detect anomalous patterns. This work uses the
caller function of each library or system call as context. The
HMM technique can compute the likelihood of occurrences
of the observed call sequences. However, this is achieved after
a training process using only normal program traces.

An ontology is another technique used to provide con-
textual information to intelligent systems. Ontologies have
proven to be powerful tools to specify and structure knowl-
edge, or to provide formal specification of different enti-
ties in a system and their relationships. For instance,
Sadighian et al. [5] propose a security approach based on the
use of ontologies to add context information into a process
that fuses the outcome of heterogeneous distributed IDSs.
By using this high-level information, the authors reduce the
false positive alerts.

A technique that also provides the capability of integrating
contextual information from the network user to the detection
process is the FCM. FCMs have been previously described
and used in [6], [11], and [12] to model human knowledge.
Stylios and Groumpos [6] provide a detailed description of
the FCM and its mathematical foundation. Although the work
presented in [12] does not focus on network security, it com-
prehensively describes the FCM concept with clear exam-
ples. Similarly, Ndousse and Okuda [11] provide a detailed
description of an FCM and examples that use an FCM to
model fault propagation in interconnected systems.

The work presented in [13] focuses on developing
an actionable model of situation awareness for army
infantry platoon leaders that could replicate human cognition
using FCMs. Their FCM design is based on a goals submap,
a tree-like diagram that structures the goals and subgoals
of the platoon, and the relationships between these goals.

One of the characteristics of the FCM presented in [13] is that
the people responsible for designing the FCM do not provide
weight values to the concepts, but rank the importance of each
modelled concept. A similar approach is presented in [14], in
which situation awareness is represented using an FCM.Also,
the authors of [14] use ontologies to replicate situations.

In [15], the authors compare the roles of an FCM
and another graphical knowledge representation technique,
namely a Bayesian belief network, from the perspective of
knowledge engineering and representation. This work also
describes a knowledge acquisition system that systematically
acquires design knowledge frommultiple experts fromwhich
the FCM is constructed. The authors of [16] highlight the
time consuming issues related to the manual construction of
large FCMs. In order to solve these issues, the authors present
a framework to semi-automate the construction of FCMs,
extracting information from a database and other sources of
information.

In [17], the authors use an FCM tomodel causal knowledge
within network data. Based on this knowledge, their system
calculates the severity/relevance of the modelled network
data to attacks. This approach would allow their IDS to
discard irrelevant events and focus only on important ones.
However, in contrast to the approach that we propose, this
research does not use an FCM to modify parameters in the
detection process, but as an events filtering process prior to
the actual detection.

III. INTRUSION DETECTION METHODOLOGY
Themethodology that we present in this work builds upon the
design of an unsupervised anomaly-based IDS that we previ-
ously presented in [18]. This IDS is based on the combined
use of multiple metrics from multiple layers of the network
stack to carry out the detection. It uses D-S [7] as a data
fusion technique, and is able to detect different types of cyber-
attacks in real-time. The goal is to create an overall belief on
whether there is an attack in the network traffic.

As many researchers have previously shown [19], [20],
the combined use of multiple metrics from the same or dif-
ferent network stack layers may result in higher Detection
Rate (DR) with lower numbers of false alarms for an IDS.
Each metric provides different levels of evidence about the
real nature of the network traffic. Hence, the higher the
number of metrics used, the greater the chances to identify
the presence of attack.

A. DEMPSTER-SHAFER THEORY OF EVIDENCE
D-S is a data fusion technique that combines evidence
of information from multiple and heterogeneous events in
order to calculate the belief of occurrence of another event.
D-S theory starts by defining a frame of discernment
2 = {θ1, θ2, . . . , θn}, which is the finite set of all possible
mutually exclusive outcomes of a particular problem domain.
With regards to this work, we want to identify whether
the analysed network traffic is malicious or non-malicious.
Therefore, the frame of discernment is comprised of
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A = Attack andN = Normal. Assuming2 has two outcomes
{A, N}, the possible hypotheses are {A, N, {A|N}, Ø} , 22.
In the case of {A|N}, this subset corresponds to Uncertainty
(either A or N ). In addition, Ø is the empty set. Each hypoth-
esis is assigned a belief value within the range [0, 1], also
known as a Basic Probability Assignment (BPA), through the
mass probability function m, which expresses the evidence
attributed directly to the hypothesis. This is:

m:22→ [0, 1] if


m (∅) = 0
m (H) ≥ 0, ∀H ⊆ 2∑
H⊆2

m (H) = 1
(1)

Then, D-S uses Dempster’s rule of combination to calcu-
late the orthogonal summation of the belief values from two
different sensors or observers, and fuses this information into
a single belief. This rule is defined in (2), where m1(H ) and
m2(H ) are the beliefs in the hypothesis H , from observers
1 and 2, respectively. Similarly, X ∩ Y = H refers to all
combinations of evidence which yieldH ; whereas X∩Y = Ø
refers to the mutually exclusive subsets of the hypothesis H ,
thus their intersection is the empty set.

m (H) =

∑
X∩Y=H m1 (X) ∗ m2 (Y )

1−
∑

X∩Y=∅ m1 (X) ∗ m2 (Y )
∀H 6= Ø (2)

Dempster’s rule allows the combination of evidence from
two observers at a time. In order to combine evidence from
more observers, Dempster’s rule can be used in consecutive
iterations. The output of the initial combination process is
used as input evidence in the next iteration, along with the
evidence of information from a third observer. Dempster’s
rule satisfices the associative property, thus the order in which
the belief values are fused does not affect the final combined
belief values. To better understand how Dempster’s rule of
combination is implemented, the reader is referred to the
practical example presented in our previous work [18].

B. AUTOMATIC BPA METHODOLOGY
There exist multiple ways of assigning BPA values to each
of the hypotheses in D-S theory, ranging from data mining
techniques to empirical approaches. However, few of them
could be used without a prior thorough training or a fine
tuning period. In [18], we proposed a novel BPAmethodology
able to automatically adapt the assignment of its evidence
to the current characteristics of the network traffic, without
intervention from an IDS administrator.

The proposed BPA methodology exploits a Sliding
Window (SW) scheme to compute statistical parameters from
the data, used to generate the different BPA values. Our
system has one SW for each metric used in the detection
process. Although each SW is independent from each other,
each metric is extracted from a common piece of information
(i.e. the same network frame). All the statistical parameters
are computed from the content of the whole SW. However,
only the last metric measurement to enter the SW is analysed

at a time. The SW slides one slot at a time only if the
final decision indicates that the analysed data are normal.
Otherwise, the SW does not slide and the data identified as
malicious are discarded.

The main benefit of using this scheme is that the SW pro-
vides a countermeasure against attackers trying to skew the
statistical parameters within the SW. However, the efficiency
of this methodology requires a period of non-malicious traffic
when the initial SW is filled. Only if the majority of the
data within the initial SW are non-malicious can the effective
operation of the IDS be expected. This scheme also cre-
ates situations in which the computed statistical parameters
change substantially as different metrics are fused when the
variability of the analysed data is high. In addition, the length
of the SWwill generally affect the final detection results. The
analysis of the optimumSW length has been previously inves-
tigated in [21] and it is beyond the scope of this work. In the
experiments conducted for this work, the SW length has been
empirically set to 50 slots, based on previous experience. This
SW length has previously been found to be an appropriate
length for our IDS to provide accurate detection results [21].

The BPA methodology that we proposed in [18] uses
three independent statistical approaches to provide the BPA
values for each analysed metric. The approach that assigns
BPA values to the hypothesis Normal uses the distribution
of the network traffic within the SW. The BPA in Normal
indicates how strong the belief is that the current analysed
data are non-malicious. The content of the SW is divided
in sections using the median (Me) and the first and third
quartiles (Q1 and Q3). Then, the parametersMax andMin are
computed using Inter Quartile Range (IQR):

IQR = Q3 − Q1 (3)

Min = Q1 − 1.5× IQR (4)

Max = Q3 + 1.5× IQR (5)

A particular BPA value is empirically assigned to each
of the portions of the SW as is represented in Fig. 1. The
more distributed the data are within each of the portions of
the SW, the wider the portion. The analysed data receive the
BPA assigned to the portion that it falls in.

FIGURE 1. BPA Scale for Belief in Normal Based on the Distribution of
Data.

The approach that assigns BPA values to the hypothesis
Attack uses the Euclidean distance from a defined reference
of normality (i.e. the mean of information within the SW).
The BPA in Attack indicates how strong the belief is that the
current analysed data are malicious. The Euclidean distance
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from the mean to the most distant value in the SW is defined
as the Maximum Distance (Dmax), which defines the upper
limit for the BPA value. Next, the distance from the mean
to the currently analysed data (D) is also calculated. This is
represented in Fig. 2. Finally, the BPA in Attack is assigned
according to equation (6).

m(A) =
|D| ∗ 0.5
|Dmax |

(6)

FIGURE 2. BPA scale for belief in Attack based on the distance.

Lastly, the BPA in the hypothesis Uncertainty is assigned
based on the belief values assigned in Normal and Attack in
the current SW, as described in (7).

m(N |A) =
min (m (N ) ,m (A))
max (m (N ) ,m (A))

(7)

The BPA inUncertainty indicates how doubtful the system
is regarding whether the current analysed data are malicious
or non-malicious. The numerator is the smallest of the two
hypotheses, whereas the denominator is the largest one.

C. FINAL DECISION ASSESSMENT
Once the BPA values have been assigned, it is required that
all the three conditions in (1) are assured. However, it is
unlikely that the summation of the belief values assigned
by the three previously described approaches add to 1.
In order to guarantee that the third condition in (1) is assured,
we compute an adjustment factor ϕ, as described in (8), that
will be subtracted from each of the three BPA values, where
Z is the number of different hypotheses initially considered
within 22.

ϕ =

∑Z
x=1 m (x)− 1

Z
(8)

Then, the BPA values assigned by all the observers are
adjusted and fused. The outcome of the D-S theory is a com-
plete set of BPA values (i.e. one for each hypothesis initially
considered). The analysed information is classified according
to the hypothesis with the highest BPA, which is considered
to be the correct decision. There may be cases in which both
m(N ) andm(A) receive the same final BPA values, or in which
the belief in Uncertainty is larger than the other hypotheses.
In the former case, the hypothesis Normal is considered to be
the correct decision, whereas in the latter case, the hypothesis
with the highest BPA between Normal and Attack is selected.

IV. PROPOSED USE OF AN FCM WITHIN AN IDS
This section describes the approaches that we propose by
which an FCM could be integrated within our unsupervised

anomaly-based IDS. These approaches are all based on the
generation or modification of the BPA values used in a
D-S formulation as described in Section III, by using the out-
come of the FCM. Fig. 3 shows the schematic representation
of the structure of the IDS, including the extraction of the
different metrics, the automatic generation of the BPA values
and the data fusion process. Additionally, the figure also
indicates the different stages in the IDS detection process at
which each of the proposed approaches adds the contribution
of the FCM.

A. BPA ADJUSTMENT USING THE FCM PRIOR
TO DATA FUSION
The first approach represented by the channel (a) in Fig. 3
to incorporate contextual information was initially proposed
and evaluated in [2]. It is based on the adjustment of the
BPA values assigned prior to the data fusion process, by
using the outcome of the FCM. Once the BPA values have
been computed as explained in Section III.B, the outcome
of the FCM is used to adjust these accordingly. This is
done by adding the outcome of the FCM to m(N ) and m(A).
Then,m(U ) is calculated using the newly computed values of
m(N ) and m(A). Finally, the BPAs are adjusted as described
in (8).

FIGURE 3. Schematic structure of the IDS, including the extraction of the
metrics, the generation of the BPAs, the data fusion process and the
addition of contextual information into the detection process by
using an FCM.

After all the BPA values have been adjusted, the data fusion
process is carried out using Dempster’s rule defined in (2)
and the final decision is taken as described in Section III.C.
It is worth noting that, although the same weight values are
used to adjust all of the considered metrics, it is unlikely for
these metrics to have the same BPA value. Therefore, the
adjustments would impact each of the metrics differently.

VOLUME 5, 2017 22181



F. J. Aparicio-Navarro et al.: Using Pattern-of-Life as Contextual Information for Anomaly-Based ID Systems

B. USING THE FCM AS ADDITIONAL BPA VALUES
The first of the two novel approaches that we propose to
incorporate contextual information into the detection process
is based on the use of the output of an FCM to construct
an additional metric to be fused by D-S. This is represented
by the green channel (b) in Fig. 3. We propose to use the
outcome of the FCM to assign belief values to the hypotheses
Normal and Abnormal, to yield an extra set of BPAs to be
fused. These values are then used to infer the BPA in the
hypothesis Uncertainty. Once these three values have been
computed, the newly generated BPAs are merged with D-S,
along with the rest of the considered network traffic metrics,
using Dempster’s rule defined in (2). For clarification, the
BPA values computed from the network traffic, as described
in Section III, remain unchanged.

It is worth noting that for this approach, in contrast to the
one that adjusts the BPAs prior to the fusion process,
the contextual information might have less influence over the
final IDS decision, as its contribution is reduced to one set of
BPAs to be fused. In Section VIII, we will discuss in further
detail the contribution of each of the approaches to the final
results.

C. BPA ADJUSTMENT AFTER DATA FUSION PROCESS
The second approach that we propose is also based on the
adjustment of the BPA values. This is represented by the blue
channel (c) in Fig. 3. However, in contrast to the approach
in the red channel (a) that adjusts the BPA values prior to the
fusion process, the outcome of the FCMwill be used to adjust
the resulting BPAs, after the D-S data fusion process.

The IDS carries out the detection process using solely the
measurable information as described in Section III. The dif-
ferent metrics are extracted from the network traffic and the
diverse BPA values are computed. Then, all the BPA values
are fused using Dempster’s rule defined in (2). Only after
the data fusion process has ended, the contextual information
is used to adjust the resulting BPA values, by adding the
outcome of the FCM. The adjustment is implemented over the
final outcome of the IDS, hence the addition of the outcome
of the FCM is prone to dominate the entire detection decision.

V. FUZZY COGNITIVE MAP
An FCM is a technique used for prediction and decision mak-
ing, which can be applied to model human knowledge, and to
represent the behaviour of a system as perceived by human
experts. Themain goal of modelling a decision problem using
an FCM is to predict the outcome of the evaluated problem
by letting the relevant events interact, and to calculate the
actual degree of influence that one event may have upon the
system [6].

A. MOTIVATION
An FCM is an efficient soft computing tool that sup-
ports adaptive behaviour in complex and dynamic systems,
and provides significant support for decision-makers [22].

We have made use of an FCM to model the PoL because this
technique provides a number of advantages when compared
against several probabilistic algorithms, (e.g. dealing with
contradictory or conflicting pieces of information [22]).

An FCM provides a useful framework to calculate the
degree of influence that one event or action may have upon
the whole system or upon parts of the system. Also, an
FCM is able to represent dynamic systems that evolve over
time, supporting dynamic timeline structures [22], and to
model new and unseen behaviours of particular scenarios.

Another characteristic is that an FCM provides the poten-
tial to make changes easily and intuitively, and allows addi-
tional pieces of information to be combined at a later time
instance. Moreover, it supports memberships of more than
one set of events and allows the overlapping of different
FCM models [23]. Another important characteristic of this
technique is that the fuzzy degrees of influence in an FCM are
initially assigned using qualitative linguistic variables instead
of hard numerical values. This makes an FCM an excel-
lent solution for agile Command and Control (CC) and/or
Human-Machine Interaction (HMI).

One of the most important characteristics of the FCM is
its capability to combine multiple, incomplete, contradictory
or conflicting pieces of information. An FCM handles con-
flicting or competing information better than probabilistic
systems, which are regulated by the additivity rule. Prob-
abilistic systems have difficulties managing situations that
occur when competing statements are both true [22]. Also,
according to [22], this type of system does not often handle
all forms of uncertainty well, especially when information
is conflicting. As part of the design of an FCM, it is not
necessary that all human experts involved in the process agree
on which events should compose the FCM or what weight
value should be given to each link.

The use of an FCM in this work is motivated by all
the advantages that this technique provides. Nonetheless,
an FCM is not exempt from drawbacks. The design of an
FCM relies not only upon the human’s understanding of
the work domain and knowledge, but also their ignorance,
prejudice, or bias [22]. Also, the design of an FCM is
very context-specific, and may not be easily generalised.
In order for the model to be applied to other situations, a new
FCM design should be constructed. Additionally, as will
be briefly described next in Section V.B, the convergence
of the fixed-point attractor is an open issue in the research
community [24].

B. FCM DESIGN DESCRIPTION
The graphical design of FCMs is characterised by a set of
nodes interconnected by causal connections. An example of
an FCM model is presented in Fig. 4. The nodes in the
FCM represent causal and time-varying concepts, events,
actions or goals that describe the behaviour of the system.
The definition of the main concepts relevant to the sys-
tem is the initial step in the process of creating the FCM.
In our experiments, the nodes have been defined based on the
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FIGURE 4. Simple FCM model in which nodes represent changes in the
modelled system and connections denote relationships between
concepts.

events that characterise the PoL of the network and concepts
that represent prior knowledge of the network administrator.
A very detailed description of the design of FCMmodels can
be found in [6].

Each node C carries a weight A(t) in the fuzzy
range [0, 1], which indicates the quantitative measure of the
importance that each concept has in the system, at time t. The
connections between nodes represent the causal relationship
between the defined concepts. Each link is assigned a weight
value wij(t) in the fuzzy interval [−1, 1], which indicates the
relationship and degree of influence from the nodes Ci to Cj.
There are three possible relationships between concepts:

1) Positive relationship wij > 0, indicates that
Aj(t) increases as Ai(t) also increases.

2) Negative relationship wij < 0, indicates that
Aj(t) increases as Ai(t) decreases.

3) No relationship wij = 0, indicates that there is no
correlation between Aj(t) and Ai(t).

The fuzzy degrees of influence wij(t) are initially assigned
using qualitative linguistic variables by the network users
or administrator, as described in [12], but then transformed
into numerical values. In our experiments, the fuzzy degrees
are assigned by the network administrator. We consider five
linguistic variables, {very low, low, medium, high, and very
high}. In order to transform the variables to numerical degree
of influence values, the five linguistic variables are sorted in
an ascendant order of importance and represented by {µvl ,
µl , µm, µh, µvh}. These variables are transformed to the
numerical values wij(t) associated with each link using (9),
as explained in [15], where n is the total number of variables,
and p is the ordinal number that represents the position of the
respective linguistic variable in the list. In our experiments, in
which n = 5, the weights assigned to the variables {µvl , µl ,
µm, µh, µvh} would be {0.1, 0.3, 0.5, 0.7, 0.9}, respectively.

µp =
p
n
−

1
2n

(9)

An FCM can be represented by an [m × m] matrix M,
where [M(t)]ij = |wij(t)|which is also known as an adjacency
matrix, and m is the number of nodes in the modelled FCM.
The matrix M describes the relationship between the nodes
and the weight values wij(t) associated with each link.

An FCM allows different adjacency matrices to be combined
in an adjacency matrix M as follows:

[M ]ij =
1
k

k∑
m=1

∣∣wij(t)∣∣m ∀i, j (10)

where k is the number of adjacency matrices to be merged
(i.e. number of network users in the monitored network) and
m is the number of nodes (i.e. concepts) in themodelled FCM.
As an example, Fig. 5 comprises the [6×6] adjacency

matrix of the FCM in Fig. 4.

FIGURE 5. Simple [6×6] adjacency matrix of the FCM represented
in Fig. 4.

The initial weight value A(t) of all the nodes in a model
at time t = 0 can be represented by the initial vector state A,
where A(0) = (A1(0), A2(0), . . . , Am(0)). Ai(0) is the weight
value of node i at time t = 0. Then, the FCMs evolve via an
iterative process in which, at each future time step, the weight
value of each concept A(t) is computed by aggregating the
influence of the interconnected concepts, using an activation
function f . The value of Ai(t) changes at each iteration as
described in (11):

Ai (t + 1) = f (K ) = f

Ai (t)+ m∑
j=1j 6=i

wji (t) ∗Aj (t)


(11)

where Ai(t+1) is the weight value of node Ci at time t+1,
Aj(t) is the weight value of node Cj at time t, and wji(t) is the
degree of influence of node Cj on node Ci.
Bueno and Salmeron [25] describe four activation func-

tions f ; these are the sigmoid, hyperbolic tangent, linear
threshold, and step functions. Among the four, the hyperbolic
tangent activation function, described in (12), is the one used
in our experiments. This is because the hyperbolic tangent
activation function produces weight values Ai(t) normalised
in the range [−1, 1]. Hence, this activation function complies
to one of the requirements of the D-S theory, which requires
that the BPA values assigned to each hypothesis could be any
value up to 1.

f (K ) =
eK − e−K

eK + e−K
(12)

This process continues for a number of iterations until
the FCM reaches one final fixed model, known as a hid-
den pattern or fixed-point attractor. This is when the weight
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values A(t) in all the nodes do not change in successive
iterations. It is also possible that an FCM keeps cycling
between several fixed models, known as a limit cycle, or
it may continue generating different models indefinitely.
Nápoles et al. [24] indicate that in non-stable FCMs, a stop-
ping criterion can be set to overcome the convergence prob-
lem of these last two situations. In our experiments, we have
empirically set the stopping criterion at t = 60. However, the
authors also highlight that this approach may be unreliable
due to the lack of convergence.

The problem of the fixed model convergence in non-
stable FCMs has been previously investigated by other
researchers [24], [26]. Nápoles et al. [24] describe that non-
stable FCMs aremostly related with antisymmetric adjacency
matrices, which lead the system to a periodic behaviour.
Another factor is the used activation function f . Continuous
functions such as sigmoid and hyperbolic tangent can result
in chaotic behaviours since the FCM could produce infinite
different states [24], [26]. Also, according to [26], a small
change in the initial vector state A can drastically change the
fixed model convergence. Hence, it is clear that the develop-
ment of more efficient strategies to improve the fixed model
convergence of FCM is still required [24], but this is beyond
the scope of this work.

VI. FUZZY COGNITIVE MAP CONSTRUCTION
A. CHARACTERISING THE PATTEN-OF-LIFE
In this work, we have made use of the PoL of the net-
work usage as the main source of contextual information.
Moreover, the network administrator has also contributed
to the design of the FCM by providing its knowledge in
the form of expected network usage levels. The concept of
PoL refers to the information generated by observing
repeated behaviours over an extended period of time. Accord-
ing to Craddock et al. [27], PoL analysis typically involves
the surveillance of a group of people over a period of time
to characterise their behaviours and habits, and determine if
their behaviour is suspicious.

Generally, the PoL of the network usage is directly asso-
ciated with the number of users accessing the Internet.
In order to characterise the PoL of the network usage
and to generate useful contextual information, we have
correlated the number of researchers present in the mon-
itored offices in the Wolfson School at Loughborough
University, UK, with the time of the day and the usage of
the network resources. These are the three parameters used
to characterise the PoL of the network usage and to extract
the contextual information.

Additionally, the design process of the FCM for this work
is also based on three predefined assumptions, which help to
represent the PoL in the design of the FCM:
• An increase in the network usage is expected to
be seen during common office hours (i.e. from
9am to 5pm, weekdays) when most of the network users
are expected to use the network, and a decrease outside
this timeframe.

• Legitimate high network usage outside common office
hours is also feasible because University staff have
unrestricted access to their labs at any time of
the day.

• Lastly, it is expected to see an illegitimate increase in
the network usage during the implementation of the
evaluated attack/threat, which could occur at any time
of the day.

B. DESIGN OF THE FCM USING THE PATTEN-OF-LIFE
In order to characterise the time of the day in the PoL, four
timeframes per day have been defined. These are 00-09h,
09-17h, 17-19h, and 19-24h, distinguishing between week-
days and weekends. As can be seen in Table 1, these time-
frames have been used to define eight of the concepts that
compose the modelled FCM (i.e. C1−8). These timeframes
have been defined after monitoring, for an extended period,
the time when the researchers are more frequently present in
the monitored offices. This pattern can change for multiple
reasons (e.g. bank holidays or festive periods). Therefore, a
more comprehensive methodology to characterise the time of
the day in the FCM, which could seamlessly adapt to any
pattern change, could be developed in future work.

TABLE 1. List of concepts that compose the FCM, building upon the
throughput of the network traffic.

Similarly, in order to characterise the network usage in
the design of the FCM, we require a number of metrics that
could represent the amount of network resources utilised,
such as the throughput of the network traffic. From the
gathered network traffic dataset, four different metrics have
been identified as the most appropriate metrics. These are
THR, the number of transmitted bytes per second; COM, the
number of frames transmitted per second; SPD, the number
of unique source ports per second; and DPD, the number
of unique destination ports per second. Further details about
these metrics will be presented in Section VII.C.

Since the network traffic would present variable levels of
usage depending on the PoL (i.e. the cycles of the PoL), the
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network administrator used each of these metrics to define
a number of thresholds based on its prior knowledge. These
thresholds represent the maximum expected network usage at
given time of the day, according to the network administrator.
Therefore, each of these thresholds allows the system to
characterise the PoL of the network usage. For instance, if
we consider the metric THR to design the FCM, the thresh-
olds 4 Mbps, 12 Mbps, and 40 Mbps have been defined
by the network administrator to characterise the PoL of the
network usage. These thresholds are used, in turn, to define
four additional concepts (i.e. C9−12) in the FCM design.
As another example, if the metric DPD was considered
to design the FCM, the network administrator defined the
thresholds 100 and 250 for unique destination ports per
second to characterise the PoL.

Although any of the available metrics can be used in the
construction of the FCM to characterise the network usage,
we decided to utilise only one of the metrics at a time to
reduce the complexity of the FCM. The use of fixed thresh-
olds may not provide a flexible framework that captures the
stochastic nature of the network traffic. Therefore, in future
work, alternative methodologies to dynamically characterise
the PoL of the network usage in the FCM could be also
proposed.

Finally, two additional concepts are defined as the two
possible outcomes of the FCM (i.e. C13 = Normal and
C14 = Abnormal). The weights A(t) associated with these
two concepts are used to incorporate the contextual infor-
mation extracted from the PoL into the detection process of
our IDS.

The next step in the design process of the FCM is to
define the relationships between concepts and the positive
or negative influence. In our experiments, the FCM concepts
defining the time of the day have direct influence upon the
number of network users in the monitored research office
and, in turn, upon the concepts defining the usage of the
network resources. Thus, the concepts C1−8 present positive
relationship over C9−12. Similarly, the FCM concepts defin-
ing the usage of the network resources (i.e. C9−12) have direct
influence upon the possible outcomes of the FCM. Then, the
concepts C9−12 also present positive relationship over the
concepts C13−14. Finally, the two possible FCM outcomes
cannot occur at the same time. Hence, the concepts C13 and
C14 present negative relationship with each other.

One adjacency matrix is defined for each network user,
considering the time of the day and the usage of the network
resources. Then, all the adjacency matrices are averaged out
and merged in an adjacency matrix M, as described in (10).
Following upon the concepts described in Table 1, in which
the throughput is used to characterise the PoL of the network
usage, the final [14×14] adjacency matrix M would be as
shown in Fig. 6. The weight values in Fig. 6 are the average
values resulting after the different adjacencymatrices, one for
each network user, are merged as described in (10).

For instance, the weight value w19 = 0.9 represents a very
high positive relationship from C1 to C9. In other words, this

FIGURE 6. Merged [14×14] adjacency matrix of the FCM composed using
the number of network users, time of the day and the throughput.

weight value indicates that it is very likely to measure from
the network traffic a THR lower than 4 Mbps on weekdays,
between midnight and 9 am. Similarly, the weight value
w1014 = 0.3 represents a low positive relationship from
C10 to C14. This weight value indicates that THR measure-
ment between 4 and 12 Mbps is unlikely to correspond to an
attack.

In order to understand how the BPAs are adjusted using the
outcome of the FCM, consider the concepts listed in Table 1
and the adjacency matrix M shown in Fig. 6. Consider
the situation in which the network traffic is evaluated
at 12 pm on a weekday (C2), and the throughput reaches
10 Mbps (C10). In this situation the initial state vector would
be defined as A(0) = [0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0].
As we previously described in Section V.B, we have empiri-
cally set the stopping criterion at t = 60. The resulting state
vector is A(60) = [0, 0.155, 0, 0, 0, 0, 0, 0, 0.379, 0.672,
0.639, 0.581, 0.907, 0.782]. Once the process has ended,
the weights associated with both concepts C13, A13(60) =
0.907, and C14, A14(60) = 0.782, are used to adjust the
BPA values assigned to the D-S hypotheses, or to construct
the new additional metric to be fused by D-S.

VII. TESTBED AND NETWORK TRAFFIC MEASUREMENTS
A. TESTBED LAN
One drawback associated with publicly available datasets is
that the underlying network usage dynamics are not described
in detail and high-level information such as PoL becomes
very difficult to derive. The KDD99 dataset [28] is arguably
the most frequently used publicly available network traffic
dataset in the area of network security. Nevertheless, this
dataset does not include precise timestamps nor the source
address of the network traffic [29]. This makes the extraction
of contextual information from the network traffic almost
impossible.

The analysed data traffic, previously described in [2], has
been gathered from a Local Area Network (LAN) testbed
in a research office environment, in the Wolfson School at
Loughborough University. The PCs in two distinct labs are
connected to the same office LAN, and these PCs are used by
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researchers daily for Internet access. One Cisco switch aggre-
gates the traffic from all the PCs in the office LAN, which
is used as background traffic. In addition, two additional
PCs have been connected through to a testbed LAN in order
to implement both the attack and the detection process.
Fig. 7 shows the logical topology of the testbed LAN.

FIGURE 7. Logical topology of the testbed LAN; PCs on the left generate
the background traffic, whereas those on the right are involved in the
port scanning attacks implementation, and detection process.

B. EVALUATED NETWORK SCENARIO
In this paper, we use the technique port scanning to evaluate
the performance of our proposed approaches. Port scanning,
also known as probing, is used by network administrators
to discover possible vulnerabilities in the network through
the probing of open ports. However, port scanning is also
used by attackers to discover active services that may have
vulnerabilities that could be exploited [30]. The real threat
of port scanning resides in the fact that this technique often
precedes the execution of multi-stage attacks and more elab-
orate intrusion attempts [30]. Hence, similar to KDD99 [28]
in which probing is one of the main attack categories, we
consider port scanning as a test case scenario to be detected.

Port scanning has been researched for years.
Christopher [31] describes different modes of port scanning
attacks. One of the most common methodologies to identify
port scanning is based on monitoring if there is an increase
in the number of network connections in a short period of
time that exceeds a predefined threshold. Another common
methodology is based on monitoring the number of different
destination ports per source IP address within a given period
of time. However, both methodologies require predefined
thresholds to be able to detect the port scanning attack.

To carry out the port scanning attacks we have used the
network mapper Nmap GUI, Zenmap [32]. Nmap is a pop-
ular open source tool that provides a variety of probing
techniques for network exploitation and security auditing.
Nmap and Zenmap allow the implementation of different
modes or profiles of the port scanning attack (e.g. intensive,
quick, or slow comprehensive scan). Each of these modes of

attack will manifest itself differently in the network as the
intensity of the attack varies from one another. Throughout
the experiments, we have implemented a number of these
different modes.

As we will explain when presenting the results, the fact
that we have combined different profiles of the attack makes
the detection process challenging. The intensive scan profiles
standout from the normal traffic and are easily differentiable,
whereas the stealth scan profile is not clearly distinguishable
from the normal traffic. This may cause a large number of
misclassifications during the detection process.

C. NETWORK TRAFFIC MEASUREMENTS
All the network traffic from the testbed and office LANs
has been gathered by the victim using the network packets
analyser Tcpdump [33] in pcap format. In total, 160 GBytes
of network traffic has been gathered during the 9 days that
the experiment lasted. This traffic dataset comprises 99.4%
of non-malicious traffic (i.e. 696638 instances) and 0.6% of
malicious traffic (i.e. 4220 instances). The small proportion
of malicious traffic in the dataset makes the detection pro-
cess even more challenging. The dataset is available from
https://figshare.com/s/4bd0fe2dab7e09ce61dc.

Multiple parameters were extracted from the network
dataset, and aggregated in a per second manner (e.g. bytes
per packet, source and destination IP address, and source
and destination port). These parameters have been used to
compute the four metrics introduced in Section VI.B that
we use to carry out the intrusion detection of the port scan-
ning attacks (i.e. COM, THR, DPD, and SPD). The metrics
COM and THR are represented in Figs. 8-9. The figures
present cyclic patterns in the metric measurements, which
correspond to the PoL and the time of the day when the
network is being utilised by more users. The section in blue
corresponds to the non-malicious traffic, whereas the section
in red corresponds to the traces of port scanning attacks.
Fig. 8 includes extra annotations to help identify the cycles of
the PoL and the traces of port scanning attacks. Additionally,
a zoomed in representation of the day 1 of the THR is shown
in Fig. 10.

As we can see in Figs. 8-10, there are some attack instances
that standout from the normal traffic, and are easily dif-
ferentiable by using a simple signature or threshold. These
instances coincide with the implementation of the intensive
scan profile of the port scanning attack. In contrast, when the
port scanning attack is implemented in a stealthy manner, the
attack is not clearly distinguishable from the normal traffic.
This will arguably cause a higher number of misclassifica-
tions during the detection process. A more detailed descrip-
tion of the dataset is presented in [2].

VIII. RESULTS AND ANALYSIS
A. PERFORMANCE METRICS
This section describes the detection results, and compares
the results generated by our anomaly-based IDS with and
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FIGURE 8. COM - Communication Rate (number of transmitted frames per
second) collected over 9 days.

FIGURE 9. THR - Throughput (bytes per second) collected over 9 days.

FIGURE 10. THR - Throughput gathered over 1 day, showing a zoomed in
representation of the normal traffic and malicious traffic, as well as
the PoL.

without the use of an FCM. There are three main purposes of
these results. First, to evaluate the efficiency of the proposed
approaches in identifying the presence of attacks, and reduc-
ing the number of false alarms generated by our IDS. Second,
to identify which of the proposed approaches produces the
best detection results. Third, to corroborate the improved
detection performance of our IDS using an FCM.

The effectiveness of the IDS has been evaluated using the
following performance metrics, which provide evidence of
how effective the IDSs are at making correct detections:

TABLE 2. Index of the combination of metrics.

TABLE 3. List of FCM approaches compared in the results.

• Detection Rate (DR) - Proportion of anomalies correctly
classified as anomalous among all the anomalous data:
DR = TP/(FN+TP)

• False Positive Rate (FPr) - Proportion of non-malicious
data misclassified as anomalous among all the data:
FPr = FP/(TP+FP+TN+FN)

• Overall Success Rate (OSR) - Proportion of all
the data correctly classified among all the data:
OSR = (TN+TP)/(TP+FP+TN+FN)

where TP represents anomalies classified as malicious;
TN represents normal instances classified as normal;
FP represents normal instances misclassified as attack; and
FN represents anomalies misclassified as normal.

The network traffic dataset has been analysed for all the
possible combinations of metrics. The Y-axis of the graphs
represents the results in percentage, whereas the X-axis of the
graphs represents the index of the used metrics. Each index
corresponds to one possible combination of metrics, with
#1 being a single metric set and #15 the set that combines
all the considered metrics. Therefore, the best results overall
are to be expected from the set index #15. The indexes
of all the possible combinations of metrics are presented
in Table 2.

Figs. 11-13 present the respective results in four graphs
in each combination of metrics; one for each proposed
approach. Despite the values being discrete, the line style
has been used for clarity in the presentation of the results.
These graphs correspond to the channels shown in Fig. 3.
In these experiments, the metric used to construct the
FCM was the THR; using the values in the matrix M pre-
sented in Fig. 6.

B. EVALUATION OF PROPOSED APPROACHES
The results of the proposed approaches are compared against
the framework that we previously proposed in [2] and the per-
formance of the IDS without the use of FCM (i.e. No FCM).
Table 3 lists the different approaches that have been compared
in this section.
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FIGURE 11. DR comparison: Three approaches that use an FCM (designed
based on the THR) in conjunction with IDS, and the IDS without an FCM.

FIGURE 12. FPr comparison: Three approaches that use an FCM (designed
based on the THR) in conjunction with IDS, and the IDS without an FCM.

FIGURE 13. OSR comparison: Three approaches that use an FCM
(designed based on the THR) in conjunction with IDS, and the
IDS without an FCM.

1) DETECTION RATE RESULTS
The DR results of the IDS are compared in Fig. 11. As we
can see, with regards to the DR, there is no evident difference
between all the proposed approaches, using similar combi-
nation of metrics. It is worth noting that the approach that

adjusts the BPA values prior to the fusion process using the
FCM (i.e. FCM01) produces the highest DR in most cases.
However, the maximum difference with the rest of DR results
is only ∼2%. One undesirable phenomenon that is shown
in Fig. 11 is that the DR decreases as the number of fused
metrics increases, which is in contrast to what is expected
from cross-layer IDSs. In our experiments, this phenomenon
is caused by the automatic BPAmethodology and the way the
SW slides. When multiple metrics are used, the reference of
normality in the BPAmethodology becomes wider over time.
Hence, the IDS becomes less sensitive and more malicious
instances are misclassified as non-malicious.

2) FALSE POSITIVE RATE RESULTS
The FPr results of our IDS with and without the use of an
FCM are compared in Fig. 12. Again, the metric used to
construct the FCM for these results was the THR. Similarly
to the DR results, we can see that the use of an FCM outper-
forms the FPr results produced by the IDS without the use of
an FCM, for all the evaluated approaches. Also, the difference
in the performance is evident. The largest difference in the
FPr results occurs between FCM01 and No FCM, for the
set #3 (THR), which is over 35%. The largest difference
for all the sets that combine two metrics is obtained in #10
(COM-THR), where the difference is 27.82%. Among the
sets that combine three metrics, the largest FPr difference
is obtained in #14 (COM-THR-SPD), where the difference
is 17.15%. When all the metrics are combined, the difference
between FCM01 and No FCM is 9.68%. Also, the set of
metrics #15 is the one that produces the best FPr (i.e. the
lowest FPr) results, only 6.33%.

Among the three approaches that use an FCM, FCM01
is the one that always produces the lowest FPr, when two
or more metrics are combined. FCM01 outperforms the
FPr results generated by the other two approaches in ∼5%
for all the combination of metrics; and a peak improvement
of up to 8.05%, for the set #10 (COM-THR). Also, in contrast
to the DR results, the FPr decreases as the number of fused
metrics increases. Ideally, we would prefer to see a decrease
in the FPr and an increase in the DR, at the same time. This
behaviour could be associated with the tradeoff in network
intrusion detection described in [34]. The authors explain that
there exists a tradeoff between the reduction of the FPs by
decreasing the sensitivity of the IDS and the increase of the
number of misclassifications.

3) OVERALL SUCCESS RATE RESULTS
The final performance metric that we have used is the OSR.
In contrast to the DR that is only based on the malicious
content of the analysed data, the OSR usefully represents all
the instances that have been correctly classified, regardless of
whether these are malicious or not. Therefore, the OSR pro-
vides a more representative understanding of the efficiency
of the IDS. Fig. 13 presents the OSR results comparison
between all the approaches. Similar to the DR and FPr, the
use of an FCM in the IDS outperforms the OSR results
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produced by the IDS without an FCM, for all the evaluated
approaches. Additionally, once again, FCM01 is the one that
always produces the best results among all the approaches.

Focusing upon the evaluation of the two approaches,
FCM01 and No FCM, for the set #3 (THR) the improvement
in the OSR between the two methods is 35.64%. The largest
improvement in all the sets that combine two metrics is
obtained in #10 (COM-THR), where the difference between
the two approaches is 27.38%. Among the sets that com-
bine three metrics, the largest OSR improvement is obtained
in #14 (COM-THR-SPD), where the difference is 17.15%.
And finally, when all the metrics are combined, the difference
between the two approaches is over 9.68% of improvement.
This improvement is constant for all the combinations of
metrics, and shows once more that the use of contextual infor-
mation improves the detection capabilities of our anomaly-
based IDS. Again, the set of metrics #15 is the one that
produces the best OSR (i.e. the highest OSR) results, 93.19%.
The results show that, more instances are correctly classified
as more metrics are combined. With respect to the three
approaches that use an FCM, once again, FCM01 outper-
forms the OSR results generated by the other two approaches.
The average improvement is ∼6% for all the combination
of metrics; and a peak improvement of up to 8.06%, for the
set #10 (COM-THR). All the detection results plotted
in Figs. 11-13 have been tabulated in Table 4.

TABLE 4. Detection results - proposed approaches.

4) RESULTS ANALYSIS
These results indicate that by utilising only measureable
information from the network without considering the avail-
able contextual information, the IDS may reach a wrong
conclusion, leading to an overall low accuracy. Also, from
the presented results, we can infer that the most efficient
approach is to adjust the BPA values prior to the data fusion
process. This is because the FCM01 approach adjusts all

of the considered metrics individually. Hence, the contribu-
tion of the contextual information adapts according to the
BPA values given by the IDS for each individual metric, and
would impact each of the metrics differently. Also, the con-
tribution of the contextual information through the approach
that constructs an additional metric, FCM02, decreases as
the number of metrics being fused increases. This is because
generally, after a number of consecutive D-S fusions, the
BPA value given to one of the hypotheses will be largely
higher than the rest of the BPAs. Therefore, the fusion of the
metric computed from the FCMmay not reverse the decision
of the IDS. Only in cases in which the BPA values of both
hypotheses, Normal and Attack, are close to each other, could
the addition of the new metric have an evident effect on the
final IDS decision. In the case of the approach that adjusts the
BPA values after the data fusion process, FCM03, is prone
to dominate the entire decision. On the one hand, in cases
in which the BPA values of both hypotheses, Normal and
Attack, are close to each other, the addition of the contextual
information could greatly influence the final IDS decision.
On the other hand, even if one of the hypotheses receives a
largely higher BPA value than the rest, the addition of the
contextual information could overturn the final IDS decision
if the outcome of the FCM is larger than the resulting
BPA values given by the IDS.

The most important findings can be summarised as
follows:
• The use of an FCM in the detection process outperforms
the efficiency of an IDS without considering the use of
contextual information.

• The FCM01 approach performs generally better than the
other proposed approaches.

• The contribution of the contextual information is more
evident in the case of FPr and OSR.

• The contribution of the FCM02 approach decreases as
the number of metrics being fused increases.

• The FCM03 approach is prone to dominate the decision.

C. METRICS EVALUATION FOR FCM DESIGN
As it was explained in Section VI.B, in order to characterise
the PoL of the network usage in the FCM, the network
administrator defined a number of thresholds for each of
the considered metrics (i.e. THR, COM, and DPD). These
thresholds define expected levels of the normal usage of the
network resources according to the a priori knowledge of the
network administrator. One FCM model is designed for each
of the considered metrics. As described in Section VI.B, any
of the available metrics can be used in the construction of
the FCM to characterise the network usage. However, we
decided to utilise only one of the metrics at a time to reduce
the complexity of the model.

This section compares the detection results generated by
our IDS when the metrics THR, COM, and DPD are used
to model the FCM, as well as the results of the IDS without
an FCM. Since the addition of the FCM contribution prior to
the data fusion process is the most efficient approach of the
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three proposed, only theFCM01 approach is considered in the
results presented in Figs. 14-16. For clarity, Table 5 lists the
different approaches that have been compared in this section.
Again, the effectiveness of the IDS has been evaluated in
terms of DR, FPr, and OSR, presented in four graphs for all
the possible combinations of metrics described in Table 2.

TABLE 5. List of FCM models compared in the results.

1) DETECTION RATE RESULTS
The DR results of the IDS are compared in Fig. 14. The
most noticeable characteristic that we can see in the results
is the drastic improvement provided by the FCM-COM and
FCM-DPD approaches. For almost all the possible combina-
tion of metrics, both approaches provide over 99% of DR.
In particular, for the set #15 (COM-THR-SPD-DPD) the
DR reaches 99.76%, which improves the DR results provided
by the IDS to 80.94% without the use of an FCM. Also, in
contrast to the results generated by FCM-THR, the DR does
not decrease as the number of fused metrics increases. This
phenomenon manifests that the contribution of the contextual
information tends to dominate the detection.

FIGURE 14. DR comparison: Adjustment of BPAs prior to the fusion
process; FCM designed based on the THR, COM or DPD, and
the IDS without an FCM.

2) FALSE POSITIVE RATE RESULTS
The FPr results of our IDS are compared in Fig. 15. In contrast
to the DR results, we can see that the use of the FCM-COM
and FCM-DPD produces a slightly higher number of false
alarms, in comparison with the use of the FCM-THR. For
the set #15 (COM-THR-SPD-DPD) the FPr reaches 26.42%
and 25.42% for the FCM-COM and FCM-DPD, respec-
tively. This represents an increase in the number of false

FIGURE 15. FPr comparison: Adjustment of BPAs prior to the fusion
process; FCM designed based on the THR, COM or DPD, and the
IDS without an FCM.

alarms of approximately 20% (i.e. ∼140800 normal data
instances misclassified). In comparison with the No FCM
approach, the increase in the number of false alarms reaches
approximately 10% (i.e. ∼73000 normal data instances
misclassified). As these results suggest, the use of the
FCM-THR approach produces the best detection results over-
all in terms of FPr. Also, similarly to the DR results presented
in Fig. 14, the FPr does not decrease as the number of fused
metrics increases.

3) OVERALL SUCCESS RATE RESULTS
Fig. 16 presents the OSR results comparison of our IDS.
Generally, the OSR results produced by the FCM-COM and
FCM-DPD approaches remain almost unchanged regardless
of whether the number of fused metrics increases or not.
As in the previous results (i.e. DR and FPr) when
the FCM-COM and FCM-DPD are used, the contribu-
tion of the FCM tends to dominate the intrusion detec-
tion process. Both approaches FCM-COM and FCM-DPD
produce lower OSR overall than the FCM-THR approach
for almost all the combinations of metrics. For the set #15
(COM-THR-SPD-DPD), which is the set index expected
to produce the best results overall, the OSR reaches
73.58% and 74.58% for the FCM-COM and FCM-DPD,
respectively. This represents a decrease of approx-
imately 20% of OSR with respect to the use of
FCM-THR, and a decrease of approximately 10% of OSR
with respect to the IDS without an FCM. As these results
suggest, once again, the use of the metric THR to construct
the FCM produces the best detection results overall.

4) RESULTS ANALYSIS
From the presented results, the important role played by
the metric selection in the design of the modelled FCM
(i.e. THR, COM and DPD) in the effectiveness of the
IDS is clear. Based on the 99% of DR obtained when
either the approach FCM-COM or FCM-DPD is used, we
might incorrectly assume that these are the best selection

22190 VOLUME 5, 2017



F. J. Aparicio-Navarro et al.: Using Pattern-of-Life as Contextual Information for Anomaly-Based ID Systems

FIGURE 16. OSR comparison: Adjustment of BPAs prior to the fusion
process; FCM designed based on the THR, COM or DPD, and the IDS
without an FCM.

TABLE 6. Detection results - FCM design.

of metrics. An IDS that triggers ∼140800 false alarms
during the 9 days that the experiment lasted would make
the network administrator ignore the generated alarms.
A tradeoff between the DR and the false alarms should be
found, based on the needs of the protected network. The
metric selection should be based on whether we prioritise
a system that detects most of the attacks regardless of the
number of false alarms, or whether we prioritise reducing
the number of misclassifications. All the results plotted in
Figs. 14-16 have been tabulated in Table 6.

The most important findings can be summarised as
follows:
• The FCM-COM and FCM-DPD approaches produce the
best detection results overall in terms of DR.

• The FCM-THR approach produces the best detection
results overall in terms of FPr and OSR.

• The use of contextual information in the detection pro-
cess, regardless of the metric used in the modelling of

the FCM, outperforms the efficiency of an IDS without
an FCM.

IX. CONCLUSIONS AND FUTURE WORK
In this paper we have advocated incorporating high-level
information regarding amonitored network, in the form of the
PoL and the network administrator prior knowledge, when
taking decisions on whether an attack is present in the net-
work traffic. We have proposed two additional approaches
to the one previously presented in [2], that use an FCM in
conjunction with an IDS to add the contextual information
into the detection process. The analysed dataset was gath-
ered from a real LAN in a research office during 9 days,
and comprises normal traffic and traces of port scanning
attacks.

Initially, we have compared the results generated by our
IDS without the use of an FCM and with the application of
all the proposed approaches, using the metric THR to design
the FCM. In terms of DR results, the proposed approaches
provide an improvement to the DR results of only ∼2%.
Nonetheless, with regards to the FPr and the OSR, it is evident
that the use of PoL constantly improves the detection capabil-
ities of the IDS, for all the possible combinations of metrics.
Among all the FCM approaches, FCM01, the approach that
adjusts the BPA values prior to the fusion process using
the FCM, is the one that always produces the lowest FPr
and higher OSR. The FCM01 approach is able to produce
only 6.33% of FPr, and up to 93.19% of OSR, in the best-
case scenario.

During a second set of experiments, we compared how
the selection of metrics used by the network administra-
tor to represent the expected normal usage of the network
resources may influence the detection results. From the pre-
sented results, we can see that there are significantly distinct
results, especially in terms of DR. The use of the metric
COM and DPD in the design of the FCMs drastically
improves the DR results produced when the THR is utilised.
For almost all the possible combination of metrics, both
approaches provide over 99% of DR. This represents an
improvement of almost 80% of DR in comparison to the use
of the THR. However, with regards to the FPr and the OSR,
the use of the metrics COM andDPD produced slightly worse
detection results than the use of the THR. By using all the
considered metrics, the FPr reaches 26.42% and 25.42% for
the COM and DPD, respectively. This represents an increase
in the number of false alarms of approximately 140800 data
instances misclassified.

Different conclusions could be extracted from the pre-
sented results. First, these results empirically confirm that the
use of the FCM provides improvement to the effectiveness
of the IDS. Also, the presented results ratify that adjusting
the BPAs prior to the data fusion provides the best use of the
PoL in the detection process. The number of false alarms may
not be low enough to be acceptable and make the IDS usable
in practice in multiple scenarios. Nonetheless, it is important
to reiterate and emphasise that the aim of this work is to
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investigate the best way to use an FCM in conjunction with
an IDS. Similarly, as we previously explained, in this workwe
have chosen this type of attack mainly as a means to evidence
the benefit of including high-level information as part of the
detection process.

Additionally, the selection of the metrics used to design
the modelled FCM plays an important role in the effec-
tiveness of the IDS. The metric selection should be based
on whether a system that detects most of the attacks or a
system that reduces the number of misclassifications should
be prioritised. A tradeoff between the DR and the false
alarms should be found, based on the needs of the protected
network.

As for future work, we wish to research novel methods
to characterise the time of the day in the FCM, to extract
the available high-level information used to construct the
FCM, and to refine the setting of the different thresholds
that characterise the various concepts in the FCM model.
Also, we wish to implement novel techniques to address the
problem of fixedmodel convergence in non-stable FCMs, and
evaluate the time complexity of the presented system. Finally,
we wish to focus on the use of an FCM in conjunction with
the IDS to enhance the detection capabilities of multi-stage
attacks.
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