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ABSTRACT Controlling and quantifying the presence of Posidonia Oceanica (P.O.) in the Mediterranean
sea is crucial for the conservation of these endemic ecosystems and to underscore the negative impact of
many anthropogenic activities. These activities, which include uncontrolled leisure anchoring or illegal
drag fishing, directly affect the tourism and fishing industries. Nowadays, the control and quantification
of P.O. is done by divers, in a slow and imprecise process achieved in successive missions of a duration
limited by the capacity of the oxygen scuba tanks. This paper proposes the application of robotic and
computer vision technologies to upgrade the current P.O. control methods, building large scale coverage
maps using the imagery provided by an autonomous underwater vehicle endowed with a bottom-looking
camera. The process includes four main steps: 1) training a classifier based on two different Gabor filter
image patch descriptors and a support vector machine; 2) detecting P.O. autonomously, both on-line and
off-line, in each individual image; 3) color photo-mosaicking the area explored by the vehicle to obtain
a global view of the meadow structure; these mosaics are extremely useful to analyze the structure and
extension of the meadow and to calculate some of the biological descriptors needed to diagnose its state; and
4) building a binary coverage map in which the classification results of areas with image overlap are fused
according to four different strategies. The experiments, performed in coastal areas of Mallorca and Girona,
evaluate and compare the proposed descriptors and fusion techniques, showing, in some cases, accuracies
and precisions above 90% in the detection of different patterns of P.O., from video sequences at different
locations, in different seasons and with different environmental conditions.

INDEX TERMS Posidonia Oceanica, Gabor filters, machine learning, photo-mosaicing, autonomous
underwater vehicles.

I. INTRODUCTION
A. MOTIVATION
Posidonia Oceanica (P.O.) is an endemic low-growing sea-
grass of the Mediterranean that forms vast colonies with a
great ecological value, playing a critical role in the equi-
librium, maintenance, development and stability of coastal
ecosystems and human livelihoods, because: a) they favour
the deposition of new sediments on the seafloor and steady the
unconsolidated ones, protecting the shoreline against erosion,
b) they attenuate currents and wave energy, c) they are also
related directly to the abundance of the biodiversity, being a
source of food, a refuge for numerous species and a favorable
substrate for many organisms, and d) meadows absorb great
amounts of carbon and release oxygen to the water by means
of photosynthesis, increasing its quality and transparency,

mitigating the climate change [1]. Posidonia leaves are green
when they are young and during spring and summer are
active, but become brown in autumn and photosyntheticaly
inactive. In winter, new leaves are generated.

Several biologists have studied the evolution of P.O. along
and across the Mediterranean. Terrados and Medina-Pons [2]
found a significant increase of density in two Posidonia
meadows located in the Balearic Islands, monitored during
6 years. Contrarily, some other studies developed in different
habitats, revealed the opposite pattern, showing evidences of
decline on a global scale [3]. This decrement was in response
to human impacting activities, such as boats petrol or diesel
spill, which produce changes in water quality, andmechanical
erosion due to uncontrolled leisure anchoring or dragging
fishing.
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However, other more optimistic points of view defend the
idea that there is not a global and general decline but a
decline due to an accumulation of local impacts, which can
be overcome by acting upon these local causes [4].

The European Commission, in its directive DIR
92/43/CEE, identifies P.O. as a natural habitat of priority
interest requiring the delimitation of special areas of con-
servation. Since, in general, the extension of P.O. meadows
and its presence in areas not far from the coast is declining,
monitoring and controlling these benthic habitats becomes a
crucial task to preserve them and, as a consequence, preserve
the benefits that they provide to the tourism and fishing indus-
tries, two strategic sectors in many Mediterranean resorts.

Nowadays, the control of P.O. is typically done by divers,
who photograph and mark the perimeter of the meadows
to see their extension, and install certain gauges inside for
measuring their height. Sometimes, divers are tracked with
acoustic localizers to build a georeferenced survey [5]. How-
ever, this process is slow, tedious, imprecise and limited by
the autonomy of the scuba tanks.

Several approaches to map and control P.O. colonies
are based on the exploitation of multispectral satellite
imagery [6]. However, although the analysis of satellite
imagery has revealed to be useful to detect the borders of
meadows in shallow waters, it does not result effective in
deeper areas where the water column complicates the percep-
tion of different blue tonalities.

Acoustic bathymetries performed with a Side Scan
Sonar (SSS) attached to a vessel hull or to an underwater
vehicle [7] can be also of great utility to detect and map the
P.O. meadows.

Recently, lightweight Autonomous Underwater Vehicles
(AUV) equipped with a variety of sensors such as SSS,
GPS, Doppler Velocity Logs (DVL), Inertial Measurement
Units (IMU) or cameras have been used to collect data in
marine habitats colonized with P.O [8]. In these works the
P.O. bottom coverage was estimated by segmenting dark
regions corresponding to living P.O. from bright regions
of dead matte or bottom sediment. However, the seagrass
identification was not truly autonomous as it required the
intervention of a human operator.

To the best of our knowledge, the first approach to auto-
matic detection of P.O. using uniquely visual information
was presented in [9], developed by the same research group
and authors as this paper. In this contribution, images were
characterized using Law’s filters and automatically classified
using a Logistic Model Tree (LMT) algorithm.

In the context of Augmented Reality Subsea Explo-
ration Assistant (ARSEA), a Spanish national funded
project (TIN2014-58662-R), we propose to upgrade the cur-
rent methodology to visualize, map and control marine areas
with P.O., using an AUV equipped with a bottom looking
camera and programmed to navigate at a constant altitude.
The use of an AUVmakes it possible to extend the duration of
missions while reducing costs and improving human security.
Also, it increases both data resolution and accuracy, and

allows highly accurate geo-references. Employing an AUV
is combined with the application of several computer vision
technologies to detect and map automatically the P.O.

The work presented next is an evolution of our previous
work [9]. The main progress is reflected on several issues:
a) the patch description has changed from Law’s filters to
Gabor filters, which are more suitable for the P.O. texture,
b) the training dataset has been extended to images from addi-
tional environments which present P.O. in clear regression,
c) the results of the P.O. binary discrimination are refined
locally to smooth the borders, d) the construction of the
coverage maps incorporates a pixel aggregation step for areas
of image overlap. Unfortunately, there is no possible compar-
ison with other visual algorithms used for the same purpose
since, to the best of our knowledge, there is no comparable
literature applied on similar purposes.

B. POSIDONIA INTERESTING BIOLOGICAL DESCRIPTORS
It is widely accepted [4], [10] that some of the most relevant
biological descriptors needed to assess the ecological status
of a P.O. meadow are:

(a) The density, measured as the number of leaves per square
meter.

(b) Bottom coverage, expressed as the percentage of sea
ground covered by live seagrass with respect to the per-
centage of ground surface covered by sand, rocks or dead
matte. The conservation index Ci is defined as Ci =
P/(P+D), where P is the percentage of ground covered
with live P.O. and D is the percentage of ground covered
by dead P.O. matte, sand, other algae or rocks. This
descriptor usually quantifies the dynamics of themeadow
and the human impact.

(c) The lower and upper depth limits, which indicate the
geographical location of the meadow and its boundaries.
The upper depth limit refers to the closest part to the coast
and it is easily detectable by means of aerial or satel-
lite imaging, while the lower limits indicate the deepest
boundary, been detectable only with remote sensing from
vessels or underwater vehicles. These limits give infor-
mation about the dynamics of the meadows and if they
are progressing or regressing.

The majority of these ecological parameters can be com-
puted by processing images of the meadow. Discriminating
automatically the P.O. from the rest of elements of the sea
ground can be of great utility to be more precise in the calcu-
lation of the bottom coverage and the conservation index, and
the coverage maps can be useful to delimit the boundaries of
the meadow.

C. OVERVIEW
Our goal is to autonomously build coverage maps of P.O.
meadows using the images provided by a bottom-looking
camera attached to an AUV or a ROV. These 2D maps are
geo-referenced to absolute locations (in the basis of the AUV
navigation data and a GPS) and can be of great utility to:
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FIGURE 1. Summary of the P.O. coverage map building process.

FIGURE 2. Examples of underwater images depicting (a) P.O., (b) P.O.
observed under bad illumination conditions, (c) dying P.O. and (d) moss.

1) control the state and evolution in time of the meadows,
2) study their spatial structure, and 3) to measure their global
extension and some of the interesting descriptors suitable for
assessing its ecological status, such as lower and upper depth
limits and bottom coverage [4], [10].

This process involves several steps, which are summarized
in Figure 1. First of all, as described in Section II, each of the
gathered images is divided in patches, which are subsequently
classified as depicting P.O. or not depicting it. Afterwards,
as described in Section III, this rough classification is refined
until a pixel-level accuracy is achieved. Finally, the refined
classifications obtained for each of the gathered images are
fused in order to build the global coverage map, as dis-
cussed in Section IV. To this end, accurate pose estimates
are obtained by means of a visual SLAM and mosaicking
approaches [11], [12], out of the scope of this paper. Finally,
experimental results are exposed in Section V.

II. PATCH-LEVEL DETECTION
Each image obtained by the bottom-looking camera is divided
into a set of M × N sub-images or patches. A descriptor is
computed for each patch and used by a supervised learning
approach to classify them as depicting P.O. or not.

Given the visual characteristics of P.O., texture descrip-
tors appear to be distinctive enough to discriminate it
from the seafloor and other seaweed species. As an
example, Figures 2-(a) and 2-(c) show that even in
very different states (young and dying), P.O. texture is
clearly distinguishable. Moreover, the texture is significantly

FIGURE 3. Examples of 2D Gabor filters with (a) small envelope scale,
(b) large envelope scale and (c) large envelope scale and different
carrier orientation.

different to non P.O. vegetation, such as the moss depicted in
Figure 2-(d).

Color descriptors might be useful, although not sufficient.
On the one hand, different plants may have colors very similar
to P.O. On the other hand, the spectral components of light
are differently absorbed by water and long wavelengths are
usually lost first [13], giving the whole scene green tonal-
ities. Finally, even small changes in illumination may lead
to important changes in the perceived colors, as illustrated
in Figure 2-(b). As amatter of fact, [14] shows that using color
alone in underwater image segmentation leads to poor results
and, in the particular case of P.O., tends to be overconfident.

A. PATCH DESCRIPTION
In order to assess the validity of texture analysis and quantify
the importance of additional color information, this paper
proposes two descriptors, one being based on texture alone
and the other on texture and color.

The first descriptor, dGG or Gray-scale Gabor, is solely
based on texture and relies on 2D Gabor filters.
Gabor filters [15] have two important features. On the one
hand, they approximate the characteristics of the primary
visual cortex of mammals. Thus, they are said to mimic
certain parts of human visual perception [16]. On the other
hand, they have been found to be particularly well suited for
texture representation and discrimination [17]. More specif-
ically, these filters have predominant orientations, similar to
the P.O. leaves and, thus, they are likely to provide a strong
response in front of P.O.

Roughly speaking, a 2D Gabor filter is the combination of
a complex sinusoid, usually referred to as the carrier, and a
2D Gaussian-shaped function known as the envelope. A filter
is characterized by the carrier orientation and the Gaussian
dispersion or scale. The effect of the scale is exemplified
in Figures 3-(a) and 3-(b). Also, Figure 3-(c) illustrates how
the orientation affects the Gabor filter.
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FIGURE 4. The proposed Gabor filter bank. Each row corresponds to a
scale and each column to an orientation.

Our proposal is to generate a bank of 40 Gabor filters,
involving 8 different orientations and 5 different scales and
discretize each filter to an 8 × 8 matrix. This filter bank is
shown in Figure 4.

In order to compute the descriptor dGG, each patch is
first converted to grayscale. To this end, each pixel value in
the grayscale patch is computed as 0.2989 · R + 0.5870 ·
G + 0.1140 · B, being R, G and B the red, green and blue
components of that pixel in the original color patch. That
is, we compute the luminance, so that the perceived bright-
ness of the pixel is quantified independently of its chromatic
content [18].

Afterwards, the grayscale patch is convolved with the
whole filter bank. From each convolution, two significant
values are extracted: the local energy and the amplitude. The
former is defined as

E =
m−1∑
i=0

n−1∑
j=0

c(i, j)2, (1)

where m and n are the number of rows and columns, respec-
tively, of c, which is the result of the convolution.
The amplitude is computed as follows:

A =
m−1∑
i=0

n−1∑
j=0

|c(i, j)|. (2)

Being each patch convolved with 40 Gabor filters,
a descriptor is composed of 80 values: 40 local energy values
and 40 amplitude values.

The second descriptor, dCG or Color Gabor, is computed
in a similar way. In this case, the red, green and blue color
channels are convolved separatedly with the Gabor filter bank
and both local energy and amplitude are obtained. Thus,
a descriptor is composed of 80 values per channel. That is,
240 values in total.

Overall, dGG is solely based on texture information whilst
dCG considers both texture and color.

B. TRAINING AND CLASSIFICATION
Two classes, named 0 and 1, are defined for the patches.
A patch belongs to class 1 or 0 if the majority of its pixels
depict P.O. or not, respectively. Thus, detecting P.O. at the
patch level is a binary classification problem.

Our proposal is to use a Support Vector Machine
(SVM) [19] to perform the patch classification by means
of a supervised learning schema and using the mentioned
descriptors. Thus, a training is required prior to classification.

To this end, we first manually selected a set of 69 images of
different resolutions gathered by an AUVwith a bottom look-
ing camera in several coastal areas of Mallorca. These images
were taken under different illumination and environmental
conditions. The purpose of choosing a variety of images
from very different datasets was to take into consideration
the diverse tonalities and textures of the P.O., depending on
the environment, the depth and the life stage, to augment the
classification range of the trained model. One third of the
images in the dataset has only P.O. Another third has no P.O.
at all, and the last third contains patches with P.O. and patches
without it. A hand labeled ground truth was built for these
images.

Afterwards, a Monte Carlo cross validation schema was
used as follows. First, 14 of the 69 images (approximatedly
a 20%) was randomly selected as the training set and the
remaining 55 images (approximately an 80%) used as the
test set.

Second, the aforementioned descriptors dCG and dGG were
computed for the training set and used to train the SVM
together with the ground truth.

Third, the descriptors were also computed for the test
set and classified using the trained SVM. The quality
of the classification was assessed thanks to the ground
truth.

These steps were repeated 500 times, randomly build-
ing the training and test sets each time. In other words,
each of the 500 tests involves classifying a random set con-
taining 80% of the images using a SVM trained with the
remaining 20%.

The results of these tests in terms of hit ratio are provided
in [14]. However, in the context of this paper, the Monte
Carlo cross validation served a different purpose. Among all
500 different training sets used during this cross-validation,
the one leading to the best results was selected and used for
further training. Being this training set composed of only
14 images (the abovementioned 20%), the training times in
further experiments was substantially reduced. This small
image set was later extended with additional images from
two new environments (see Section V-A.2). Thanks to these
additions, the resulting training set is improved and usable in
a wider range of scenarios. Let this set of images be referred
to as the extended training set.
Finally, a SVM with a Radial Basis Function (RBF)

kernel [20] was trained with the extended training set and
subsequently used to classify different image sets. The dif-
ferent parameters involved in this process will be described
and experimentally assessed in Section V. As a result of this
step, a rough classification in which patches are said to depict
P.O. or not is achieved. In order to achieve a fine, pixel-
level, classification, a refinement algorithm is proposed and
described next.
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III. PIXEL REFINEMENT
This section presents an algorithm for the post-processing
of the initial results of the classifier presented in the pre-
vious sections. The algorithm refines the labels (0 or 1) of
the classifier, which are initially assigned to patches of the
original image. The refinement is obtained by comparing the
color of the pixels in the boundaries between regions with
different labels, with the average color of the pixels inside
each region (i.e. the average color of the pixels labeled as 0
and the average color of the pixels labeled as 1).

FIGURE 5. Examples of post-processing result. P.O. is depicted in
white (label 1) and background in black (label 0). (a) Original image,
(b) Initial result of the classifier. Post-processing results for increasing
values of the parameter r : (c) 0, (d) 3 and (e) 10.

If the color of the considered pixel is closest to the average
color in the region with label 1, the label for this pixel is
set to 1 in the processed image. If its color is closest to
the average color in the region with label 0, then the label
for this pixel is set to 0. The process is repeated iteratively
until no more changes are produced. In order to increase
the stability of the method, the average color of a given
pixel is computed over a neighborhood of radius r (typically
set to 3 in all the experiments), which is the only param-
eter of the algorithm. Algorithm 1 describes in detail the
post-processing method and some results are displayed in
Figure 5.

IV. AGGREGATION
At this point, the P.O. has been identified in each of the
gathered images. Our goal is now to integrate each of these
classified images to build the so called global coverage map.
Although the P.O. meadow extension could be also evaluated
using 3D reconstructions of the environment if the vehi-
cle had a stereo rig, the same nature of the classification
algorithm and the typology of the used images require the
vehicle to move approximately at a constant height with the
camera looking downwards, and forces the necessity to build
2D photo-mosaics to obtain coverage information. To achieve
this goal, the overlapping regions between different images
have to be identified. Afterwards, the identified overlapping
regions have to be combined in order to consistently estimate
the presence or absence of P.O.

Algorithm 1 Post-Processing
Input: Input (RGB) image x, Classification

result (labels, 1 for P.O., 0 otherwise) b.
Parameter: Radius of neighborhood r .
Output: Post-processed result bOut.

1 Compute average RGB value of pixels in x with label ‘1’
and such that all of its four connected neighbors (top,
down, left, right) have also label ‘1’: RGB1;

2 Compute average RGB value of pixels in x with label ‘0’
and such that all of its four connected neighbors (top,
down, left, right) have also label ‘0’: RGB0;

3 do
4 for all pixels p ∈ x with label ‘1’ and such that some

of its four connected neighbors (top, down, left,
right) have label ‘0’ do

5 Compute average RGB value in x of pixels in a
neighborhood of p (radius of the neighborhood
= r): RGBp,r ;

6 Compute Euclidean distances between the
average color of pixel p and the average color
inside regions with labels ‘1’ and ‘0’:
d0 = ||RGBp,r − RGB0||,
d1 = ||RGBp,r − RGB1||;

7 If d0 < d1 assign label ‘0’ to pixel p;
8 end
9 while some pixel is assigned a label ‘0’ in the for loop;
10 do
11 for all pixels p ∈ x with label ‘0’ and such that some

of its four connected neighbors (top, down, left,
right) have label ‘1’ do

12 Compute average RGB value in x of pixels in a
neighborhood of p (radius of the neighborhood
= r): RGBp,r ;

13 Compute Euclidean distances between the
average color of pixel p and the average color
inside regions with labels ‘1’ and ‘0’:
d0 = ||RGBp,r − RGB0||,
d1 = ||RGBp,r − RGB1||;

14 If d1 < d0 assign label ‘1’ to pixel p;
15 end
16 while some pixel is assigned a label ‘1’ in the for loop;

A. OVERLAP DETECTION
In order to properly detect the overlapping regions, the AUV
motion has to be computed. Our proposal is to obtain on-line
pose estimates by means of visual SLAM and, if necessary,
improve these pose estimates off-line by means of a mosaick-
ing algorithm. Being both pose estimates the result of a global
optimization process, the drift is almost neglectable.

The specific visual SLAM and mosaicking approaches
used in this study are described in [11] and [12] respectively,
although other methods can be used.

Let X ii+1 be the obtained motion estimate from the refer-
ence frame of image i to the reference frame of image i+ 1.
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The pose of an arbitrary image j with respect to another
image i can be computed as follows:

X ij =


⊕j−1

k=i X
k
k+1 j > i

0 j = i⊕i−j
k=1	X

i−k
i−k+1 j < i

(3)

where ⊕ and 	 denote the composition and the inversion of
transformations [21]. Thus, a point p in the coordinate frame
of an image j can be expressed in the frame of an image i as
q = X ij ⊕ p.
Let B = [b0, b1, b2, b3] be the set of points defin-

ing the boundaries of an image with respect of its
own coordinate frame expressed in pixels. For example,
if the image coordinate frame is located at its center,
as it happens with our visual SLAM approach, B =

[[−w
2 ,−

h
2 ]
T , [w2 ,−

h
2 ]
T , [w2 ,

h
2 ]
T , [−w

2 ,
h
2 ]
T ], where w and h

are the image width and height respectively. If the coor-
dinate frames are located at the top-left corner, which
is the case of the adopted mosaicking approach, B =

[[0, 0]T , [w, 0]T , [w, h]T , [0, h]T ].
Having all the images the same resolution, the boundary

polygon of image j with respect to image i can be computed
as Bij = X ij⊕B. Let bx

i
j and by

i
j denote the x and y coordinates,

respectively, of the four points in Bij.
Our proposal is to select one of the gathered images,

namely i, as a global reference frame and then computing
Bij for each of the other images. In this way, the bounding
box of the whole observed area with respect to i, Biall =
[x ileft , y

i
top, x

i
right , y

i
bottom] can be easily computed from the

coordinates of all the resulting image boundaries as follows:

x ileft = min
∀j

bx ij (4)

x iright = max
∀j

bx ij (5)

yitop = min
∀j

byij (6)

yibottom = max
∀j

byij (7)

The next step is to sample the whole bounding box at a
desired sampling resolution δ and, for each sampling point,
check if it lies within each of the individual boundary poly-
gons. The coordinates of a sampled point ps can be expressed
with respect to the frame of an arbitrary image j as	X ij ⊕ ps,
as illustrated in Figure 6. Thus, if a sampled point lies within
one or more images, the corresponding pixel intensities can
be computed and stored.

After applying this process, a collection of pixel intensities
Vx,y is available for each sampled point (x, y). If the input
images are the result of the P.O. classification, the value
list Vx,y holds information of the P.O. presence according to
each image that observed the corresponding sampled point.
Algorithm 2 summarizes the process.

It is important to emphasize that determining whether a
sampled point lies within an image or not could also be
achieved by simply checking if	X ij⊕ps is insideB. However,

FIGURE 6. Coordinate transformation.

by pre-computing Bij and using a fast Point In Polygon (PIP)
algorithm the computation time is significantly reduced.

Algorithm 2 Building the Value List
Input: [w, h]: Image resolution

1 δ: Sampling resolution
2 i: Index of the reference image
3 X i0..n−1: Relative poses
4 I0..n−1: P.O. classified images
Output: Vx,y: Set of P.O. detections per sampled point

5 for j = 0 to n− 1 do
6 Bij← X ij ⊕ [[0, 0]T , [w, 0]T , [w, h]T , [0, h]T ]
7 end
8 [xmin, xmax]← [minn−1j=0 bx

i
j ,maxn−1j=0 bx

i
j ]

9 [ymin, ymax]← [minn−1j=0 by
i
j,maxn−1j=0 by

i
j]

10 for x = xmin to xmax step δ do
11 for y = ymin to ymax step δ do
12 for j = 0 to n− 1 do
13 if (x, y) inside Bij then
14 p = [px , py]T ←	X ij ⊕ (x, y)
15 Vx,y← Vx,y ∪ {Ij([px], [py]}
16 end
17 end
18 end
19 end

B. DATA FUSION
The goal of the data fusion is to properly aggregate the values
in Vx,y = [v0x,y, v

1
x,y, . . . , v

n−1
x,y ]T in order to obtain a single

value for each sampled point stating the likelihood of P.O. at
these coordinates.

We propose four different aggregation strategies. These
strategies, named Ameanx,y , Amedianx,y , Amaxx,y and Aminx,y consist on
computing the mean, the median, the maximum and the
minimum of Vx,y respectively.

As, in our particular implementation the regions classified
as P.O. are labeled as 1 and the regions not containing P.O.
are labeled as 0, a single P.O. detection in Vx,y leads to a
P.O. result in Amaxx,y . Similarly, a single value in Vx,y stating
that no P.O. was present will result in not P.O. in Aminx,y . These
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are extremely conservative approaches that will be evaluated
experimentally. Concerning Ameanx,y , the result is a number
between 0 and 1. Regarding Amedianx,y , a value of 0 or 1 is
directly provided. Also, being ours a binary classifier, com-
puting the median is equivalent to computing the majority
label.

For the sake of simplicity, let us defineAmean,Amedian,Amax

and Amin as the result of applying the mentioned aggregation
criteria to all the sampled points (x, y). As Amean provides
values between 0 and 1, its output must be thresholded. Our
proposal is to use the Otsu method [22] to this end.

FIGURE 7. The Sparus II AUV.

V. EXPERIMENTAL VALIDATION
A. EXPERIMENTAL SETUP
1) THE AUV
The robot used for the experiments is a SPARUS II
AUV [23] (see Figure 7). The vehicle is equippedwith aDVL,
a pressure sensor, an IMU, a GPS to be geo-referenced in the
surface, an Ultra Short Baseline (USBL) acoustic link used
for localization and data exchange between the robot and a
ground station, and a stereo rig grabbing at 10 fps with its
lens axis perpendicular to the seafloor. The vehicle has also
two led bulbs facing downwards of 40W each one.

The vehicle estimates a first approximation of its displace-
ment, global position and velocity from a two-layer Extended
Kalman Filter approach fed with the DVL, the USBL,
the pressure sensor and the IMU data [24]. This localization
is refined each time the navigation module is able to detect,
visually, a loop closing [11]. SPARUS works with the ROS
middleware [25] to manage all the navigation, control and
operation modules, which facilitates software integration and
distribution.

2) THE TEST ENVIRONMENTS
The AUV was programmed to navigate in five different loca-
tions colonized with P.O. on the west and north-west coast
of Mallorca and Girona, with different environmental con-
ditions, such as: illumination (during the day and evening),
turbidity (clear and turbid waters), density of P.O., and P.O.
coloration. This permitted to get a wide range of different
imagery containing P.O.. During each mission, several video
sequences were recorded. From this imagery, the extended
training set was built as described in Section II-B.

FIGURE 8. Some images from the original training dataset.

FIGURE 9. Some of the images used to enrich the original training
dataset. (a) and (b) Palma Bay; (c) and (d) Sant Feliu harbor.

Figure 8 shows some of the original training set images.
Figure 9 shows some of the images used to extend the original
training set. The latter images came from two environments.
The first is located in Palma Bay, near the sewage marine
outfall, where the regressive state of the P.O. is clearly due
to the spills coming from the sewage plants [26]. The second
environment is located in Sant Feliu harbor (Girona), where
the presence of any algae or seagrass is very scarce.

Two different types of assessments were performed:
1) Off-line, classifying images extracted from video
sequences grabbed from the SPARUS, but processed after the
mission, and 2) On-line, running the classifier with the best
parameters, during the mission, feeding it with the images as
they were captured by the camera.

Two different video sequences, one grabbed at Port de
Valldemossa and another taken at Palma Bay were used
to assess the different classifiers trained with the extended
training set. None of the images of these two aforementioned
sequences were included in the original training set. The
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FIGURE 10. Some images extracted from the Valldemossa video
sequence.

FIGURE 11. Some images extracted from the Palma Bay video sequence.

idea was to test the different classifiers with other video
sequences non related with the training process, although
some of the images can be of a similar style and appearance.
Both sequences cover an area of 400 m2 approximately. From
the sequence of Port de Valldemossa, 333 key-images [12]
were selected for the assessment. This sequence was grabbed
at 4 meters depth, with low red color absorption, general
good lighting conditions except a slight flickering in some
parts of the route due to the sun light reflected on the water
column, and over a P.O. meadow with excellent health state
and dense bottom coverage. Figure 10 shows some frames
from this video sequence. From the sequence of Palma Bay,
200 key-images were also selected for the assessment. This
latter sequence was grabbed at 13 meters depth, with an
important absorption of red frequencies, at 400 meters from
the pipe mouth where the solid elements coming from the
uncontrolled spill are deposited on the sea bottom. In this
area the P.O. is in clear regression because of the organic and
chemical pollution coming from the sewage and has a poor
bottom coverage and density of leaves and bulbs. Figure 11
exemplifies this video sequence.

A hand labeled ground truth for all the images of both
sequences was built and used to evaluate the results. Figure 12

FIGURE 12. Frames from the video sequences (a),(c) and the
corresponding ground truth (b),(d).

shows the ground truth of sample images from Valldemossa
and Palma Bay, in which P.O. is depicted in white and the
background in black.

B. THE EXPERIMENTAL PLAN
Although preliminary results of the explained training and
classification strategies were included in [14], [27], the results
provided in the present paper extend these preliminary studies
in several ways: first, a much wider range of test environ-
ments has been used and evaluated by means of a binary
classifier extensive diagnostic based on Receiver Operating
Characteristic (ROC) curves [28]; second, the process is now
performed also in real time, with the P.O. classifier executed
by the on-board AUV computer; third, different parameters,
such as the patch size or the image resolution, are now exper-
imentally evaluated; fourth, the assessment of the different
pixel aggregation strategies applied on the coverage maps
formation is also another novelty of this paper; fifth, all the
validations of this work (classification and aggregation) were
performed at a pixel level, while in the preceding references
all the validations were done at a patch level, which always
includes an additional level of uncertainty. The quality of the
images is an important issue that can condition the quality
of the results. In [27], the same authors evaluated the effect
of applying several image enhancement techniques in the
P.O. segmentation process. Furthermore, the training image
set contains images of high quality taken with good illu-
mination conditions at lower depths and images with lower
quality at deeper environments. Of course, the results will
vary depending on the quality of the classified images and
the composition of the used training set.

1) TESTED PARAMETERS
In order to fully evaluate the proposed approach, experiments
have been conducted with different values for the following
parameters:
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TABLE 1. Parameter values used in the experiments. The value within
each cell denotes the corresponding patch size, in pixels. The number in
parentheses is the code assigned to each combination.

Image resolution By testing different input image reso-
lutions, the effects on the time consumption will be
quantified as well as the changes in P.O. detection
quality. To this end, the input images have been
downsampled to 160×120, 320×240 and 640×480
pixels, prior to any of the described processes. It is
important to emphasize that, in all cases, the original
aspect ratio is preserved.

Number of patches The number of patches affect the
detection quality and the granularity of the patch level
classification. In this way, small patchesmay not hold
enough information to achieve a proper classifica-
tion, whilst large patches may difficult the refinement
step. To quantify these effects, the resized images
have been divided in 20×15 patches, 32×24 patches
and 40×30 patches. These divisions lead in all cases
to square patches.

Finally, as stated in Section II-A, two descriptors have been
defined: dGG (gray scale) and dCG (color). Each of these two
descriptors will be tested with all the combinations of the
aforedescribed parameters.

Combining three different resolutions, three different num-
ber of patches and two descriptors leads to the 18 situations
summarized in Table 1. The table shows the resulting patch
size for each possible combination. For example, if the image
is downsampled to 160×120 and divided in 20×15 patches,
the patch size will be 8 × 8 pixels. Additionally, a number
is provided within parentheses for each combination. This
number is a code that will be used in further explanations to
refer to each particular combination of parameters.

2) QUALITY MEASURES
In order to assess the application of the trained classifiers on
different image sets, one experiment has been conducted for
each of the aforementioned 18 combinations. Each experi-
ment involved the following steps:

1 Training the SVM with the extended training image set,
the hand labeled ground truth and the corresponding
parameters of image resolution, number of channels and
patches. The trained patches were labeled as P.O. if the
majority of pixels in the ground truth were labeled as
P.O. and as non P.O. otherwise.

2 Classifying each frame of the two video sequences,
the one of Valldemossa and the other grabbed in
Palma Bay.

3 Measuring the total classification time for each image in
each sequence and for each experiment. That is, wemea-
sured the time spent to classify all the patches in each
image. Then, the mean and the standard deviation of the
classification time were computed. A low variance is a
good indicator that the corresponding mean time reflects
the achievable frame rate when the algorithm is executed
on-line.

4 Calculating the total number of True Positives (TP), True
Negatives (TN), False Positives (FP) and False Nega-
tives (FN), for each image of each video sequence at a
pixel level. A positive appears when a pixel is classified
as P.O. and a negative refers to pixels classified as non
P.O. True and false indicate whether the corresponding
pixel in the ground truth coincides with the obtained
classification or not, respectively.

5 For every one of the 18 experiments, the mean values
of TP, TN, FP and FN were calculated from all the
individual values of TP, TN, FP and FN obtained for
each image of the sequence. These 18 mean values of
TP, TN, FP and FN, were used to calculate 18 values of
Accuracy, Precision, Recall and Fall-out, one for each
experiment, defined as:

Precision =
TP

TP+ FP
(8)

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(9)

Recall =
TP

TP+ FN
(10)

Fall − out =
FP

FP+ TN
(11)

The Accuracy defines the hit rate of our classifier with
respect to the whole population of classified elements,
that is, how many elements have been correctly classi-
fied with respect to the total of treated elements. The
Precision denotes the percentage of TP with respect to
all classified as positives.

The Recall is the percentage of TP with respect to the
number of all elements really positive, and the Fall-out
represents the number of FP with respect to the number
of all elements really negative.

6 The 18 different values of Recall and Fall-out form
the ROC curve for the pixel comparison criteria. ROC
curves are a classical tool used in a variety of disciplines,
frommedicine [29] to robotics [30], to analyze and diag-
nose a binary classifier as certain parameters are var-
ied. The ROC curves plot the Fall-out in the horizontal
axis vs the Recall in the vertical axis. ROC curves anal-
ysis permit to obtain the optimal classification model
including the optimal parameters, which are those that
provide a trade-off between a minimum Fall-out with
a maximum Recall. ROC curves close to the diagonal
line (so called line of no discrimination) indicate a ran-
dom classifier while ROC curves close to the lines y = 1
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FIGURE 13. Original photo-mosaic of the Valldemossa video sequence.

and x = 0 indicate a classifier with high performance.
Points above the line of no discrimination indicate a
classification better than random. For each ROC curve,
its Area Under the Curve (AUC) was calculated as a
quantitative measurement of the classifier performance.
Area values range from 0.5 (no apparent accuracy) to
1.0 (perfect accuracy) as the ROC curve moves towards
the left/top boundaries [31]. A common and accepted
approximation to a diagnostic test is [32]: areas between
0.90 and 1 correspond to an excellent (A) classifier,
areas between 0.80 and 0.90 reflect good (B) classifiers,
areas between 0.70 and 0.80 denote fair (C) systems
and areas under a 0.6 correspond to poor (D) or fail (F)
classifiers.

In order to evaluate the different pixel aggregation strate-
gies in the formation of the coverage maps, the following
actions were performed:

1 For every one of the 18 different experiments on the
Valldemossa dataset, the coverage map was computed
according to Section IV, using the 4 different aggre-
gation strategies: Amean, Amedian, Amax and Amin. That
makes a total of 18×4 different resulting coveragemaps.

2 For every different coverage map, the number of TP,
TN, FP and FN were computed at a pixel level, com-
paring all these maps with a ground truth coverage
map obtained hand labeling the original color mosaic
obtained using [12] with the original color key frames of
the Valldemossa dataset (see the original photo-mosaic
in Figure 13). This photo-mosaic is essential to see
the structure and state of the meadow. The resulting
color photo-mosaic from the images of Palma Bay was
not reliable, since it was extremely difficult to obtain
visual loop closings from sandy and deadmatte bottoms,
which generated evident misalignments in the resulting
mosaic.

3 The accuracy, precision, recall and fall-out of each
experiment/aggregation pair were calculated.

C. EXPERIMENTAL RESULTS
1) INITIAL CLASSIFICATION
Figure 14 shows the mean and standard deviation of the
classification time per image, calculated for the Vallde-

FIGURE 14. Mean and standard deviation of the classification time per
image, for the Valldemossa (a) and Palma Bay (b) datasets. Data is
grouped in image resolutions, and sorted by number of patches.

mossa and Palma Bay datasets, and for each one of the
18 different experiments. These time data has been obtained
off-line, from a laptop with very similar characteristics as the
vehicle computer [23], that is, an Intel i7 processor working
at 2.5 GHz, 4 cores, 8GB of RAM and an Ubuntu 16.04 O.S.
Data is grouped in increasing image resolutions and number
of color channels (1 channel for gray scale and 3 channels for
color). In each group, data is sorted in ascending order by the
number of patches in the x and y directions. The mean values
are depicted as bars and the standard deviation intervals are
depicted as vertical lines over each bar top.

Both graphics reflect a similar pattern: a) in each group,
the classification time increases as the number of patches
increases, which suggest that, although the patch size is
smaller, more time is needed to process the larger amount
of them, b) the classification time is prone to increase as
the image resolution increases, and c) the time is globally
higher for color images than for gray scale images, comparing
groups with the same image resolution. Standard deviations
are, in general, small, except for those settings that imply
highest execution times, including 3 channels, resolutions
of 320 × 240 and 640 × 480, and the highest number of
patches (40× 30).
In terms of running time saving for on-line applications,

settings which imply gray scale frames and lower number
of patches are the fastest (less than 0.5 seconds/frame).
However, additional statistical values must be analyzed to
decide an option with a good trade-off between speed and
good performance.
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FIGURE 15. Accuracy of the 18 experiments for Valldemossa (a) and
Palma Bay (b).

Figures 15 and 16 show the mean accuracy and precision,
as defined by equations 9 and 11, for the 18 experiments. The
data is grouped in the sameway as in Figure 14. Accuracy and
precision data corresponding to experiment number 8 for the
Palma Bay dataset is missing since all the classified frames
indicated a complete absence of Posidonia. In consequence,
the aforementioned ratios did not make much sense.

The analysis of plots 15 and 16 permits to infer several
conclusions:
• Although results for the Palma Bay dataset are slightly
worse than for the Valldemossa dataset, for both
datasets, the accuracy is prone to get or to exceed the
80% in the majority of the experiments which involve a
three channel classification; this means that the number
of (FP+FN) tends to be small.

• Accuracy results involving one channel classification do
not follow any clear trend and are not conclusive since
some setting combinations generate a good result in one
dataset and worse for the other. However, the combina-
tions involving one channel and a resolution of 320×240
with either 32× 24 or 40× 30 patches seem to be stable
and to present a good performance in both datasets,
in terms of accuracy.

• Precision for almost all combinations applied on the
Valldemossa dataset exceeds 80%, meaning low levels
of FP. However, for the Palma Bay sequence, the number
of FP seems to be higher since only 4 combinations
reach or clearly exceed 70%. One of these combinations
includes a single channel, a resolution of 320× 240 and

FIGURE 16. Precision of the 18 experiments for Valldemossa (a) and
Palma Bay (b).

FIGURE 17. Classification ROC curve for the Valldemossa video sequence.

32 × 24 patches, and the other two involve 3 channels
and 40× 30 patches.

In summary, for off-line evaluations, where the classifica-
tion time is not as critical as in real-time applications, settings
including a 3 channel description can be used to obtain a
better classification performance. However, for on-line appli-
cations where the data discrimination must be fast and in real
time, a combination with a single channel, a resolution of
320 × 240 pixels and with 32 × 24 patches can be used to
get an acceptable performance.

Figures 17 and 18 show the ROC curves build from the
18 Fall-out and Recall values, computed following the pixel
level comparison criteria, for the Valldemossa and Palma Bay
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FIGURE 18. Classification ROC curve for the Palma Bay dataset.

datasets, respectively. Likewise, the AUC is indicated below
each curve to provide a numerical diagnose of the classifier.
The AUC for the classifier applied on the Valldemossa dataset
defines it as an excellent classifier while the AUC for the
classifier applied on the Palma Bay dataset reflects a fair-
good classifier. Although the results of the classifier for the
Palma Bay dataset are worse than the ones obtained for the
Valldemossa dataset, the global performance on Palma Bay is
still highly reliable, given the quality of the images, the dif-
ficulty to discriminate dead and alive P.O., to describe their
texture, and the poor density of seagrass in this environment.

For both datasets, the classification diagnose performed at
a pixel level gives a high AUC, which means a high reliability
for the classifier. The best points of the ROC curve are those
that represent the best trade-off between a high Recall and
a low Fall-out. In the case of Figure 17: points (0.09603,
0.9392), corresponding to experiment 16, (0.07836, 0.9246),
corresponding to experiment 15, (0.08118, 0.9283), cor-
responding to experiment 17, (0.08795, 0.9345), corre-
sponding to experiment 13 and (0.09965, 0.9427) and
corresponding to experiment 12. For the same curve,
the points that present the worse relations Fall-out vs Recall
are (0.9985, 0.982), for the experiment 3, and (0.00423,
0.136), for experiment 18. The best points of this curve
correspond to those obtained with the settings (image reso-
lution, patch size and number of channels) that most likely
provide the best results on the classifier. The worse points
on the curves indicate those combinations to avoid since
they provide the worse classification results. In this case,
the experiments that involve the description and classification
of color images report much more reliable results than the
ones with gray-scale images.

2) CLASSIFICATION AFTER PIXEL AGGREGATION
AND MOSAICKING
Figures 19-(a) and 19-(b) show the accuracy and precision,
respectively, of each pixel aggregation strategy, for each of
the 18 experiments on the Valldemossa dataset.

Observing both figures, the general conclusions would be:
a) in terms of accuracy, for the majority of the combinations

FIGURE 19. Accuracy (a) and Precision (b) of the aggregation strategies,
for the Valldemossa dataset.

that involve a 3 channel Gabor description, the Amean and the
Amedian pixel aggregation strategies have a superior perfor-
mance thanAmin andAmax ; high accuraciesmean low levels of
falsely classified pixels, b) the precision is higher than 0.8 for
all aggregation strategies, except for all experiments with the
Amax aggregator and the experiment number 3 (dGG with the
minimum image resolution and 40× 30 patches); this means
a general lack of FP after the pixel aggregation.

The mean precision, accuracy and recall were: 0.8825,
0.8148 and 0.8079, respectively.

Four ROC curves were formed from the recall and fall-out
values, computed from the data obtained after the comparison
of the resulting coverage maps formed with the four different
aggregation strategies over the 18 different experiments, and
the ground truth coverage map.

In consequence, every ROC curve represents the perfor-
mance of each pixel aggregation process applied on the
18 different experiments, performed with different detector
settings. Figures 20-(a) and 20-(b) show the aforementioned
ROC curves with their respective AUC obtained from the
Amean and Amedian aggregators. Figures 21-(a) and 21-(b)
show the ROC curves with their AUC, from the Amax and
Amin aggregators. According to the curve shape and the
AUC values, the Amean and Amedian aggregators are the ones
that present an excellent performance, thus the ones recom-
mended to be used in this kind of applications. On the other
side, the Amax aggregator presents a good performance and
the Amin aggregator a poor performance.
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FIGURE 20. ROC curves of the aggregation results for the Valldemossa
dataset. (a) Amean and (b) Amedian.

Some samples of the best combinations could be, for
instance, A) two points of the Amedian aggregator curve:
(0.05549, 0.94), corresponding to the experiment 15 (dCG,
resolution: 320×240; 40×30 patches) and (0.04624, 0.9295)
corresponding to experiment 6 (dGG, resolution: 320× 240;
40 × 30 patches), and B) two points of the Amean curve:
(0.0459, 0.9384), corresponding to the experiment 12 (dCG,
resolution: 160×120; 40×30 patches) and (0.06565, 0.9531)
corresponding to experiment 10 (dCG, resolution: 160× 120;
20× 15 patches).

Contrarily, some of bad combinations would be in the
points (0.002375, 0.5376), corresponding to experiment 5
(dGG, resolution: 320× 240; 32× 24 patches) with an Amin

aggregation, or (0.1443, 0.7637), from experiment 9 (dGG,
resolution: 640×480; 40×30 patches) and aggregation Amax .

In consequence, an adequate combination involves, for
instance, a 3-channel description with a Amean or Amedian

aggregation, an image resolution of 320 × 240 and 40 × 30
patches. On the contrary, a bad combination would be any
1-channel description with a Amin aggregation.

Figure 22-(a) shows the hand labeled ground truth of the
P.O. coverage map, corresponding to the mosaic of Figure 13.
Figures 22-(b) and 22-(c) show, respectively, the resulting
coverage map from experiments 15 and 6, using the pixel
aggregation Amedian. Figures 22-(d) and 22-(e) show the
resulting coverage map from experiment 12 and 10, respec-
tively, using the pixel aggregation Amean and before the

FIGURE 21. ROC curves of the aggregation results for the Valldemossa
dataset. (a) Amax and (b) Amin.

Otsu thresholding. Using these highly realistic coverage
maps, the automatic calculation of the P.O. bio-parameters
of bottom coverage, conservation index, and upper and lower
borders is very easy, just counting black and white pix-
els and delimiting the transitions between black and white
parts.

On the other side, Figure 23 shows two coverage maps
obtained with a bad combination classifier-settings/pixel-
aggregation: (a) experiment 5, aggregation Amin and (b)
experiment 9, aggregation Amax .

As an important conclusion, Figure 20 suggests that the
aggregation process using Amedian or Amean improves the
initial classification results for the Valldemossa dataset (com-
pare with Figure 17).

D. Executing on-line THE P.O. CLASSIFIER
The software package corresponding to the classifier was
wrapped into a ROS node and installed in the vehicle to be
run on-line, during the mission, as the robot moved around
the environment and grabbed the video sequence. The robot
image processing pipeline includes a conversion from raw
frames to RGB encoding, a rectification according to the
camera calibration parameters stored in the vehicle and a
down-sampling by 2 of the original resolution.

The classification node was trained in gray-scale, first, and
then with color images, using patches of 8 × 8 pixels and
resolutions reduced to 320× 240 pixels.
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FIGURE 22. (a) Hand labeled ground truth of the coverage map for
mosaic of Figure 13. Four coverage maps, obtained with an excellent
combination classifier-settings/pixel-aggregation: (b) experiment 15,
aggregation with Amedian, (c) experiment 6, aggregation with Amedian,
(d) experiment 12, aggregation with Amean and (e) experiment 10,
aggregation with Amean. Results corresponding to (d) and (e) are shown
prior to the Otsu thresholding.

FIGURE 23. Two coverage maps, with a bad combination
classifier-settings/pixel-aggregation. (a) Experiment 5, aggregation with
Amin, (b) experiment 9, aggregation with Amax . P.O. is marked in white
and the background in black.

The node returned frames classified in gray-scale at 5.8 fps
and at 2.6 fps using the 3 channels, being the original frame
rate of 7.5 fps. The reduction of the frame rate for the classi-
fied images with 3 channels is evident, but, as it has been seen
in previous sections, the classification results are significantly
better. The purpose of detecting P.O. on-line is to get this
environmental information in real time, as fast as possible,
as the vehicle moves.

An illustrative video showing the execution of the clas-
sifier on-line can be seen in https://www.youtube.com/
watch?v=lG9szHFPnjk&t=17s. Images show different
marine environments located in Mallorca, colonized with
P.O. with different textures. The video shows, at the left of
the screen, the original images captured from the camera.
The results of the classification are superimposed to the
original frames and shown at the right of the screen, in green.

This is a proof of concept that it is possible to train the
system, off-line, with a variety of P.O. images with diverse
characteristics, and then apply the trained model on-line on
different environments, getting promising results.

VI. CONCLUSIONS AND FORTHCOMING WORK
In this paper we propose the use of several image process-
ing and machine learning techniques to automatically detect
and quantify the presence of Posidonia Oceanica in video
sequences of vast areas of sea floor grabbed with an AUV.

Our approach divides every image of each sequence in
patches of the same size and describes each patch using
color and a bank of Gabor filters. The process includes three
phases:

a) A training phase using a heterogeneous group of images
and a SVM to obtain a classification model. b) A classifi-
cation phase using the trained model, in which the P.O. is
discriminated from the background in all the images of a
video sequence. This phase also involves a refinement step in
which the rough SVM classification is iteratively improved
until reaching a pixel level classification. The overall process
can be run off-line, but also on-line, from the robot computer,
during the mission. c) The construction of a coverage map
with all the classified key frames of the video sequence,
which turns out to be a photo-mosaic of the surveyed area,
but with the P.O. highlighted in white and the rest in black;
the challenging point in the construction of these maps lies
in the pixel aggregation strategy used to determine the value
of a map pixel shared with different images. These coverage
maps are an excellent tool to evaluate the state, extension and
several biological parameters of the P.O. meadows visualized
in the inspected area.

Experiments include an extensive combination of differ-
ent parameter settings, such as several patch sizes, different
image resolutions or the use of one or three color channels
on two different video sequences. Also, four different pixel
aggregation strategies have been tested for the coverage map
formation.

The quality of the P.O. classification and pixel aggrega-
tion for coverage map formation has been evaluated using
ROC curves and compared with hand-made ground truth
images and coverage maps. Results of extensive tests reveal
that, although a couple of combinations including gray-scale
images have an stable and adequate performance, includ-
ing the color in the patch description increases notably the
classifier success rate. On the other side, an additional and
important conclusion is that the use of pixel aggregation
techniques for the formation of the coverage map improves
the initial classification results.

In summary, for off-line applications, using 3 channel
Gabor descriptors is preferable than using one channel Gabor
descriptors, but, if the classifier must be run on-line, the com-
bination with only one channel descriptor, an image resolu-
tion of 320 × 240 pixels and 40 × 30 patches can also be
used, guaranteeing a good trade-off between classified frame
rate and classification accuracy.
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The ongoing work (out of the scope of this paper) includes
the use of the on-line P.O. detection for the vehicle mission re-
planning, in a dynamic path-planning context. The idea is to
apply a navigation schema able to re-direct, on-line, the vehi-
cle towards certain areas of interest, depending on the envi-
ronmental data captured in real time, and the programmed
criteria. For instance, drive, automatically, the AUV towards
zones densely colonized with P.O. or follow the border of the
meadow. Both implementations, the stand alone and the ROS
versions, are available for the scientific community, in two
public GitHub repositories, [33] and [34].
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