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ABSTRACT Kernel principal component analysis (KPCA) has been a state-of-the-art nonlinear process
monitoring method. However, KPCA assumes the single operation mode while the real industrial processes
often run under multiple operation conditions. In order to monitor the nonlinear multimode processes
effectively, this paper proposes a modified KPCA method assisted by the local statistical analysis, referred
to as local statistics KPCA (LSKPCA). In the proposed method, two kinds of strategies, including local
probability density estimation and statistics pattern analysis, are integrated to improve the traditional KPCA
method. To handle the multimode characteristic of industrial processes, local probability density estimation
is developed to transform the monitored variables into their probability density values, which follow the
unimodal data distribution. For further extracting the statistical information among the process data, statistics
pattern analysis technique is applied to capture various orders of statistics, including one-order, second-order,
and high-order ones, which constitute the statistics pattern matrix of the monitored data. Furthermore, KPCA
modeling is performed on the statistics pattern matrix. The simulations on one numerical example and the
continuous stirred tank reactor system demonstrate that the proposed LSKPCAmethod has the superior fault
detection performance compared with the conventional KPCA method.

INDEX TERMS Nonlinear process, multimode process, kernel principal component analysis, local proba-
bility density estimation, statistics pattern analysis.

I. INTRODUCTION
As modern industrial systems are becoming large-scale and
complicated, real-time fault detection and diagnosis tech-
nologies are of vital importance to assure process safety
and prevent quality degradation. The commonly used fault
detection and diagnosis methods can be categorized into
three groups: model-based methods, knowledge-based meth-
ods and data-based methods [1]–[7]. As for the large-scale
industrial processes, there are abundant process data avail-
able in the industrial databases because of the application
of distributed computer control systems. Therefore, data-
based methods have shown their advantages over the other
methods. The typical data-based fault detection and diagnosis
methods include principal component analysis (PCA), partial
least squares (PLS), independent component analysis (ICA)
and canonical variate analysis (CVA), etc. [8]–[11]. Among

these methods, PCA is one of the most popular data mining
methods and has been applied in many different process
monitoring cases [12]–[16].

PCA can extract the low-dimensional uncorrelated data
feature information from the high-dimensional process data
by orthogonal linear transformation. Based on the extracted
data features, two monitoring statistics T 2 and SPE are
usually constructed for convenient fault detection. However,
traditional PCA method is in essence one linear transfor-
mation technique, which may not provide satisfactory per-
formance for nonlinear process monitoring cases. In fact,
many industrial systems, such as chemical reactors and
biological processes, are often with particular nonlinear
characteristics. To deal with the nonlinear system moni-
toring problem, many nonlinear PCA versions have been
proposed, such as principal curve PCA [17], neural net-
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work based PCA [18], and kernel PCA (KPCA) [19], [20].
By utilizing the kernel function to solve nonlinear opti-
mization effectively, KPCA has been one state-of-the-art
method in nonlinear process monitoring field. Lee et al. [20]
first proposed the KPCA based fault detection method
for continuous process monitoring and then Lee et al. [21]
developed a multiway KPCA (MKPCA) method for batch
process monitoring. Considering the process dynamic prop-
erty, Choi et al. [22] presented a dynamic KPCA method
which monitors the time-lagged vectors instead of the
original process vectors. Furthermore, Jia et al. [23] built a
batch dynamic KPCA (BDKPCA) based process monitor-
ing method by considering the auto-correlation and cross-
correlation of process variables. In order to detect faults in
nonlinear plant-wide processes, Jiang et al. [24] divided the
measured variables into sub-blocks by performing mutual
information-spectral clustering, then established multi-block
KPCA monitoring model. Considering that KPCA only cap-
tures the global data structure but ignores the local struc-
ture information, Deng et al. [25] imposed local structure
preserving on the KPCA optimization objective and pro-
posed a modified KPCA algorithm, referred to as the local
KPCA (LKPCA). For monitoring nonlinear processes with
outliers, Zhang et al. [26] combined sliding median filtering
technology to improve the KPCAmethod.Many other KPCA
related studies can be seen in the literature [27]–[33].

Traditional PCA and KPCA methods assume one sin-
gle normal operation mode, while real industrial pro-
cesses often run under multiple operation modes due to
raw material fluctuations, seasonal variations and market
demand changes. In view of multimode process monitor-
ing problems, some multimode monitoring methods have
been discussed. Zhao et al. [34] firstly proposed a multiple
PCA model based multimode process monitoring method.
Natarajan and Srinivasan [35] used a k-means clustering
strategy to classify the operating data and then trained the
PCA model for each data cluster. Xu et al. [36] proposed a
PCA mixture model by integrating Gaussian mixture model,
in which each Gaussian component describes an individual
operation mode. Further considering the non-Gaussianity of
process data, Ge and Song [37] applied a two-step feature
extraction technique ICA-PCA to build a statistical model for
each mode and combined all monitoring results by Bayesian
inference strategy. All the abovemethods adopt the samemul-
tiple modeling strategy, which divides the multimode normal
operation data into multiple groups and builds the individ-
ual PCA model for each group. The disadvantage of these
methods lies in the requirement of enough prior knowledge
on mode partition. To avoid this disadvantage, another kind
of multimode process monitoring method based on the local
learning technology is developed. This kind of method deals
with multimode data by mining the relationship between
the monitored data sample and its local neighborhood data
points. He and Wang [38] proposed a principal component
based KNN rule, which applies PCA to reduce data dimen-
sion and then computes the KNN distance for fault detection.

Deng and Tian [39] developed two local neighborhood sim-
ilarity factors, including the PCA similarity factor and the
distance similarity factor, to monitor multimode process
changes. More recently, Ma et al. [40] proposed a novel local
neighborhood standardization based principal component
analysis (LNS-PCA) method, which preprocesses the multi-
mode data samples in their local neighborhood domain so that
the multimode property is cancelled. Wang et al. [41] also
proposed a modified neighborhood standardization based
PCA to address the multimode process monitoring problem.

To sum up, KPCA has achieved great success in nonlinear
process monitoring field but it does not consider the multi-
mode characteristic of industrial process data, while the mul-
timode process monitoring methods mentioned above are all
based on the linear PCAmethods and do not consider the non-
linear process characteristics. At the same time, the present
KPCA methods develop statistical models directly based on
the original process variables, which only analyze the two-
order statistical information, i.e., variance and covariance.
However, due to process nonlinearity, various order of statis-
tics including high-order statistics are very useful to monitor
process status.

Motivated by the above analysis, this paper is to propose
an improved KPCA method, named local statistics principal
component analysis (LSKPCA), for nonlinear multimode
process fault detection. The contribution of the proposed
method includes the following two aspects: (1) By using local
probability density estimation to preprocess the operating
data, the multimode characteristic can be removed without
any dependence of the mode prior knowledge. (2) For better
process monitoring performance, statistics pattern analy-
sis (SPA) is applied to capture the internal high-order statis-
tical information in the local probability density variables.

The remainder of the paper is arranged as follows. The tra-
ditional KPCA algorithm is briefly overviewed in Section II.
Then the proposed LSKPCAmethod is described in details in
Section III. Section IV formulates the fault detection proce-
dure based on LSKPCA. In Section V two case studies on one
nonlinear numerical system and the benchmark continuous
stirred tank reactor (CSTR) system are used to demonstrate
the validity of the proposed method. Finally, conclusions are
drawn in Section VI.

II. KERNEL PRINCIPAL COMPONENT ANALYSIS
KPCA is a well-known nonlinear PCA algorithm and has
been widely used in many different fields [20], [29], [42],
[43]. Its main idea is to firstly project the original input data
to a high-dimensional feature space by a nonlinear transfor-
mation function and then perform PCA decomposition in the
feature space to extract the nonlinear principal components.
The algorithm details are listed as follows.

Given a training datamatrixX ∈ Rn×m, where n is the sam-
ple number,m is the variable number andR represents a set of
real numbers, a nonlinear function8(·) is assumed to map the
original data X onto the high-dimensional feature space F ,
where the mapped data is denoted as 8(X) ∈ Rn

× F .
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Suppose that 8(X) has been mean-centered, the linear PCA
decomposition is executed as

8(X) =
k∑
i=1

t ipTi + E, (1)

where t i ∈ Rn is the score vector, also called principal com-
ponent (PC) vector, pi ∈ F is the loading vector representing
the PC direction, k is the number of the retained PCs in KPCA
model, and E is the residual matrix.

The goal of PCA decomposition is to seek the PC direction
pi, which can be calculated by solving the eigenvalue decom-
position as

1
n− 1

8T (X)8(X)pi = λipi, (2)

where λi is the i-th eigenvalue corresponding to the eigenvec-
tor pi. It is known that the eigenvector pi can be expressed
by the linear expansion of the training data matrix 8(X)
as [19] [20]

pi = 8
T (X)vi =

n∑
j=1

vij8(xj), (3)

where vi ∈ Rn is the coefficient vector with its j-th element
as vij, and xj is the j-th sample of the training data matrix X .
Combining Eqs. (2) and (3) will lead to the following

equation as [19]

1
n− 1

8(X)8T (X)8(X)8T (X)vi = λi8(X)8T (X)vi, (4)

In order to avoid the explicit use of the nonlinear mapping
function8(·), the well-known kernel trick is introduced [19].
By defining a kernel matrix K = 8 (X)8T (X), Eq. (4) is
reformulated as

1
n− 1

KKvi = λiKvi, (5)

whose solutions are obtained by solving the eigenvalue
decomposition as

1
n− 1

Kvi = λivi, (6)

where the (i, j)-th element of the kernel matrix K is computed
by K ij = ker(xi, xj) = 8T (xi)8(xj). ker(·, ·) represents the
kernel function which transforms the inner product of 8(xi)
and 8(xj) into the kernel computation of xi and xj. Some
typical kernel functions are the Gaussian kernel function,
the sigmoid kernel function and the polynomial kernel func-
tion [19], [20]. In this paper, we adopt the most commonly
used Gaussian kernel function ker(xi, xj) = exp(−||xi −
xj||2/c), where c is the kernel width parameter.
By solving Eq. (6), we can obtain a series of eigenvectors

vi ordered by their eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. For
a testing data vector xt ∈ Rm, its i-th nonlinear principal
component ti is computed by [20]

ti = 8T (xt )pi = KT
t vi, (7)

where K t = 8(X)8(xt ) ∈ (R)n is the kernel vector of the
testing vector xt .

Based on the kernel principal components (KPCs) from
Eq. (7), two monitoring statistics T 2 and SPE are constructed
to detect process faults. The T 2 statistic is built to monitor
the changes of the PC subspace, while the SPE statistic is
developed to monitor the changes of the residual subspace.
Their definitions are given by [20], [21]

T 2
= tTk 3

−1
k tk , (8)

SPE = tT t − tTk tk , (9)

where t = [t1, t2, · · · , tn] while tk = [t1, t2, · · · , tk ],
3k is a k × k diagonal matrix with its diagonal elements are
the eigenvalues λ1, λ2, · · · , λk . The retained KPCs number
k is determined by the average eigenvalue approach [20],
which selects the retained KPCs with the larger eigenval-
ues than the average eigenvalue. The confidence limits of
the T 2 and SPE statistics can be computed by two ways.
One way is based on the pre-assumed data distribution [20],
while another way is to apply the non-parametric density
estimation technologies such as the kernel density estima-
tion (KDE) [44]. In this paper, we adopt the KDE method
to obtain the confidence limits.

III. MODIFIED KPCA METHOD USING LOCAL
STATISTICS INFORMATION
Traditional KPCA based process monitoringmethod assumes
that the process data obey the unimodal distribution. How-
ever, industrial processes often include several operating
modes due to the changes of raw materials, production envi-
ronments or market demands. If KPCA is directly applied to
themultimode process, it may not provide the best monitoring
performance. In order to deal with the multimode nonlin-
ear process monitoring problem, this paper is to propose
an improved KPCA method, referred to as local statistics
KPCA (LSKPCA). In this proposedmethod, local probability
density estimation is firstly applied to convert the original
multimode data into the unimodal probability density vari-
ables. Then for better nonlinear process monitoring, statistics
pattern analysis is used to compute the low-order and high-
order statistics of the monitored probability density variables.
Lastly in the statistics space, KPCA statistical model is devel-
oped for process monitoring. The proposed LSKPCAmethod
has the two-fold advantages including canceling the single
mode assumption and providing deeper statistical informa-
tion mining.

A. MOTIVATION ANALYSIS
To illustrate why the proposed method is developed, a simple
numerical example with two monitored variables x1, x2 is
designed as follows.

x1 = s1 + e1,

x2 = s31 + s2 + e2, (10)

VOLUME 5, 2017 23123



X. Deng et al.: Nonlinear Multimode Industrial Process Fault Detection Using Modified KPCA

FIGURE 1. The scatter plot of the normal and fault data of the numerical
system.

FIGURE 2. The KPCA monitoring charts on the fault data of the numerical
system.

where ei(i = 1, 2) is the zero-mean Gaussian noise with
a standard deviation of 0.01, while si(i = 1, 2) is the data
source variable involving two different operation modes as

mode 1 : s1 ∼ N (0, 0.082), s2 ∼ N (0, 0.152),

mode 2 : s1 ∼ N (0.5, 0.072), s2 ∼ N (1, 0.132). (11)

By Eq. (10), one two-dimensional normal dataset contain-
ing two modes are generated. Each mode involves 400 sam-
ples and a total of 800 samples comprise the training dataset.
When the system is running under mode 1, another dataset
with 200 samples are simulated as the fault dataset according
to the following expressions

x f1 = s1 + f1 + e1,

x f2 = s31 + s2 + f2 + e2, (12)

where the f1 is a bias of 0.1 while the f2 is a bias of 0.4.
When the KPCA model is built, the normal and fault

data are scaled by the mean and variance of normal data.
The scaled normal and fault samples are plotted in Fig. 1.
Obviously, the normal data cover two separated areas while
the fault data samples lie between these areas. This may lead
to the difficulty of detecting the fault samples because the
whole normal area encompasses the fault data. The KPCA
based monitoring results are shown in Fig. 2, where the
monitoring statistics are plotted with solid line while the 95%
confidence limits, used as detection thresholds, are plotted
with dashed line. In this paper, all monitoring charts are
normalized by the corresponding detection thresholds. From
theKPCAmonitoring charts, the twomonitoring statistics are
always below the confidence limits. Thismeans that the tested
fault is totally miss-alarmed. So the conventional KPCA
method performs rather poorly, which can not separate the
fault samples from the normal data because of its unimodal
data assumption. This motivates our study in the following
sections.

B. LOCAL PROBABILITY DENSITY ESTIMATION
In order to improve KPCA method for multimode process
monitoring, this paper is to propose a local KPCA method.
Different from the traditional KPCA model which monitors
the original process variables, the proposed local KPCA
method monitors the local probability density values of the
original variables. In the proposed method, a novel data pro-
cessing strategy, called local probability density estimation,
is adopted to transform the multimode data to the unimodal
data, and then KPCA statistical model is developed based
the unimodal data. The idea of the local probability density
estimation is formulated as follows.

According to probability theory and statistics [45], prob-
ability density function (PDF) describes the probability dis-
tribution of a random variable, which is able to exhibit the
dynamic behavior of data samples. In some cases, the random
variables are supposed to follow some known PDFs, such as
Gaussian distribution function, uniform distribution function.
However, in many cases, the PDF of a random variable is
unknown and the nonparametric density estimation methods
are applied to estimate the data distribution. The commonly
used nonparametric probability density estimation tool is the
kernel density estimator (KDE), also known as the Parzen
window method [45], which applies the kernel function to
approximate the probability density curve. This method has
been widely used in image processing, signal analysis and
other fields [46]–[48].

For a continuous variable x, its n random samples are
denoted by x1, x2, x3, · · · , xn. Then the probability density
function of variable x is estimated by the KDE method as

p(x) =
1
n

n∑
j=1

exp(−
||x − xj||2

ρ
), (13)

where ρ is the window width parameter.
When KDE is applied, all the training data samples are

used to compute the overall probability density values. How-
ever, this paper is concerned about the changes of the local
probability density. To achieve this goal, we propose a local
KDE (LKDE)method. Different fromKDE, LKDE computes
the probability density values of each data sample only based
on its local neighborhood samples. For one given sample x,
the local probability density lp(x) is estimated by

lp(x) =
1
L

∑
xj∈NN (x)

exp(−
||x − xj||2

ρ(xj)
), (14)

where L is the designated number of the local neighborhood
samples, NN (x) represents the dataset consisting of the L
nearest neighbors of the sample x, expressed by

NN (x) = {x1, x2, · · · , xL}, (15)

where x j is the j-th nearest neighbor of x, and ρ(xj) is the
kernel width parameter formulated by

ρ(xj) = d(xj, xLj ), (16)
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FIGURE 3. The scatter plot of the local probability density data of the
numerical system.

FIGURE 4. The LKPCA monitoring charts on the fault data of the
numerical system.

where d(xj, xLj ) represents the Euclidean distance between xj
and its L-th neigbor xLj .
Given a multimode training dataset X ∈ Rn×m, the local

neighbors of each vector are found by comparing its distances
with the other vectors in the training dataset. Then LKDE
can be used to map the original multimode data matrix X
into the local probability density data matrix LP ∈ Rn×m.
To exhibit the ability of LKDE, the motivating example in
Section III-A is further analyzed. The local density variables
lpi(i = 1, 2), corresponding to the variables xi(i = 1, 2), are
plotted in Fig. 3. It can be seen that the normal data under the
two modes are grouped together while the fault data samples
are separated basically. This is because LKDE focuses on
the local data distribution in view of its neigbors so that the
multimode characteristic of the training data is cancelled.

With the local probability density variables as the moni-
tored variables, the modified KPCA method is called local
KPCA (LKPCA). The LKPCA monitoring charts are shown
in Fig. 4, where it is observed that for most of the fault
samples, their monitoring statistics exceed the confidence
limits. Comparing Figs. 3 and 4, it is clear that LKPCA gives
a better monitoring result than the KPCA method. Therefore,
the LKPCA method addresses the multimode data distribu-
tion problem successfully by transforming the original pro-
cess variables into the corresponding local density variables.
However, it should be pointed out that the separation between
normal data and fault data is not very perfect. By Fig. 3, some
fault samples still fall into the normal data distribution area.
The similar results are found in Fig. 4, where the monitoring
statistics are very close to the confidence limits so that fault
is not isolated very clearly.

C. STATISTICS PATTERN ANALYSIS
The statistical models in KPCA and LKPCA only involve
the low-order statistics, i.e. variance and covariance, of the
monitored variables, but omit the utilization of high-order

statistics. In some cases, the fault will not affect the local
density variables clearly but leads to the obvious change of
the local density variables’ statistics, especially the high-
order statistics. In order to make better use of the statistical
information of the process data, this paper integrates statistics
pattern analysis (SPA) with the LKPCA, which results in
a novel nonlinear multimode process monitoring method,
called local statistics KPCA (LSKPCA).

According to the SPA theory proposed by
He and Wang [49], [50], various orders of variable statistics,
including first order, second order and high-order statistics,
can provide rich information for process monitoring and fault
detection. Some researchers have demonstrated the effec-
tiveness of SPA in process monitoring. He and Wang [49]
firstly applied SPA in semiconductor process monitoring.
Zhang et al. [51], Deng and Tian [52] discussed the SPA
based fault variable identification and fault pattern recogni-
tion, respectively. These studies do not involve the nonlinear
multimode process monitoring problem. This paper is to inte-
grate SPA with LKPCA for monitoring nonlinear multimode
processes. The details of SPA procedure in LSKPCA are
given as follows.

Based on the local probability density dataset LP ∈ Rn×m,
a data window LPq ∈ Rw×m at the time instant q is picked
out, expressed by

LPq
= [lp1 lp2 · · · lpm]

=


lp1(q− w+ 1) lp2(q− w+ 1) · · · lpm(q− w+ 1)
lp1(q− w+ 2) lp2(q− w+ 2) · · · lpm(q− w+ 2)

...
...

...
...

lp1(q) lp2(q) · · · lpm(q)

,
(17)

where lpi(j) denotes the j-th sample of the i-th variable, and
w is the window width.
For the data window LPq, SPA is applied to construct the

statistics pattern(SP) vector as the monitored vector. A SP
vector lsq is composed of various statistics of LPq, shown
as

lsq = [µ|ϒ |4], (18)

where µ represents the first-order statistics consisting of
variable means µi(1 ≤ i ≤ m), defined by

µi(q) =
1
w

w−1∑
j=0

lpi(q− j). (19)

ϒ is the second-order statistic set made up of variance (vi),
correlation (ri,j), autocorrelation (rdi ) and cross correla-
tion (rdi,j), which are expressed by

vi =
1
w

w−1∑
k=0

[lpi(q− k)− µi]2, (20)
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FIGURE 5. The scatter plot of the local statistics data of the numerical
system.

ri,j =
1

w√vivj

w−1∑
k=0

[lpi(q− k)− µi][lpj(q− k)− µj], (21)

rdi =
1

(w− d)vi

w−1∑
k=d

[lpi(q− k)− µi][lpj(q− k + d)− µj],

(22)

rdi,j =
1

(w− d)√vivj

w−1∑
k=d

[lpi(q− k)− µi]

× [lpj(q+ d − k)− µj], (23)

where d is the time lag number. As the autocorrelation and
cross correlation utilize the process lag information, they
are able to provide the measurement of the process dynamic
relationship.4 denotes the high-order statistics, consisting of
skewness (γi) and kurtosis (κi) as

γi =

1
w

∑w−1
k=0 [lpi(q− k)− µi]

3{ 1
w

∑w−1
k=0 [lpi(q− k)− µi]

2
}3/2 , (24)

κi =

1
w

∑w−1
k=0 [lpi(q− k)− µi]

4{ 1
w

∑w−1
k=0 [lpi(q− k)− µi]

2
}2 − 3. (25)

It should be noted that not all the statistics are used in
process monitoring and only these significant statistics are
necessary to construct the SP vector. By referring to the
present study [50], the correlation statistic ri,j is selected only
if |ri,j| > 0.3 for more than 70% of the training SPs. For
autocorrelation and cross correlation coefficients, the selec-
tion requirement is |rdi | > 0.5 or |rdi,j| > 0.5 for more than
90% of the training SP vectors.

By combining Eqs. (17) to (25), the data window LPq
is transformed to a SP vector lsq. Furthermore, the moving
window technique is applied on the local probability density
dataset LP, which is transformed to a statistic matrix LS. Fur-
therly, KPCAmodeling on the matrix LS leads to a LSKPCA
statistical model.

To display the performance of statistical information min-
ing, the motivating example is further analyzed. The first
two local statistics are plotted in Fig. 5. Compared to Fig.3,
the fault samples in Fig.5 are significantly separated from the
normal samples. The introduction of statistics pattern analysis
will benefit the KPCA based fault detection. This can be
verified by the monitoring results in Fig. 6. By this figure,
it is obvious that both the T 2 and SPE statistics exceed the
confidence limits evidently and there is no missing alarming

FIGURE 6. The LSKPCA monitoring charts on the fault data of the
numerical system.

FIGURE 7. The flow chart of LSKPCA-based fault detection.

samples. These analyses prove that the LSKPCA has the
capability of providing much better fault detection results
than the traditional KPCA method.

IV. FAULT DETECTION PROCEDURE BASED ON LSKPCA
The LSKPCA based process monitoring procedure includes
two stages: offline modeling stage and online detection stage.
In the offline modeling stage, the normal dataset is collected
and LSKPCA statistical model is developed, while in the
online monitoring stage, new data vector is acquired and
the corresponding LSKPCA monitoring statistics are com-
puted for fault detection. Thewhole fault detection procedure,
shown in Fig. 7, is formulated as follows.
Offline Modeling Stage:
1) Collect the normal operation data and divide them into

two datasets: training dataset and validating dataset.
Normalize the two datasets with the mean and variance
of the training dataset.

2) Perform the LKDE on the training dataset to obtain
the local probability density variables. Apply the mov-
ing window technique on the local probability density
dataset and build the local statistic matrix by computing
the statistic pattern for each data window.

3) Build LSKPCA statistical model by applying KPCA to
the local statistic matrix.

4) For the validating dataset, construct its local statistic
matrix and project it on the LSKPCA model.

5) Compute the monitoring statistics corresponding to the
validating dataset, and establish the confidence limits
using the kernel density estimation.

Online Monitoring Stage:
1) Gather a new online data vector and normalize it with

the mean and variance of the normal training dataset.
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2) Estimate its local probability density by referring to
the normal training data, and then compute the statistic
pattern vector.

3) Project the statistic pattern vector onto the LSKPCA
model, and compute the corresponding monitoring
statistics.

4) A fault is alarmed if any statistic exceeds its confidence
limit.

V. CASE STUDY
In this section, two cases including one numerical
nonlinear system and the simulated continuous stirred tank
reactor (CSTR) are applied for method evaluation. Three
methods including the traditional KPCA, local density esti-
mation based KPCA (LKPCA), and the proposed LSKPCA
are used for fault detection. For the monitoring statistics of
all the methods, 95% confidence limits are adopted as fault
detection threshold. In the following charts, the confidence
limit is plotted with dashed line while the monitoring statistic
is plotted with solid curve. If the solid line is above the dashed
line, it means a fault is detected.

A. A NUMERICAL NONLINEAR SYSTEM
A nonlinear numerical example, designed by Dong and
McAvoy [17], is used to test the validity of the proposed
method. Its mathematical model is given as

x1 = s+ e1
x2 = s2 − 3s+ e2
x3 = −s3 + 3s2 + e3,

(26)

where xi(i = 1, 2, 3) is the monitored variable, ei(i =
1, 2, 3) ∼ N (0, 0.01) denotes the dependent noises and s
represents the system source variable following the uniform
distribution. Two normal operating modes are designed by
setting s ∈ [0.01, 1] and s ∈ [3.5, 4.3], respectively. A total
of 1000 normal samples, including 500 samples for each
mode, are simulated to constitute the normal training dataset.
Another 1000 normal samples are simulated as the normal
validating dataset. Two types of faults with 1000 samples for
each fault, shown as following, are applied to test the fault
detection algorithms.

• Fault D1: The system is runing under mode 1, and s is
imposed with a step bias of -0.2 from the 401th sample.

• Fault D2: The system is running under mode 2, and x1
has a ramp changewith the slope of 0.005 from the 401th
sample.

KPCA and LSKPCA are applied to monitor this nonlin-
ear system. Both methods apply the Gaussian kernel width
parameter, which is set as c = 100m, where m is the
dimension of input space. When LSKPCA is used, the local
neighbor number L is set to 50 and the moving window
width w in SPA is chosen as 20. In order to maintain the
independence of SPs, the interval between the initial samples
of the moving windows is set to 10 during the offline training

FIGURE 8. KPCA monitoring charts on the normal validating dataset.

FIGURE 9. LSKPCA monitoring charts on the normal validating dataset.

FIGURE 10. KPCA monitoring charts for the numerical system in the case
of fault D1.

stage. But in online detection stage, this interval is set as 1 to
reduce the detection delay.

The monitoring results on the normal validating dataset are
shown in Figs. 8 and 9. It is seen that most of the normal
operating samples are under the confidence limits. The false
alarming rates of both methods are all 5% since the 95% con-
fidence limits are applied. However, it should be pointed out
that the data distribution of KPCA SPE statistic is unbalanced
because two operationmodes are utilized in KPCAmodeling.
It is obvious from KPCA SPE chart that the confidence limit
is too large for mode 1 while too small for mode 2, which
will surely cause high false alarming rate or miss alarming
rate. However, after using local statistics, LSKPCA method
can remove the multimode data characteristic and balance the
monitoring results of two modes.

Fault D1 is firstly tested and the monitoring results of the
two methods are shown in Figs. 10 and 11. According to
Fig. 10, the KPCA T 2 and SPE statistics fail to detect the
fault and the corresponding fault detection rates are 22.2%
and 1.67%, respectively. Compared toKPCA, LSKPCAgives
the alarming signals more clearly. The fault detection rates of
the LSKPCA T 2 and SPE statistics reach up to 97.2% and
96.7%, respectively. Obviously, LSKPCA method provides
the better monitoring performance in the case of fault D1.

Fault D2 is further illustrated, which involves the drift
change of process variable. The monitoring results of
two methods are plotted in Figs. 12 and 13, respectively.
By Fig. 12, the KPCA T 2 statistic is unable to respond to
the fault in time, whose fault detection rate is only 16.2%.
The KPCA SPE statistic alarms the fault with a low fault
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FIGURE 11. LSKPCA monitoring charts for the numerical system in the
case of fault D1.

FIGURE 12. KPCA monitoring charts for the numerical system in the case
of fault D2.

FIGURE 13. LSKPCA monitoring charts for the numerical system in the
case of fault D2.

TABLE 1. Fault detection rates (%) of numerical system faults D1 and
D2 obtained by KPCA and LSKPCA.

detection rate of 67.7%. When LSKPCA is applied to detect
fault D2, its T 2 statistic gives a fault detection rate of 87.5%,
superior to the KPCA T 2 statistic, while its SPE statistic has a
fault detection rate of 85.8%, also higher than the KPCA SPE
statistic. The monitoring results on fault D2 demonstrate the
effectiveness of LSKPCA again.

The fault detection rates of KPCA and LSKPCA on the
two tested faults are summarized in the Table 1. it is clear that
LSKPCA achieves the obvious performance improvement in
the process monitoring of the numerical system.

B. CSTR SYSTEM
The continuous stirred tank reactor (CSTR) simulation sys-
tem is a typical industrial process which is commonly used to
evaluate control algorithms and fault diagnosis methods [25],
[53]–[55]. As shown in Fig. 14, material A is fed into the
reactor with a steady flow rate. Under strong agitation, A is
completely mixed with the liquid in the reactor meanwhile
chemical exothermic reaction happens with a product B.
By regulating the flow rate of outlet stream, the liquid level
in reactor remains stable. There is a jacket filled with cooling
water outside the reactor. The continuous coolant takes away
heat to maintain a constant temperature.

FIGURE 14. Flowchart of the CSTR system.

TABLE 2. Different operating modes of the CSTR process.

TABLE 3. Five fault patterns of the CSTR system.

FIGURE 15. KPCA monitoring charts for the CSTR sytem in the case of
Mode 1-fault 1.

The CSTR process mechanics can be seen in the related
literature [53], [54]. In the CSTR simulation process, three
operation modes are listed in shown in Table 2, where
QF , CAF represent the feed flow and the feed concentra-
tion, respectively. For each mode, ten process variables are
recorded as the monitored variables. Normal operation is
firstly simulated to generate 2000 samples for each mode.
These samples are divided into the training and validat-
ing datasets, which include 1000 samples respectively. For
method testing, five types of fault, listed in Table 3, are
introduced to generate the fault data [53], [55]. These five
faults represent some common process changes. Specifically,
fault F1 is the operation condition change, fault F2 and F3 are
the process parameter changes, while fault F4 and F5 are the
sensor bias cases. Each fault dataset consists of 1000 samples,
where fault is imposed from the 401th sample.

Three methods of KPCA, LKPCA and LSKPCA are
applied to detect the CSTR system faults. The statistical
model parameters are determined by the rules same to the
numerical example. The monitoring results on fault F1 under
mode 1 are illustrated in Figs. 15 to 17. In Fig. 15, KPCA
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FIGURE 16. LKPCA monitoring charts for the CSTR sytem in the case of
Mode 1-fault 1.

FIGURE 17. LSKPCA monitoring charts for the CSTR sytem in the case of
Mode 1-fault 1.

FIGURE 18. KPCA monitoring charts for the CSTR sytem in the case of
Mode 2-fault 5.

performs so poorly that its T 2 statistic can not detect the
abnormality effectively and its SPE statistic gives alarming
signal until the 902th sample. In contrast to the KPCA results,
the LKPCA T 2 and SPE charts give the alarming signals
at the 471th sample simultaneously. LSKPCA detects this
fault successfully at the 413th sample for the T 2 chart and
at the 423th sample for the SPE chart. The results indicate
that LSKPCA gives a better fault detection performance with
the help of local probability density estimation and SPA
technique.

The fault detection charts for the fault F5 under mode 2 are
shown in Figs. 18 to 20. It is clear that LSKPCA is the most
sensitive to the fault among these three methods, whose mon-
toring statistics exceed the confidence limits clearly. By con-
trast, KPCA and LKPCA do not as well as LSKPCA. The
KPCA T 2 statistic is fluctuant around the confidence limits
while the KPCA SPE statistic fails to detect the abnormalities
from beginning to the end. LKPCA performs better than
KPCA. When LKPCA is applied, the monitoring statistics
of most samples go beyond the confidence limits clearly but
some faulty samples are still under the confidence limits. The
results can be further analyzed in terms of fault detection rate.
Traditional KPCA provides the fault detection rates of 80.3%
and 8.33% for the T 2 and SPE statistics, respectively. In con-
trast to KPCA, LKPCA performs better whose fault detection
rates are 98% and 98.3%, for the T 2 and SPE statistics respec-
tively. For this fault, LSKPCA gives the highest detection
rates of 100% for both the T 2 and SPE statistics. Generally,
LSKPCA has the best monitoring performance on this fault.

FIGURE 19. LKPCA monitoring charts for the CSTR sytem in the case of
Mode 2-fault 5.

FIGURE 20. LSKPCA monitoring charts for the CSTR system in the case of
Mode 2-fault 5.

TABLE 4. Fault detection rates (%) of the CSTR system faults obtained by
KPCA, SKPCA, LKPCA and LSKPCA.

Furthermore, we apply four methods of KPCA, LKPCA,
SKPCA and LSKPCA to monitor all faults of the CSTR
system. Here SKPCA is the combination of statistics pattern
analysis (SPA) and KPCA. Fault detection rates (FDRs) of
four methods for the five faults under the three modes are
summarized in Table 4. Among these four methods, KPCA
is the basic method. As it does not consider the multimode
characteristic of process data and statistical information min-
ing, it gives the unsatisfactory monitoring performance with
the average FDRs of 70.3%, 42.2% for T 2 and SPE, respec-
tively. SKPCA applies SPA to improve the process moni-
toring performance. However, for multimode process, it can
not give clear improvements. The average FDRs of SKPCA
T 2 and SPE are 44.2% and 79.5%, respectively. It should be
pointed out that SKPCA SPE performs better than the one
of KPCA, but SKPCA T 2 does worse than the KPCA T 2.
By contrast, LKPCA achieves obvious improvement, which
has the higher average FDRs of 90.8%, 91.3% for T 2 and
SPE, respectively. This is because the multimode distribution
is one main data property and LKPCA is capable of dealing
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TABLE 5. Average false alarm rates (%) of the CSTR system normal
samples obtained by KPCA, EKPCA, LKPCA and LSKPCA.

FIGURE 21. Average fault detection rates of 5 faults using different w
values.

with the multimodal data characteristic. When LKPCA is
integrated with SPA, the LSKPCA method further increases
the average FDRs to 94.5% and 94.1% for T 2 and SPE,
respectively. To sum up, local density estimation and statistics
pattern analysis are helpful to improve the fault detection
performance of the nonlinear multimode processes.

In process monitoring field, the false alarm rate (FAR) is
also an important performance index, which indicates the
monitoring performance on normal samples. In this paper,
the first 400 samples of each testing fault dataset are under
the normal condition.We compute the the average false alarm
rates on all the normal samples and list the results in Table 5.
From this table, most of the false alarm rates are below 5%
except that the FAR of SKPCA SPE statistic is 6.04%, a little
higher than 5%. It is also found that LSKPCA FARs are a
little smaller than the other two methods. This means better
process monitoring performance on the normal data. Com-
bining the analyses about FDR and FAR, it can be concluded
that the proposed method LSKPCA are more excellent than
traditional methods in detecting the CSTR system faults.

In LSKPCA algorithm, the moving window width w is a
crucial parameter that has a significant effect on the monitor-
ing performance. As various statistics are computed within
the moving window, the statistical randomness will be high
if w is too small. With the increase of w value, the faulty
propertywill beweaken especially when thewindow includes
both normal and fault samples. As a result, the fault detection
delay will certainly be increased. In order to analyze the
influence of w, 5 faults under mode 1 are monitored under
different w, whose average fault detection rates are presented
in Fig. 21. It can be observed from Fig. 21 that when w < 10
the fault detection rates of two statistics are increasing with a
distinct trend. After the rapid rise, the fault detection rates
keep stable around the maximum value. When w > 40,
the two curves both go down the slope due to the monitoring
delay. This is consistent to the above analysis. Therefore,

the window width parameter should be selected between
10 and 40. In this paper w=20 is used. It should be noted
that the influences of parameters may be different for various
processes. To obtain an optimal w value, some experiments
should be designed to obtain the reasonable value.

VI. CONCLUSION
This paper proposes a novel nonlinear multimode process
fault detection method based on LSKPCA. The proposed
method integrates two-fold data mining strategies. On one
hand, local probability density estimation is applied to
transform the multimode data into the unimodal data, which
provides the good data foundation for the further statistical
modeling. On the other hand, SPA is adopted to mine the
intrinsic statistical information, which is helpful to improve
the fault detection performance. A numerical nonlinear exam-
ple and the CSTR simulation system are used to validate the
proposed method and the application results show that the
proposed method outperforms the traditional KPCA method.
However, there are some related problems deserving further
studies. One problem involves the transition stage monitor-
ing, which is not considered in this work. Compared with the
multiple steady stages, the transition stages are much more
complex because of their obvious dynamic changes. It is of
great value to design some effective transition stage monitor-
ing methods. Another problem is about fault source variable
identification. In this work, we only determine if some faults
occur but do not know which variable is responsible for the
fault. In the future, we will carry out the further study to
identify the fault source variable for process recovery.
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