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ABSTRACT Data representation and similarity measurement are two basic aspects of similarity detection
in time series data mining. In this paper, we present two novel approaches to perform similarity detection
efficiently and effectively. One is composed of a new time series representation model and a corresponding
similarity measure, which is called fragment alignment distance (FAD); the other applies dynamic time
warping to the representation model of FAD and is called FAD_DTW. The new data representation
model is based on the trend information of time series, which can provide a concise yet feature-rich
representation of time series. FAD is able to align the segments of time series in linear time, which greatly
accelerates the similarity detection process. We extensively compare FAD and FAD_DTWwith state-of-the-
art time series representation models and similarity measures in classification and clustering frameworks.
Experimental results from efficiency and effectiveness validations on various data sets demonstrate that FAD
and FAD_DTW can achieve fast and accurate similarity detection. In particular, FAD is much faster than the
other methods.

INDEX TERMS Time series data mining, data representation models, similarity measure.

I. INTRODUCTION
A time series is a sequence of ordered numeric values
betweenwhich an interval of points is defined. Time series are
generally used to indicate the change of an object with time;
hence, large amounts of such data are available from many
domains, including speech recognition [1], financial andmar-
ket data analysis [2], biomedical measurement [3], sensor
networking [4], and moving-object trajectory tracing [5].

The management and analysis of time series data mainly
focus on the similarity search and detection of time series,
which give rise to many research tasks such as query by con-
tent [6], clustering [7], classification [8], segmentation [9],
prediction [10], anomaly detection [11], and motif discov-
ery [12], [13]. Considering the representativeness of classi-
fication and clustering tasks in the field of time series data
mining, in this work, we take them as evaluation frameworks
for similarity search and detection.

Time series datamining is a complex process due to numer-
ous factors. The most salient problems lie in the high dimen-
sionality of time series data and the difficulty of devising an
appropriate similarity measure for various data. To address

the high-dimensionality problem, researchers have developed
various dimensionality reduction methods. Many of these
methods have great effects on accelerating the process and
saving storage space. However, they inevitably affect the
accuracy of the similarity search. To normalize the similarity
detection problem and guide the research work, many schol-
ars have noted various benchmarks for similarity measure-
ment algorithms [12]. Most of them can be classified as one
of two types:
• Data representation models. Representing data in a

form that can be effectively processed is the first step of
data mining. The ideal representation of time series not
only can maintain the original features of the data but
also has a simple format. In addition, it can accelerate
the detection process with a simultaneous emphasis
on accuracy improvement. Hence, the representation
model should be realized in a low-dimensional space
and consider the basic distribution of the data.

• Similarity measures. Similarity measurement is the
central technique of similarity search and detection.
Distinguishing between two time series or formalizing
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the difference between two time series in accordance
with human common sense is the crucial problem of
similarity measures. Thus, a reasonable similarity mea-
sure should have the following characteristics: consis-
tency with human cognition, consideration of the most
prominent features on both the local and global scales,
and the capability to unconditionally identify arbitrary
objects.

In this respect, we insist that some special requirements
should be satisfied by all similarity measures and representa-
tion models to support fast and accurate similarity detection
of time series, which are listed as follows:
• Time-warping awareness. It is quite common that

the time series are shifted along the time axis [15].
Although anyone could confirm that shifted time series
are very similar, not all similarity measures are able to
address this type of similarity. In such cases, two time
series might be unexpectedly identified as dissimilar
to each other. Since dynamic time warping can auto-
matically align the numerical values on different time
axes, it is widely used to handle the time series shifting
problem.

• Capability to handle time series with unequal lengths.
An algorithm that can only cope with time series of
the same length has severe limitations in applications
because most time series in practical scenarios are not
equal in length. To apply such algorithms to time series
of unequal length, additional preprocessing is required
to transform time series into series of equal length,
which usually leads to a decrease in performance.

• Low computational complexity. To address the high
dimensionality of time series, similarity detection
should be performed with reasonably low complexity.

• Ability to capture essential features. It is without doubt
that time series approximation should preserve as much
information of the original series as possible. To obtain
good accuracy in similarity detection, time series repre-
sentation models should capture the essential features
of the original data rather than discarding them in the
pursuit of dimension reduction. For this purpose, a rea-
sonable time series representationmodel should be able
to capture the important features of data.

According to the above requirements, themotivation of this
paper is to design a new time series representation model and
a new corresponding similarity measure that can achieve fast
and accurate similarity detection. First, the new representa-
tion model should be able to not only approximate a time
series in lower dimensions but also preserve the important
features. Second, it should be sensitive to the distribution and
variation of the time series. In other words, the new method
ought to produce different results for different distributions
of data. Moreover, the new algorithm should be applicable to
different kinds of data sets. With the rapid development of
the information industry, a great variety of data are produced
every day, and an algorithm that can only address a single type
of data has severe limitations in application. Finally, it ought

to cope with time series faster than existing algorithms. Due
to the challenge of large amounts of data, many existing
similarity measures cannot accomplish tasks in reasonable
amounts of time. To address this, the new approach must
handle time series as quickly as possible.

In this paper, we propose a novel time series representation
model and a corresponding similarity measure named FAD.
FAD first estimates the derivative of the time series, which
can capture trend information about the series. Then, by set-
ting a threshold, FAD transforms the derivative sequences
into symbolic ones. A fragment (segment) of the time series is
obtained by merging adjacent points with the same symbols.
In other words, FAD is based on the alignment between
fragments, while the majority of existing methods are based
on the alignment between points. The similarity measure
of FAD aims at diagonally mapping similar change trends
between time series.Moreover, the computational complexity
of most state-of-the-art similarity measures isO(n2), whereas
FAD can be carried out in linear time.

The contributions of our work are as follows:
• Like other data representation models, Dynamic Time

Warping can be applied to the representation model of
FAD directly;

• FAD is devised based on the concept that similar time
series have similar change trends. It is consistent with
human cognition and available for various data types;

• FAD is time-warping-aware and can deal with data of
unequal length in linear time;

• FAD transforms the comparison between points into
the comparison between change trends, which can
address the high dimensionality as well as capture the
essential features of time series.

To evaluate the performance of FAD, we conducted an
extensive experiment by using clustering and classification
frameworks. This evaluation inevitably involved prominent
state-of-the-art methods for both the time series representa-
tion models and similarity measures. Experimental evidence
that FAD is an effective and efficient method in similarity
detection is presented.

The rest of the paper is organized as follows. Section 2 intro-
duces the state-of-the-art methods for time series representa-
tion models and similarity measures. Section 3 presents the
FAD algorithm in detail. Section 4 demonstrates the experi-
mental frameworks. Section 5 discusses the data sets and the
experiment results. The paper is concluded in Section 6.

II. RELATED WORKS
A. DATA REPRESENTATION MODEL AND
DIMENSIONALITY REDUCTION
As we mentioned in Introduction, time series are high-
dimensional, and it is time consuming to address them
directly. The main purpose of time series representation is to
express time series in a concise as well as feature-rich way.
In the past two decades, numerous time series representation
models have been developed [16], [17]. Most of them can
be divided into three categories, namely, approximating time
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series based on piecewise-discontinuous functions, approx-
imating time series based on continuous polynomials and
extracting features of time series based on hidden models.

The first category includes many widely used representa-
tionmodels. Piecewise Aggregate Approximation (PAA) [18]
can transform a time series of n points into a new sequence
with p segments (p� n), where each segment is of size equal
n/p and is represented by the mean value of the data points
falling within the sliding window. PAA is easy to implement
and quite effective in many applications. Adaptive Piecewise
Constant Approximation (APCA) [19] is similar to PAA; it
also approximates a time series by a sequence of segments.
Each segment is the mean value of its data points. However,
unlike PAA, APCA is able to handle segments with differ-
ent lengths, which makes it more suitable for dealing with
burst signals. Due to the difference in the segments’ lengths,
APCA requires a two-dimensional array to represent data,
while PAA only needs a one-dimensional array. Piecewise
Linear Approximation (PLA) [20] represents time series by
a piecewise linear function, such as a set of line segments.
There are several kinds of implementation of PLA, which
can be grouped into three classes, namely, window-sliding,
bottom-up and top-down [21]. The bottom-up approach is
the most commonly used one. Symbolic Aggregate approX-
imation (SAX) [22] transforms a time series into some dis-
crete strings, which are composed of different symbols. This
algorithm includes two phases. The first phase uses the PAA
algorithm to reduce the dimensionality of the time series.
The second transforms the mean values of the segments into
discrete strings. Derivative time series Segment Approxima-
tion (DSA) [14] approximates time series in the derivative
version of the original series. DSA is able to segment time
series automatically by setting the standard deviation of each
segment as a natural threshold.

The time complexity of representing a time series of n
points according to PAA, SAX and DSA is O(n), whereas
that of APCA isO(nlog(n)). The complexity of PLA depends
on the implementation method. The fastest version of PLA
can be performed in linear time; when using the bottom-
up approach, the complexity of PLA is O(nlog(n)). The
approaches based on piecewise discontinuous functions are
easily combined with similarity measure algorithms to per-
form better and faster in time series data mining.

Another approach to dimensionality reduction is based
on approximating time series with continuous polynomi-
als. The most commonly used methods including Dis-
crete Wavelet Transform (DWT) [23], [24], Discrete
Fourier Transforms (DFT) [25], Singular Value Decomposi-
tion (SVD) [26], [27] and Chebyshev polynomials [28], [29].
DFT projects time series on a basis of sine and cosine
functions in the real domain. The representation model is
a set of sinusoidal coefficients, which can be regarded as
features of the original data. The Chebyshev polynomial
approach is quite similar to DFT; the only difference is
that the Chebyshev approach takes Chebyshev polynomi-
als as the basis functions. Instead of using a fixed set

of orthonormal basis functions, DWT employs scaled and
shifted versions of a mother wavelet function. Therefore,
DWT can give a multiresolution decomposition of the time
series and take into account low frequencies over larger
intervals, thereby yielding better accuracy [30]. A great num-
ber of mother wavelet functions are available and the Haar
function is frequently used [31]. To find the best mapping
in a lower-dimensional space, SVD uses space rotation and
truncation of the data matrix. Hence, SVD is computation-
ally expensive compared with the other methods described
above.

In the representation models based on continuous polyno-
mials, DFT is of complexity O(nlog(n)). The computational
complexity of DWT and the Chebyshev approach is O(n),
while that of SVD is O(n3).
The last approach to dimensionality reduction is based on

the assumption that the measured time series are produced
by underlying models. The aim of this kind of approach is to
find the parameters of such a model as a representation. Two
time series are therefore regarded as similar to each other if
they are produced by the same set of parameters of the under-
lying model. There are several parametric temporal models,
included ARMA models [32], Markov Chains (MCs) [33],
and HMM [34]. MCs are simpler than HMM and more suit-
able for handling shorter time series because of the limitation
in expressive power.

B. SIMILARITY MEASUREMENT
Similarity measurement is of great importance in the field of
time series data mining. There are two basic approaches to
similarity measurement: one is represented by the Dynamic
Time Warping (DTW) algorithm and the other is based on
Edit Distance (ED).

DTW [35] is widely applied to execute similarity search
and detection in time series. DTW performs a non-linear
mapping of one series to the other byminimizing the total dis-
tance between them. Although DTW is time warping-aware,
‘‘singularity’’ problems tend to emerge, which reduce the
accuracy and lead to misalignment between time series. For
example, a single point of one series may be aligned with a
large partition of another. This phenomenon is unexpected in
most cases. To address this problem, Keogh and Pazzani [36]
presented a variant of DTW called Derivative Dynamic Time
Warping (DDTW). The novelty of DDTW is that deriva-
tives of time series data points are estimated to obtain the
trend information about the original data and search for a
new warping path that is more robust to singularities. For
instance, two data points that have the same values and dif-
ferent trends are correctly not aligned with each other when
using DDTW, whereas with DTW, the two points will be
mapped as similar. Indeed, DDTW can be viewed as DTW
equipped with a preprocessing step. Another way to address
the singularity phenomenon is to constrain the warping path
of DTW [37]. This technique uses DTW’s ‘‘warping enve-
lope’’ constraint to obtain the lower bound of the DTW
distance, thereby pruning off some of the costly distance
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computations. The learned constraints have two additional
benefits: the improvement of accuracy due to relief of the
singularity problem and faster similarity search and detec-
tion by pruning off computations. Several approaches for
constraining the warping path of DTW have been devel-
oped, including Sakoe-Chiba Band, Itakura Parallelogram
and Ratanamahatana-Keogh Band [38]. All of these methods
are of computational complexity O(n2).
ED is used to calculate the similarity between two strings;

the distance between them is the minimum number of oper-
ations needed to transform one string into the other. The
Longest Common SubSequence (LCSS) [39] is a variant of
ED that defines the distance between two series as the length
of their longest common subsequence. By setting a threshold,
LCSS can address noisy time series by executing approximate
matching rather than exact matching of time series. Like
LCSS, Edit Distance with Real sequences (EDR) [40] sets
a threshold to remove noisy effects; however, EDR computes
the difference between two series rather than the similarity.
Edit distance with Real Penalty (ERP) [41] is a metric and it
does not require any thresholds to address noise; however,
ERP needs to choose a value for gap elements. It should
be noted that the methods based on ED can be performed
in O(n2).

III. FRAGMENT ALIGNMENT DISTANCE
A. DEFINITIONS
The purpose of this subsection is to give clear definitions of
the terms used throughout this article.
Definition 1) A time series T consisting of n ordered

numerical points can be defined as:

T = (x1, x2, . . . , xn), xi ∈ R.

A time series is usually an observation result of an underly-
ing process. It can thus be defined as a set of successive time
instants.

Time series can record the full set of observations of a pro-
cess and may be of sizable length. Especially for streaming
processes, they are semi-infinite as time instants are continu-
ally added to the series. Thus, it is necessary to consider the
subsequences of a series.
Definition 2) Given a time series T of length n, a sub-

sequence S of T is a part of the series T that consists of
contiguous time instants of length m (m ≤ n):

S = (xk , xk+1, . . . , xk+m−1), 1 ≤ k ≤ n− m+ 1.

Definition 3) Given a time series T of length n, a represen-
tation of T is a model T̄ of reduced dimensionality d(d � n)
such that T̄ approximates or extracts the main features of T .
Definition 4) The similarity measure D(T ,U ) of time

series T and U is a function that measures the distance
between them. D(T ,U ) takes two time series as inputs and
returns the distance between them. This distance cannot be a
negative value, that is, D(T ,U ) ≥ 0.

B. DERIVATIVE ESTIMATION
The derivative estimate of a given time series T is a sequence
T̂ = (x̂1, . . . , x̂h, . . . , x̂n), in which each element is the first-
derivative estimate of the point in T .

1) DDTW ESTIMATION MODEL
Keogh and Pazzani [36] proposed an easy yet effective deriva-
tive estimation model, which we hereinafter call the DDTW
estimation model. This model computes each point’s first-
derivative estimate by using the mean value of the slopes of
the lines from the left adjacent point to the current point and
the right adjacent point. Formally,

x̂h=


x̂h+1 h = 1
1
2

[
(xh−xh−1)+

1
2
(xh+1−xh−1)

]
h ∈ [2, . . . , n−1] .

x̂h−1 h = n
(1)

Although the DDTW estimation model is simple,
the derivative estimates of the first and last points in the series
are not accurate enough.

2) DSA ESTIMATION MODEL
Gullo et al. [14] presented a more accurate way to approx-
imate the first derivative of a time series; we refer to it
as the DSA estimation model, which modifies the DDTW
estimation model by considering the slope of the line from
the current point to the right adjacent one. In other words,
the DSA estimation model only considers the slope of the
line from the left adjacent point to the right adjacent point.
The derivatives of the first and last points in the series are
calculated by their adjacent points as well. Formally,

x̂h =


xh+1 − xh h = 1
1
2
(xh+1 − xh−1) h ∈ [2, . . . , n− 1]

xh − xh−1 h = n

(2)

Compared to the DDTW estimation model, the derivative
forms of the first and last points of the DSA estimation model
are more reasonable. According to Gullo et al. [14], the DSA
derivative estimation model results in a better derivative-
based feature space than DDTW.

C. SEGMENTATION AND DATA REPRESENTATION
A derivative estimation sequence is a feature-rich series that
contains trend information about the original data. Due to the
better performance of DSA derivative estimation in approx-
imating the derivative values of time series, FAD performs
segmentation based on it.

In our approach, the segmentation process is the same
process as the formation of fragments. The design concept of
FAD is based on the notion that similar time series have simi-
lar change trends. Thus, the key idea of the segmentation step
is to divide a time series according to the derivative estimation
values of the points. Specifically, we set a threshold ε to judge
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FIGURE 1. The original series is a sinusoidal signal with random noise.
The series with different scales can be obtained by adjusting the value
of ε. The series become flatter as the threshold value increases.

the change magnitude of the data. If the derivative estimation
value of a point is less than ε, that point has little change
compared to the previous one. Both points are represented by
the same symbol. Otherwise, if there is an obvious difference
between them, this will lead to different representation sym-
bols of adjacent points. In this way, FAD can transform the
derivative sequence into a symbolic representation sequence.
Formally,

Rh =



λ x̂h > λ · ε

· · · · · ·

1 ε < x̂h ≤ 2 · ε
0

∣∣x̂h∣∣ ≤ ε
−1 −2 · ε < x̂h ≤ −ε
· · · · · ·

−λ x̂h < −λ · ε

(3)

where Rh is the symbolic representation of x̂h and ε is a
threshold value for the change trend; the value of ε is not less
than zero. The parameter λ indicates the number of symbols
used to represent the time series. For instance, we can trans-
form the original data into series composed of −1, 0, 1 or
−2, −1, 0, 1, 2, etc.; this depends on the characteristics of
the data. It is worth noting that λ is an integer and is not less
than one. Fig. 1 illustrates the change trends of series with
different threshold values.

The second step of FAD is to transform the symbolic rep-
resentation sequence R into a feature series T̄ = (S1, . . . , Sp),
where Sj = (Rj1, . . . ,Rjkj ). Noting that Sj is the j-th sub-
sequence of sequence R,Rj· is the representation symbol
of Sj and kj indicates the number of symbols in Sj. In our
work, Sj can be represented a s(Rj, kj) as well, that is, Sj =
(Rj1, . . . ,Rjkj ) = (Rj, kj). Fig. 2 shows an example of a
symbolic series R and the transformation process from series
R to series T̄ .
It is easy to observe that most of the adjacent points in

the series have the same change trends, that is, they have the
same symbolic representations. To express the time series in

FIGURE 2. Symbolic representation of time series.

a concise way, we merge the adjacent points with the same
symbols. Thus, a fragment of the time series is obtained by
merging adjacent points with the same symbols. To avoid the
loss of time axis information, every fragment also records
the number of adjacent points that have the same symbols
during the process of merging them. For example, the first
subsequence of R in Fig. 2 is composed of four zero symbols
and can be represented by (0, 4) in T̄ .
At this point, we can determine that a fragment is rep-

resented by two elements: one is the representation symbol
and the other is the number of symbols. The representation
symbol can be viewed as an approximation of the trend of
the time series, and the number of symbols can reflect the
trend’s duration. In this way, time series can be segmented
and the segment delimiters are the break points in the series.
Therefore, the feature series T̄ = (S1, . . . , Sp) of length p
can be expressed as ((R1, k1), . . . , (Rp, kp)) where Sj can be
represented as Sj = (Rj, kj).
The symbolic sequences obtained by FAD can be com-

bined with DTW, which is called the FAD_DTW algorithm,
to measure the distances between time series. Thus, it is
necessary to briefly introduce DTW in this part.

Given two time series T1 = (x11, . . . , x1n) and T2 =
(x21, . . . , x2m), there is an n-by −m matrix with elements
d(x1i, x2j). To align the two time series, DTW needs to find
the warping path between the two time series that has the
minimum total cumulative distance between points. This path
can be obtained by using dynamic programming to evaluate
the minimum cumulative distance g(i, j) of the current step:

g (i, j) = d
(
x1i, x2j

)
+min


g(i, j− 1),
g(i− 1, j− 1),
g(i− 1, j).

(4)

where d(x1i, x2j) denotes the distance between points x1i
and x2j; usually, the Euclidean distance is used. Since each
point in the two sequences is considered, the computational
complexity of DTW is O(mn).

The pseudocode implementation of FAD_DTW is given
in Table 1. The first step is to obtain the derivative estimates
of T1 and T2 by Eq. (2) and transform them into symbolic
sequences R1 and R2 by Eq. (3) (lines 2-9). The second step is
to obtain the feature sequences T̄1 and T̄2 bymerging the same
symbols in R1 and R2 (lines 10-11). The above two steps are
the main steps of the representation process of FAD. Finally,
use the DTW algorithm to compute the distance between the
two merged symbolic sequences (line 13).

VOLUME 5, 2017 24507



M. Zhang, D. PI: New Time Series Representation Model and Corresponding Similarity Measure

TABLE 1. Implementation of FAD_DTW.

D. SIMILARITY MEASURE
After obtaining feature series T̄ , we now present a new sim-
ilarity measure to further speed up similarity detection. We
transform the comparison between the points of two time
series into comparison between fragments of them. As noted
in [38], researchers using DTW constrain the warping path
in a global sense by limiting how far it can stray from the
diagonal. This allows us to align two fragment series diago-
nally. Moreover, the design concept of FAD is that similar
time series have similar change trends. Thus, FAD needs
to find a warping path that can diagonally map the similar
change trends in two series. ‘‘Diagonally’’ does not mean
the warping path completely lines up with the diagonal; it
tends to map two similar fragments around the diagonal. For
instance, Fig. 3A shows two series with similar change trends.
To map the two series, the ideal warping path should be close
to the diagonal of the matrix. Fig. 3B shows two series with
different lengths. Since only half of the two series are similar
and they can be mapped with each other, the ideal warping
path ought to be close to the diagonal of half of the matrix.

In the following part, we propose a new computational
method that can find such a warping path in linear time.
To align the two series, three cases need to be considered
satisfied in the course of similarity measurement.

1) The mapped fragments in T̄1 and T̄2 have different sym-
bols, which means the trends of the two subsequences (frag-
ments) are different. In this case, we define the distance
between them as Eq. (5).

D
(
S1i, S2j

)
= 1, if R1i 6= R2j (5)

where S1i and S2j are the subsequences of T̄1 and T̄2, respec-
tively, and R1i and R2j are the corresponding symbols of
S1i and S2j.

FIGURE 3. The numbers on the line denote the symbols of different
fragments. The red line denotes the ideal warping path of FAD.
A) Two fragments (a and b) with the same length. B) Two fragments
(c and d) with different lengths.

2) The mapped fragments in T̄1 and T̄2 have same sym-
bols, which indicates they have similar change trends. Hence,
the distance between them mainly depends on the difference
in their lengths. We compute the distance between them by
Eq. (6).

D
(
S1i, S2j

)
=γ×

(
max

{
k1i, k2j

}
min

{
k1i, k2j

} −1), if R1i=R2j (6)

where k1i and k2j are the numbers of points for S1i and S2j,
respectively, and γ is an adjustable parameter to change
the distance ratio of same symbols to different symbols.
Intuitively, the distance between the same symbol fragments
must be less than the distance between different ones. Thus,
in case 2), we have 0 ≤ D(S1i, S2j) < 1 and γ ∈ [0, 1).
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TABLE 2. Fragment alignment distance.

3) Due to the time series’ unequal lengths and the time
warping awareness of FAD, some fragments usually remain
in one of the series with no fragments in the other series for
mapping. Such fragments can be viewed as not being similar
to any fragments, which corresponds to case 1). We define
the distance as Eq. (7).

D(−, Si) = 1 (7)

In general, we can define the distance between two frag-
ments as Eq. (8).

D(S1i, S2j)

=

γ×
(
max{k1i, k2j}
min{k1i, k2j}

−1
)

R1i=R2j and S2j exists

1 otherwise
(8)

Given two feature series T̄1 = (S11, . . . , S1p1) and T̄2 =
(S21, . . . , S2p2) with lengths of p1 and p2, respectively, the
distance between them can be defined as Eq. (9).

D(T̄1, T̄2) =
∑

D(S1i, S2j) (9)

Table 2 shows the pseudocode implementation of FAD
in greater detail. The algorithm starts off by computing the
derivative estimates of time series T1 and T2 (lines 2 and
3). Then, the derivative estimation series are transformed

into fragment series (lines 4 and 5). Assume i and j are the
subscripts of the current fragments in T̄1 and T̄2, respec-
tively, and initialize the distance between the two series as
zero (line 6). For mapping fragments with the same symbols,
the distance between them can be computed by Eq. (6), and
the two subscript values should be both increased because the
two fragments are correctly mapped (lines 8-10). Otherwise,
if the mapping fragments have different symbols, it may
be incorrectly mapped. Thus, one of the fragments should
be aligned to the next fragment in the other series. In this
situation, only one series’ subscript needs to be increased, and
we update it according to the left lengths of the two series.
To balance the left lengths of the two series, we increase
the longer one’s subscript. As a punishment, the distance
between them is calculated by Eq. (7) (lines 12-17). Then,
in case 3), the distance of the left series can be computed by
p1− i+1+p2− j+1. Finally, the total distance is calculated
in line 20.

According to the above analysis, FAD can map the frag-
ments with similar change trends and restrict the warping path
to close to the diagonal by handling the unmapped fragments
based on the left lengths of the two series (lines 13-17). That
is, FAD calculates the distance between two series by finding
a warping path that can diagonally map their similar change
trends.
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It is easy to show that FAD satisfies the triangle inequality.
We prove in the Appendix that FAD is ametric. Therefore, the
existing indexing structures proposed for metrics are avail-
able for FAD.

E. COMPUTATIONAL COMPLEXITY ANALYSIS
In this subsection, the computational complexity of FAD is
analyzed. First, we consider the complexity of the represen-
tation stage. According to lines 2-11 in Table 1, the time
complexity of representation is

2·O (n)+2·O (m)+O (λn)+O (λm)≈O (λn)+O (λm) (10)

where n and m are the lengths of time series T1 and T2,
respectively. Second, we analyze the time complexity of the
similarity measurement stage. According to lines 7-19 in
Table 2, the time complexity of calculating the similarity
between two symbolic sequences is O(min{p1, p2}). There-
fore, the overall computational complexity of FAD is

O(λn)+O(λm)+O(min{p1, p2})≈O(max{λn, λm}). (11)

Usually, p1 and p2 are far less than n and m. To conclude,
the computational complexity of FAD is O(max{λn, λm}),
which is much less than those of other similarity measures.
The implementation of FAD is quite easy.

IV. EXPERIMENTAL METHODOLOGIES
We designed a validation experiment to evaluate the ability
of FAD in supporting efficient and effective similarity search
and detection within classification and clustering frame-
works. We compared FAD with state-of-the-art approaches
for time series representationmodels and similaritymeasures,
including PAA, SAX, and DSA as time series models and
LCSS, EDR, ERP, and DDTW as similarity measures. Since
representation models cannot be directly used to measure
the distance between time series, we chose to employ DTW
over the segments computed by each particular representation
model.

A. ALGORITHMS
Since the objective of our work is to assess the ability of FAD
in time series data mining tasks, we employed standard clas-
sification and clustering frameworks for assessment, which
include K-means clustering, agglomerative hierarchical clus-
tering [42] and nearest-neighbor classification [43].

1) K-MEANS CLUSTERING
In our work, we employed the popular K-means algorithm,
which is characterized by simplicity and low computational
requirements. For the K-means algorithm, one needs to spec-
ify the number of output clusters; for simplicity, we adopted
data sets for which relevant classifications are available.
Thus, we set the number of output clusters equal to the actual
number of classes in each clustering evaluation. Moreover,
since the initial cluster centroids greatly affect the perfor-
mance of the K-means algorithm, we not only randomly

selected the initial cluster centroids but also executedmultiple
runs of the K-means algorithm to obtain relatively reliable
results.

2) HIERARCHICAL CLUSTERING
The hierarchical clustering enables us to evaluate the com-
peting approaches in a clustering framework that does not
depend on the cluster initialization. Hierarchical clustering
is an approach to cluster analysis that seeks to build a hier-
archy of clusters. It generally has two types of strategies:
one is agglomerative and the other is divisive. The agglom-
erative strategy is a ‘‘bottom-up’’ approach in which each
observation starts off in its own cluster and then pairs of
clusters are merged to construct the hierarchy. The divisive
strategy is a ‘‘top-down’’ approach, in which all points start
as one cluster and the cluster is recursively split as one moves
down the hierarchy. Since agglomerative clustering has lower
complexity compared to divisive clustering, we employed
the Unweighted Pair Group Method using arithmetic Aver-
ages (UPGMA) algorithm, which is an agglomerative clus-
tering algorithm that uses group-average linkage to calculate
the distance between two clusters [42].

3) ONE NEAREST NEIGHBOR (1-NN) CLASSIFICATION
Nearest-neighbor classification is widely known to be a
straightforward and effective method to assess the perfor-
mances of various algorithms [43]. The one-nearest-neighbor
classification classifies each data instance according to the
most similar instance to it. As the most basic instance-based
classification approach, the 1-NN classification algorithm
is essential in our evaluation work. Compared with K-NN,
1-NN classification has the advantages of having no parame-
ters and allowing comparisons between methods.

B. ASSESSMENT CRITERIA
To assess the effectiveness of the competing methods,
we directly compared the results of classification and clus-
tering with the inherent distribution of the data, which is
available for our selected data sets.

F-measure or F-score (F) [44] is the most widely used
external criterion. It is defined as the harmonic mean of the
information retrieval concepts of precision (P) and recall (R).
Formally,

F =
2× P× R
P+ R

. (12)

Given a set ∅ of time series, assume 0 = {01, . . . , 0H }
is the inherent distribution of the series in ∅, and the out-
put distribution of a classification or clustering algorithm
is C = {C1, . . . ,CK }. The precision of Cj with respect
to 0i is the proportion of the series in Cj that has been
correctly classified; formally Pij =

∣∣Cj⋂0i
∣∣ / ∣∣Cj∣∣. The

recall of Cj with respect to 0i is the proportion of the
series in 0i that has been correctly classified; formally,
Rij =

∣∣Cj⋂0i
∣∣ / |0i|.
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TABLE 3. Data sets.

In the classification frameworks, since H = K , the overall
precision and recall are

P =
1
H

∑H

i=1
Pii, R =

1
H

∑H

i=1
Rii. (13)

whereas in the case of clustering, the overall precision and
recall are defined as

P =
1
H

∑H

i=1
Pi, R =

1
H

∑H

i=1
Ri, (14)

where Pi = Pij∗ , Ri = Rij∗ , and j∗ ∈ argmax j=1...K {Pij,Rij}.
It is obvious that the higher the F-measure, the better the

performance of the method.

C. SETUP OF THE PARAMETERS FOR THE
COMPETING METHODS
Most state-of-the-art approaches require one or more param-
eters to be set. For some approaches, including LCSS, EDR,
and ERP, typical settings have been suggested in their respec-
tive works. For LCSS and EDR, it is suggested that the
matching thresholds be equal to (maxσ (Ti))/4 andminσ (Ti),
respectively, where σ (Ti) denotes the standard deviation over
the points in the i-th time series of all the series in a data
set. The constant gap for ERP is set to zero. Such parameter
settings proved to be good enough to enable the correspond-
ing methods to achieve their best performances in terms
of accuracy. For the other methods, to make a comparative
assessment possible in terms of accuracy and efficiency,
we prepared a set of parameter values to evaluate them.
Since the alphabet size of SAX is usually no more than ten,
the parameter value of alphabet size can be set as (2, 3, 4, 5,
6, 7, 8, 9, 10), and we varied the number of symbols from 2
to one-fifth of the series’ length using an increment of two
symbols in each step. Analogously, we varied the window
length in PAA from 2 points to one-fifth of the series length in
the same way. We measured the corresponding classification

and clustering F-measure scores and ultimately selected the
settings that corresponded to the best performance.

V. RESULTS
A. DATA DESCRIPTION
The 13 time series data sets employed in this experiment are
collected from the UCR Time Series Classification /Cluster-
ing Homepage [45]. The data resource is provided by Keogh
et al., which is derived from a variety of applications. Detailed
information about the data is given in Table 3. The type labels
require a brief explanation. Some data sets are real, which
simply means they were recorded as natural time series from
some physical process, for instance, the earthquake signal
from sensor reading. Some data sets are shapes: these are one-
dimensional time series that were extracted by processing
some two-dimensional shapes, such as leaf profiles or the
silhouettes of planes. Finally, one of the data sets is synthetic;
it was created by researchers to test some property of a time
series algorithm. We note that none of the current authors
have created any of the synthetic data sets used here.

B. EFFECTIVENESS EVALUATION
In this part, we mainly focus on assessing the ability of
FAD and other state-of-the-art methods in supporting time
series clustering and classification. The performances of the
parametric methods were measured using their best settings.

We directly employed the data sets obtained from the UCR
Time Series Classification/Clustering Homepage [45] with-
out any preprocessing steps because the data sets have already
been normalized. In general, it is necessary to normalize the
data before performing experiments.

1) TUNING PARAMETERS OF FAD
According to Section 3, the ratio parameter γ of FAD is non-
negative and less than one. We found that when the value
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FIGURE 4. The above pictures show the performance surfaces of different
λ values in data set Wine. Note that the parameter f in the pictures
represents the F-score of the classification results. For convenience of
presentation, the changes of F-score values are drawn in different colors.

of parameter γ becomes larger than 0.5, the performance
of our method does not greatly improve. Thus, for the sake
of rigorousness, we varied the value of γ from 0 to 0.5 by
0.01 each step. If the threshold value is too large, the feature
series T̄ will lose details about the original data. This will
degrade the performance of FAD. Thus, we suggest that
the maximum value of the threshold not exceed half of the
standard deviation. Since the data sets have been normal-
ized and the standard deviation is equal to one, varied the
threshold parameter ε from 0 to 0.5 by 0.01 each step as
well. We tentatively set the value of parameter λ to (1, 2,
3, 4, 5, 6), successively. To study the influence of different
parameter settings on the performance of FAD, we selected
four data sets and classified them using the 1-NN algorithm.
The results for data set Wine are illustrated in Fig. 4 and the
best performances on all data sets corresponding to different
λ values are listed in Table 4.
It can be inferred from Fig. 4 that the performance of

FAD is more sensitive to the value of ε, while parameter
γ has little effect on FAD. Additionally, the performance
surfaces for different λ values are similar to each other
in Fig. 4; this phenomenon is quite common among different
data sets. Table 4 gives us more information about the rela-
tionship between the performance of FAD and the value of
parameter λ. Usually, a small value of λ is sufficient to
achieve high performance.

TABLE 4. Classification results (F-score) for different λ values.

According to the above analysis, we adjusted the set of
values of the threshold ε, ranging from 0 to 0.2, by 0.01 each
step, and increasing the value of parameter γ from 0 to 0.5 by
0.05 each step in the following experiments. We set the value
of parameter λ to (1, 2, 3) in the following studies.

2) ACCURACY IN TIME SERIES CLASSIFICATION
We evaluated the performances of FAD and FAD_DTW,
along with those of other methods, namely PAA, SAX, DSA,
DDTW, ERP, LCSS and EDR, using the 1-NN classification
framework. Table 5 shows the best results achieved by various
approaches.

To provide a more intuitive illustration of the performances
of different approaches, we sorted the classification results
in Table 6. If multiple approaches have the same F-scores,
we set their rankings as the average of their corresponding
rankings. For example, EPR and EDR have same classifi-
cation results on the ECG200 data sets and their rankings
are supposed to be 2 and 3, respectively; thus, we set their
rankings as (2+ 3)/2 = 2.5.
According to Table 6, FAD_DTW attained the highest

average ranking in the classification tasks, and the rankings
of FAD_DTW are quite stable compared with those of the
other methods, except for DSA_DTW, which had worse per-
formance than FAD_DTW. DSA segments time series by
setting the standard deviation as the threshold, which intro-
duces some uncertainty about the segments. For instance,
if the previous segment is long, the standard deviation might
be large. This will lead to the omission of the next burst
signal. In this case, the segments obtained by DSA can-
not accurately express the original series. FAD and LCSS
have the same average rankings, while FAD is more stable
than LCSS. SAX_DTW outperforms DSA_DTW, DDTW
and PAA_DTW. The threshold of SAX is fixed and it has
better ability to overcome the noise than DSA, DDTW and
PAA. It should be noted that the methods without derivative
estimation (LCSS, EDR, ERP, SAX, and PAA) have difficulty
handling data points that have same value but different trends,
which degrades their performances. Moreover, compared
with FAD, DDTW is more sensitive to noisy data. Since the
segmentation process of FAD and FAD_DTW is based on the
derivative estimation of the original series and the threshold
is fixed, it overcomes the shortcomings of other methods.
The experimental results show the good performance of our
methods.
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TABLE 5. Summary of results (F-score) for 1-NN classification.

TABLE 6. Rankings of different methods for 1-NN classification results.

3) ACCURACY IN TIME SERIES CLUSTERING
In this part, we assessed FAD and other approaches in
two clustering frameworks, namely, UPGMA and K-means.
Instead of splitting each data set for training and testing as in
the classification frameworks, we used the whole data sets to
evaluate the performance of each method.

Table 7 presents the results (F-score) of the compet-
ing methods for UPGMA clustering. The rankings of all
approaches are reported in Table 8.

According to Table 7 and Table 8, FAD is the top-ranked
method on average over all the datasets. FAD_DTW outper-
forms all methods except FAD. Another symbolic method,
namely, SAX_DTW, also has good performance. As a time

series representation model, FAD is more accurate than SAX,
PAA and DSA, which means FAD can approximate the orig-
inal series very well. As a similarity measure, FAD has time-
warping awareness and is more accurate than DDTW, LCSS,
EDR and ERP. Unlike in the classification task, LCSS has
greatly decreased performance in UPGMA clustering.

Table 9 reports the results attained in the K-means cluster-
ing framework. Table 10 shows the rankings of the results.
Since the uncertainty of initialization greatly affects the
results of the K-means algorithm, we performedmultiple runs
and set the average value of the runs as the final result.

According to Tables 9 and 10, FAD_DTW has the best
performance among all the competing methods. FAD has
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TABLE 7. Summary of results (F-score) for UPGMA clustering.

TABLE 8. Rankings of different methods for the UPGMA clustering task.

a relatively high ranking compared with other methods.
PAA_DTW attains better accuracy in K-means clustering
than in the UPGMA framework. Although SAX_DTW per-
forms worse in K-means clustering than in UPGMA clus-
tering, it is still more accurate than LCSS, DDTW, EDR
and ERP.

Moreover, compared with classification frameworks, both
FAD and FAD_DTW show greatly improved accuracy in
clustering tasks.

C. EFFICIENCY EVALUATION
We evaluated the time performances of FAD and the other
approaches in achieving the tasks of modeling and clustering

time series. All experiments were conducted on a platform
with an Intel E5-2620 CPU with 64.0 GB memory and run-
ning Microsoft Windows XP.

1) PERFORMANCE IN TIME SERIES MODELING
Table 11 summarizes the time performance results (in mil-
liseconds) of the competing methods in modeling time series
using their best settings. The corresponding compression
ratios of different representation models are also shown in the
table; for example, C_PAA represents the compression ratio
of the PAA algorithm.

According to Table 11, FAD is the fastest rep-
resentation model among all the competing methods.
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TABLE 9. Summary of results (F-score) for K-means clustering.

TABLE 10. Rankings of different methods for K-means clustering results.

SAX and PAA are also very fast. All four representation
models can be implemented in linear time. In general, simpler
models result in higher efficiency. It is necessary to examine
the impacts on the time series dimensionality of various
methods. Table 11 demonstrates that FAD can achieve 74.5%
compression of time series length on average, with a maxi-
mum compression ratio of 99.8% in the BirdChicken data set.
SAX has the highest average compression ratio of 87.6%.
This suggests that FAD is able to compactly represent the
original data.

2) PERFORMANCE IN TIME SERIES CLUSTERING
After comparing the time performances of various repre-
sentation methods, we also assessed the time performances

of different similarity measures for the K-means clustering
task. For the sake of simplicity, we conducted experiments
on data set Plane, which contains 210 pieces of time series.
Fig. 5 reports the time performances (seconds) of the compet-
ing similaritymeasures with different data sizes. Denoting the
run time of the methods is t , the time axis in Fig. 5 is log10(t).

According to Fig. 5, FAD is the fastest method among
the competing methods. Moreover, FAD_DTW, SAX_DTW,
PAA_DTW and LCSS all have relatively high performances
in run time, while ERP, DSA_DTW, and EDR are obviously
slower than the other methods, except for DDTW, which is
revealed to be the slowest one. Due to the high complexity
of DTW, the methods based on it show inferior performances
compared with FAD. However, this indicates that the FAD,
SAX, PAA and DSA representation methods can greatly
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TABLE 11. Summary of time performances (milliseconds) and compression ratios in time series modeling.

FIGURE 5. Time performance in the K-means clustering task.

improve the time performance of basic DTW. According to
the analysis in Section 3, FAD can be carried out in linear
time. Thus, FAD will demonstrate great superiority in terms
of run time as the size of the data increases.

D. SUMMARY OF RESULTS AND DISCUSSION
To assess the capabilities of FAD and FAD_DTW,
we compared them with state-of-the-art methods for sup-
porting similarity detection with classification and clustering
frameworks. To maintain the objectivity of the experimental
results, we abandoned the data preprocessing step and all of
our experiments were conducted using standard classification
and clustering algorithms. Since the focus of our work is to
devise a fast and accurate similarity measure of time series,

the experiment section mainly can be divided into two parts:
effectiveness evaluation and efficiency evaluation. We can
summarize the main conclusions of our works as follows:

• The time series representation model FAD can not only
quickly extract trend features of time series but also
provide an accurate approximation of the original data.
No matter the classification or clustering task, FAD
is the fastest and most accurate method among the
representation models.

• FAD is the fastest similarity measure compared to the
competingmethods. FADhas time-warp awareness and
its computational complexity is linear with time series
length, which is a great advantage over other similarity
measures.

• FAD_DTW and FAD are more accurate than other
methods in both classification and clustering tasks.
Specially, FAD_DTW is more accurate than FAD in
the 1-NN classification and K-means clustering tasks.
However, FAD performs better in the UPGMA cluster-
ing task.

VI. CONCLUSIONS
In this paper, we proposed the FAD and FAD_DTW algo-
rithms. FAD is composed of a novel representation model
and a corresponding similarity measure to support fast and
accurate similarity detection in time series data mining tasks.
It is able to transform time series into compact yet feature-rich
symbolic sequences by extracting trend information of data
and diagonally mapping the similar change trends between
series. FAD is devised based on the notion that similar time
series have similar trends. Hence, it is a method based on the
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trend of the data. FAD_DTW applies Dynamic TimeWarping
on the representation model of FAD; thus, it can extract the
same features of time series as FAD. FAD_DTW has high
accuracy in classification and clustering tasks. Moreover, as a
symbolic representation method, FAD is drastically faster
than SAX. The computational complexity of FAD is linear
with the length of the time series, which is much faster than
other similaritymeasures. Additionally, FAD and FAD_DTW
both have better performance in clustering tasks than in
classification.

APPENDIX
In the paper, we claimed that FAD is a metric. We will prove
it in this section. In general, a metric must satisfy four con-
ditions: identity of indiscernibles, non-negativity, symmetry
and triangle inequality. The formal definitions are as follows:
Conditions: 1. D(T̄1, T̄1) = 0.

2. D(T̄1, T̄2) ≥ 0.
3. D(T̄1, T̄2) = D(T̄2, T̄1).
4. D(T̄1, T̄3) ≤ D(T̄1, T̄2)+ D(T̄2, T̄3).

Proof:
Condition 1: Assume T̄1 = (S11, . . . , S1p1). Then,

D(T̄1, T̄1) =
∑p1

i γ × (k1i/k1i − 1) = 0. Thus, FAD satis-
fies condition 1.
Condition 2: If T̄1 = T̄2, then according to condition 1,

D(T̄1, T̄1) = 0; otherwise, according to the definition of FAD,
it is easy to find that D(T̄1, T̄2) > 0. Thus, FAD satisfies
condition 2.
Condition 3: According to the procedure of FAD, it is

obvious that FAD is not sensitive to the relative order of two
series. Readers can prove this condition themselves. Indeed,
FAD satisfies condition 3.
Condition 4:We prove the triangle inequality of FAD with

mathematical induction.
Suppose we are given three time series: T̄1 =

((a, k1), (b, k2), (c, k3)), T̄2 = ((a, k1), (d, k2), (c, k3)), and
T̄3 = ((a, k1), (e, k2), (c, k3)).

¬ Basis: According to the definition of FAD,

D(T̄1, T̄2) = γ ×
(
max{k1, k1}
min{k1, k1}

− 1
)

+ 2+ γ ×
(
max{k3, k3}
min{k3, k3}

− 1
)
= 2,

D(T̄1, T̄2) = γ ×
(
max{k1, k1}
min{k1, k1}

− 1
)

+ 2+ γ ×
(
max{k3, k3}
min{k3, k3}

− 1
)
= 2,

D(T̄1, T̄2) = γ ×
(
max{k1, k1}
min{k1, k1}

− 1
)

+ 2+ γ ×
(
max{k3, k3}
min{k3, k3}

− 1
)
= 2.

Hence, D(T̄1, T̄2)+D(T̄2, T̄3)−D(T̄1, T̄3) = 2+ 2− 2 =
2 ≥ 0,
which indicates D(T̄1, T̄3) ≤ D(T̄1, T̄2)+ D(T̄2, T̄3).

 Inductive Step:We now change one of the three series.
Assume T̄2 = ((a, k∗1 ), (d, k2), (c, k3)). Then,

D(T̄1, T̄2) = γ ×
(
max{k1, k∗1 }

min{k1, k∗1 }
− 1

)
+ 2+ γ ×

(
max{k3, k3}
max{k3, k3}

− 1
)

= γ ×

(
max{k1, k∗1 }

min{k1, k∗1 }
− 1

)
+ 2,

D(T̄2, T̄3) = γ ×
(
max{k1, k∗1 }

min{k1, k∗1 }
− 1

)
+ 2+ γ ×

(
max{k3, k3}
max{k3, k3}

− 1
)

= γ ×

(
max{k1, k∗1 }

min{k1, k∗1 }
− 1

)
+ 2,

D(T̄1, T̄3) = γ ×
(
max {k1, k1}
min {k1, k1}

− 1
)

+ 2+ γ ×
(
max {k3, k3}
max {k3, k3}

− 1
)
=2,

D(T̄1, T̄2)+ D(T̄2, T̄3)− D(T̄1, T̄3)

= γ ×

(
max{k1, k∗1 }

min{k1, k∗1 }
− 1

)
+ 2+ γ ×

(
max{k1, k∗1 }

min{k1, k∗1 }
− 1

)
+2−2

= 2γ ×
(
max{k1, k∗1 }

min{k1, k∗1 }
− 1

)
+ 2 ≥ 0,

which implies D(T̄1, T̄3) ≤ D(T̄1, T̄2)+ D(T̄2, T̄3).
Alternatively, assume T̄3= ((a, k1), (e, k2), (c, k3), (f , k4)).

Then,

D
(
T̄1, T̄2

)
= γ ×

(
max {k1, k1}
min {k1, k1}

− 1
)

+ 2+ γ ×
(
max {k3, k3}
min {k3, k3}

− 1
)
= 2,

D(T̄2, T̄3) = γ ×
(
max {k1, k1}
min {k1, k1}

− 1
)

+ 2+ γ ×
(
max {k3, k3}
min {k3, k3}

− 1
)
+ 1 = 3,

D(T̄1, T̄3) = γ ×
(
max {k1, k1}
min {k1, k1}

− 1
)

+ 2+ γ ×
(
max {k3, k3}
min {k3, k3}

− 1
)
+ 1 = 3.

Thus, D(T̄1, T̄2) + D(T̄2, T̄3) − D(T̄1, T̄3) = 2 + 3 − 3 =
2 ≥ 0, which implies D(T̄1, T̄3) ≤ D(T̄1, T̄2)+ D(T̄2, T̄3).
The above two derivations show that regardless of changes

to the symbols of the series or the corresponding number of
symbols, D(T̄1, T̄3) ≤ D(T̄1, T̄2) + D(T̄2, T̄3). It should be
noted that changing any one of the three series will lead to
the same conclusion. Interested readers can prove this.
In fact, the above proof procedure can be applied to the

general situation. Though finite adjustment of symbols and
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the number of symbols, T̄1, T̄2 and T̄3 can be transformed
into any series, so condition 4 can always be satisfied. This
completes the proof.
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