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ABSTRACT In this paper, we propose a no-reference image quality assessment (IQA) metric for noise-
distorted images specifically based on frequencymapping (FM), namely, FMIQA index. First, we decompose
the image into intrinsic mode functions (IMFs) from small to large scale by using bidimensional empirical
mode decomposition (BEMD), and perform the local feature analysis on the IMFs by Riesz transform.
Considering that the combination of BEMD and Riesz transform can denoise the noise-distorted image,
we use this method with appropriate application of visual contrast sensitivity function to get the denoised
image. Then we calculate the similarity map of the Riesz transform feature maps from the distorted image
and the denoised image to obtain the similarity indices. Finally, we combine these similarity indices to obtain
the final index. Experimental results on three public databases show that the proposed FMIQA evaluates the
noise-distorted image in consistency with subjective assessment and can obtain better performance in image
quality prediction than other existing related methods.

INDEX TERMS No-reference image quality assessment (NR-IQA), frequency mapping (FM), Riesz
transform, bidimensional empirical mode decomposition (BEMD), contrast sensitivity function (CSF).

I. INTRODUCTION
With the booming development of digital technology and
multimedia communication, digital images have been widely
applied as an important element of information expression
and communication [1]. However, during the process of trans-
mission [2], image matching [3], target detection [4], and oth-
ers [5]–[7], interference such as noise, blur, data loss, etc. will
be inevitably introduced, resulting in image quality degra-
dation [8]. How to evaluate the visual distortion generated
from these processes is significant for various multimedia
applications. Image quality assessment (IQA) research has
raised a lot of attention in the past twenty years [9], and
there are two different IQA methods of subjective quality
assessment [10], [11] and objective quality assessment [12].
Subjective IQA is the most intuitive and reliable method, but
it takes a lot of time and labor cost. Consequently, it can not
be used in practice [13]. Objective IQA aims at designing a
mathematical model to represent the human judgements as
precise as possible. The challenge of objective IQA method

is how to find out reliable and effective approaches to assess
the visual quality of an image [14], [15].

According to the presence or absence of reference
images, objective IQA can be divided into Full-Reference
(FR), Reduced-Reference (RR), and No-Reference (NR)
approaches [16]. FR-IQAmetrics are designed based on orig-
inal images, which are taken as reference images. They are
mainly used in assessing the similarity and fidelity between
distorted and original images [17]–[20]. FR-IQA metrics can
obtain good performance in visual quality prediction, but
the disadvantage is that the reference image is necessary,
which is often unavailable in practical applications. RR-IQA
metrics do not need the complete reference image, but only
require part information of the reference image, such as the
probability distribution of the wavelet transform coefficients,
the integrated multiscale geometric analysis and perceived
gray difference features [21], [22]. The corresponding appli-
cation fields include digital watermark verification in video
transmission, video quality monitoring and bit rate control
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using sub-channels [23]–[26]. Recently, the study of the NR-
IQA has been active because of the difficulty in obtaining
reference images in practical applications, and it will be the
main direction of development of the objective IQA in the
future [27]–[32].

In general, the NR-IQA can be divided into application-
specific assessment and general-purpose assessment [33].
The application-specific NR-IQA metrics are effective only
for a certain distortion or only for a certain application, while
the general-purpose NR-IQAmetrics are suitable for any dis-
tortion and any occasion [30], [32]. Several general-purpose
NR-IQA metrics have been developed in these years, which
typically reformulate the IQA problem into a classification
and regression problem. The regressors/classifiers are always
trained using specific features, and the relevant features are
either discovered via machine learning (ML) or specified by
using natural-scene statistics (NSS), both of which require
a large number of distortion-free images as a prerequisite.
Consequently, there are still much desired in some cases for
the application-specific NR-IQA. Common types of distor-
tion include JPEG compression distortion, blur distortion,
noise distortion, and so on. For compression distorted images,
Suthaharan [34] proposed a corresponding assessment metric
VSBAM to evaluate the degree of image distortion caused
by the image compression. For fuzzy degenerated images,
Ciancio et al. [35] applied various airspace image features
and used neural network model to evaluate the blurred image.
Bahrami and Kot [36] proposed the concept of maximum
local variation (MLV) to quickly assess the degree of blur
of the image. Ferzli and Karam [37] proposed the concept
of just noticeable blur (JNB) to evaluate the degree of blur,
and proposed an upgraded version CPBD [38]. For the image
of contrast distortion, Fang et al. [39] built NSS models to
evaluate the quality of a contrast-distorted image simply and
effectively. Fang et al. [39] noticed the areas of maximum
information and properly combined local and global con-
siderations to evaluate the contrast-distorted images. As we
know, noise is an important factor in image distortion, but
there is few studies proposing NR objective assessment met-
ric dedicated to noise-distorted image. This paper is devoted
to the study of NR-IQA for noise-distorted images.

Empirical mode decomposition (EMD) is a signal process-
ing method for non-stationary signal analysis proposed by
Huang et al. [40]. It can clearly distinguish the intrinsic mode
functions (IMFs) of overlapping complex data without pre-
setting the basis function as a wavelet decomposition. As long
as the boundary conditions and termination criteria are dealt
with properly, we can decompose the image in the scale from
small to large, which is more convenient and easier than
the wavelet implementation [41]. Nunes et al. [42] extended
the one-dimensional EMD and proposed the bidimensional
empirical mode decomposition (BEMD) for bidimensional
application. The image components obtained by BEMD are
within different frequency bands, and the human visual sys-
tem (HVS) has different sensitivities to image components
in different frequencies. Therefore, when reconstructing the

image, in order to make the performance of the metric closer
to the human eyes, we weight and sum the image components
through the visual contrast sensitivity function (CSF).

In addition, with the in-depth study of the IMF’s local
feature analysis using Riesz transform [43], Riesz transform
has been widely used in various image processing applica-
tions. Considering the effect of BEMD on noise deduction
when combined with Riesz transform [44], we propose a
NR-IQA for noise-distorted images. We use the Riesz trans-
form feature maps of the image to be measured and the
denoised image to calculate the similarity index. Since the
IMFs of the image reflect the different frequency character-
istics, we propose the concept of Frequency Mapping (FM)
to combine the BEMD and HVS, which improves the assess-
ment performance of the metric.

Experimental results on three public databases show that
the proposed FMIQA evaluates the noise-distorted image
in consistency with subjective assessment and can obtain
better performance in image quality prediction than some
of the FR-IQA metrics and most NR-IQA metrics men-
tioned in this paper. In addition, in the case of highly dis-
torted images the proposed FMIQA keeps good monotonic-
ity while state-of-the-art metrics (such as BLIINDSII [45]
and FRIQUEE [46]) do not vary with the differential mean
opinion scores (DMOS). It is worth mentioning that the
implementation of the metric does not require training. This
makes the good performance of the metric is universal in the
evaluation of images, rather than only for certain databases.

The remaining contents of this paper are organized as
follows: Section II introduces the metric block diagram and
the calculation process. Section III proposes the concept of
FM. Section IV presents the experimental results and the
corresponding analysis. Section V concludes this paper.

II. THE PROPOSED FRAMEWORK
In this paper, the block diagram of the proposed FMIQA
index based on frequency mapping is shown in Fig. 1. The
Riesz transform feature maps of the denoised image g is
obtained by performing BEMD and Riesz transform on the
image f to be measured. Then it is compared with the Riesz
transform feature maps of the noise distorted image f to get
the final IQA score.

The noise-distorted image f is decomposed by BEMD
to obtain four IMF components (IMF1, IMF2, IMF3, and
RESIDUE), and five groups of Riesz transform feature maps
are obtained by performing first and second order Riesz trans-
form [47] on each image component (each group of feature
maps contains four image components, the main frequencies
of which are different).

Visual psychologists have pointed out that the contrast sen-
sitivity of the HVS to different spatial frequencies is different.
The human visual contrast sensitivity is a function of the
spatial frequency and has the characteristics of a bandpass
filter. In order to make the final assessment result closer to the
subjective perception, we use the CSF to weight and sum the
four image components in every group to obtain the feature
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FIGURE 1. Illustration of the proposed FMIQA index.

maps Rx{g}, Ry{g}, Rxx{g}, Rxy{g}, and Ryy{g}, which are
denoted as g1, g2, g3, g4, and g5, respectively. At the same
time, we perform the first and second order Riesz transform
on the noise distorted image f and obtain the five featuremaps
Rx{f }, Ry{f }, Rxx{f }, Rxy{f }, and Ryy{f }which are denoted as
f1, f2, f3, f4, and f5, respectively.
For the five groups corresponding feature maps {fi, gi}

(i = 1, 2, . . . , 5), the similarity is calculated as follows:

si(x, y) =
2fi(x, y)gi(x, y)+ Ci

fi2(x, y)+ gi2(x, y)+ Ci
(1)

where fi(x, y) and gi(x, y) are pixel values of the feature
maps fi and gi at pixel (x, y), respectively. si(x, y) is the
similarity value of fi and gi (i = 1, 2, . . . , 5) at pixel (x, y).
Ci (i = 1, 2, . . . , 5) denotes small positive value to avoid the
instability caused by the denominator being zero or close to
zero. In this paper, we take Ci = 0.01 (i = 1, 2, . . . , 5).

After obtaining the five similarity maps, we average the
elements of the matrix to obtain five similarity indices:

Si =

∑M
x=1

∑N
y=1 si(x, y)

M × N
(2)

where Si (i = 1, 2, . . . , 5) denotes the similarity index of the
feature maps fi and gi.
Finally, the five similarity indices are weighted and

summed as the final IQA score:

FMIQA =

∑5
i=1 wi · Si∑5
i=1 wi

(3)

III. FREQUENCY MAPPING
BEMD has the advantages of smoothing irregular ampli-
tude, weakening data singularity, and so on. After BEMD,
the image is decomposed into a series of ‘‘fine to coarse’’
detailed information and a large-scale trend information
according to the scale from small to large [48]. As the feature
scale parameter is the actually measured data, the compo-
nents obtained by the above method have obvious physi-
cal meaning, which characterizes the fluctuation condition
and frequency range of the signal on a certain feature scale
parameter [49].

We perform BEMD on two reference images selected
from LIVE database [50]. The buildings contains rich high-
frequency information, and the caps contains rich low-
frequency information. We obtain IMF1, IMF2, IMF3, and
RESIDUE of these two images. Then we do the spectral
analysis on them and the results are shown in Fig. 2.

In Fig. 2, the IMF1 component mainly contains small-scale
components, which reflect the finest details of the original
image, that is, the high-frequency information. The IMF2
component mainly contains sub-scale components, and so
on. The RESIDUE component mainly contains the remaining
large-scale components, which reflects the contour informa-
tion of the original image, that is, the low-frequency informa-
tion. The detailed information describes the components of
small scale in the image, like texture etc. and the remaining
components of larger scale express the basic structure and
the change trend of the image. We process the information

23148 VOLUME 5, 2017



G. Yang et al.: NR Quality Assessment of Noise-Distorted Images Based on FM

FIGURE 2. Two examples of BEMD. From left to right, top to bottom are the (a) reference image1-buildings, (b) IMF1 and its spectrum map,
(c) IMF2 and its spectrum map, (d) IMF3 and its spectrum map, (e) RESIDUE and its spectrum map, (f) reference image2-caps, (g) IMF1 and its
spectrum map, (h) IMF2 and its spectrum map, (i) IMF3 and its spectrum map, and (j) RESIDUE and its spectrum map.

of different scales thoroughly, and then the processing results
in different scales are obtained.

We use the Riesz transform to get the local feature analysis
on different scale information.

FIGURE 3. Riesz transform space. f , fx , fy are the projections of the
points in the space on the three axes of the spherical coordinate system.
A

(
x, y

)
, θ

(
x, y

)
, ϕ

(
x, y

)
are the local amplitude, the local direction, and

the local phase.

In Fig. 3, f , fx , fy are the projections of the points in the
space on the three axes of the spherical coordinate system.
A (x, y), θ (x, y), ϕ (x, y) are the local amplitude, the local
direction, and the local phase.

Using the first-order Riesz transform, we can extract the
local linear features of the image, but we can not express
the corner points and intersection points in the image [51].
In order to characterize various low-level features existing in
the image, it is necessary to use higher order Riesz transform.
In this paper, we use the second-order Riesz transform to
express more complex features.

The first- and second-order Riesz transform can be used
to extract the low-level features of the image lighthouse2
(image from the LIVE database [50]) to obtain five feature
maps Rx/Ry/Rxx/Rxy/Ryy, as shown in Fig. 4. It can be seen
from Fig. 4 that the first-order feature maps can express the
edge contour of the image perfectly and the second-order
feature maps can express more complex features such as
corner points.

Five feature maps can be obtained for each image. In order
to obtain the feature maps of the denoised image from the
feature maps of different image components, we need to
integrate different image components of each type of feature
map. This paper uses the CSF proposed by Mannos and
Sakrison [52] as the weighting. The formula of CSF is shown
in Eq. (4), which reflects the difference in sensitivity of the
HVS to different spatial frequencies.

A(fr ) ≈ 2.6(0.0192+ 0.114fr ) exp−(0.114fr )
1.1

(4)

where fr is the spatial frequency.
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FIGURE 4. The first-order and second-order Riesz transform feature maps of the lighthouse2. From left to right and top to bottom are respectively the
(a) lighthouse2, (b) Rx , (c) Ry , (d) Rxx , (e) Rxy , and (f) Ryy .

FIGURE 5. The curve of contrast sensitivity function. It reflects the
difference in sensitivities of the HVS to different spatial frequencies.

According to Eq. (4), the feature curve of normalized CSF
is shown in Fig. 5.

Fig. 5 shows that the contrast sensitivity of CSF curve
is the largest at the intermediate frequency region, and the
sensitivity is obviously decreased in the lower frequency and
higher frequency region. There are four image components
after BEMD: IMF1, IMF2, IMF3, and RESIDUE . The spa-
tial frequency range of these four components is different, so
their contrast sensitivities of the HVS are different.

When we weight and sum the Riesz transform feature
maps in each group by the CSF values corresponding to the
different image components, we find that when the frequency
boundary of different image components is directly used as
the characteristic frequency of the frequency band, the error
is large. The frequency boundary of the IMF1 is high, and it
has a great jump relative to the other lower frequency bands.
In order to obtain more appropriate image boundary

frequency information, we propose a new method: FM.
Through the FM, we can find the new accurate frequency
boundary of the image component, so as to find out the
corresponding contrast sensitivity as the weight of the image
component feature map.

The detailed steps of FM are shown as follows:

1) PerformBEMDon noise distorted image and obtain four
image components: IMF1, IMF2, IMF3, and RESIDUE.

2) Compress the IMF’s spectrum, as follows:

Compressed Spectrum =
Spectrum

m
2× f

f0

(5)

where m is centered on 2, and f0 generally does not
exceed 0.5 (because the upper limit of the spatial fre-
quency is 0.5). Specific values are determined by the
experiment.

3) Integrate the IMF1 to obtain the volumeVIMF of the area
between the scatter plot and the x − y plane. With the
origin as the center and the maximum value of IMF as
height, we take the appropriate radius value for a cylin-
der, so that the cylinder volume V = VIMF . The value
of the radius is the boundary value of IMF1 frequency
domain. Since the spectrum of the IMF1 is a scatter plot
and has a certain randomness, we take the average of the
IMF frequency domain boundary of multiple pictures
as the characteristic frequency f 1f of the IMF frequency
domain boundary.

4) Calculate the characteristic frequency f if (i = 2, 3, 4) by
performing step 3) on IMF2, IMF3, and RESIDUE in
turn.

5) The CSF frequency f ic (i = 1, 2, 3, 4) is obtained by
mapping the characteristic frequency f if (i = 1, 2, 3, 4)
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FIGURE 6. Orthogonal Experiments for FM Parameters. (a) Experimental results on LIVE database, (b) experimental results on
CSIQ database, and (c) experimental results on TID2013 database.

according to the mapping relation as follows.

f ic = k × f if + b (6)

where i = 1, 2, 3, 4. The two parameters k and b of the
mapping relation are experimentally determined.

6) The contrast sensitivity of the HVS corresponding to f ic
(i = 1, 2, 3, 4) is used as the weight Ai (i = 1, 2, 3, 4)
of the image components. Thus, Eq. (4) becomes as
follows:

Ai ≈ 2.6[0.0192+ 0.114f ic ] exp
−(0.114f ic )

1.1
(7)

where i = 1, 2, 3, 4.
In this way, the correspondence between the image com-

ponents and the HVS is obtained.

IV. EXPERIMENTAL RESULTS
This paper performs performance comparison on three image
databases LIVE [50], CSIQ [53] and TID2013 [54]. LIVE
database contains 29 reference images and 779 distorted
images. The distortion types include JPEG2000, JPEG com-
pression, white noise, Gaussian blur, and Rayleigh fading.
The database provides the DMOS for each image. The
smaller DMOS value represents higher image quality. CSIQ
database contains 30 reference images, each of which has 6
types of distortion, each with four or five levels. The database
provides the DMOS values for all images, the value range of
which in the database is [0, 1]. TID2013 database includes 25
colored reference images, and there are 24 types of distortion,
totaling 3000 images. Mean opinion scores (MOS) values of
all tested images and their standard deviation are obtained
by the statistics of subjective scores from 971 participants
of different countries. Since FMIQA is designed for noise-
distorted images only, we select only part of the images
in three databases for experiments, including white noise
(174 images) in LIVE database, additive white gaussian noise

(150 images) in CSIQ database, and high frequency
noise (125 images) in TID2013 database.

In this paper, we use the five-parameter nonlinear logistic
regression function to fit the data [55]. The subjective scores
are predicted by the following regression.

f (x) = β1[
1
2
−

1
1+ exp(β2(x − β3))

]+ β4x + β5 (8)

where x is the objective IQA score; f (x) is the IQA predic-
tion score; β1, β2, β3, β4, and β5 are regressing function
parameters.

A. DETERMINATION OF PARAMETERS
There are several parameters need to be determined for
FMIQA: the FM Parameters, the screening termination con-
dition parameter, and the similarity index weight parameters.
The FM Parameters are determined by orthogonal exper-
iments, the screening termination condition parameter is
determined by traversal experiment, and the similarity index
weight parameters are determined by fitting the similarity
indices with DMOS. Although these parameters are deter-
mined on these three databases, it should be noted that once
these parameters are determined, they are fixed for all the
following experiments conducted, and are not related to a
specific database.

1) DETERMINATION OF FM PARAMETERS
In the process of FM, we have four parameters to be deter-
mined, which are m, f0, k , and b. Since m and f0 are interre-
lated, and k and b are interrelated, we perform orthogonal
experiments on m and f0, and k and b on three databases.
We use the Spearman Rank-Order Correlation Coefficient
(SROCC) to evaluate the performance of the objective
assessment [56]. The relationship between parameters and
performance index SROCC is shown in Fig. 6. Fig. 6 shows
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FIGURE 7. Fitting the similarity indices with DMOS. (a) FMIQA obtained using Rx , SROCC = 0.9487, (b) FMIQA
obtained using Ry , SROCC = 0.9581, (c) FMIQA obtained using Rxx , SROCC = 0.9598, (d) FMIQA obtained
using Rxy , SROCC = 0.9587, and (e) FMIQA obtained using Ryy , SROCC = 0.9636.

that the performance of these parameters in different
databases is slightly different, but the difference is very small.
In order to make the metric more universal, we have made
a compromise on the determination of the parameters on
different databases, and finally we set m = 3, f0 = 0.05,
k = 0.4, and b = 0.

TABLE 1. SROCC/RMSE values comparison with different screening
termination condition parameter SD on LIVE database.

2) DETERMINATION OF THE SCREENING TERMINATION
CONDITION PARAMETER
When we perform the BEMD, the value of the screening
termination condition parameter SD needs to be determined.
The criterion for the termination of the screening process
is a theoretical criterion similar to the Cauchy convergence
criterion, which usually sets the value of SD between 0.2 and
0.3. That is, the screening process can be completed when SD
is less than the threshold [57]. In this paper, we set SD = 0.3.
To verify the rationality of this parameter selection, we com-
pare the performance of themetric by SROCC andRootMean
Squared Error (RMSE). In Table 1 we list the SROCC/RMSE
performance indices obtained by applying the FMIQA index
to the LIVE database when different SD is taken. Table 1 indi-
cates that the performance of the metric is not sensitive to the

SD value. In particular, when SD is between 0.28 and 0.30,
the performance is no longer optimized. At the same time,
the greater the SD, the less the number of screening, and the
faster the screening rate. Therefore, we set SD as 0.3, taking
performance and efficiency of the metric into account.

3) DETERMINATION OF SIMILARITY INDEX WEIGHT
In the experiment, we fit the similarity indices Si (i =
1, 2, . . . , 5) of each feature map with DMOS, and get five
scatter plots, as shown in Fig. 7.

Fig. 7 shows that the SROCC values obtained by fitting
the DMOS and the similarity indices are different. We use
SROCCi
(i = 1, 2, . . . , 5) as the weight of the similarity
indices Si (i = 1, 2, . . . , 5), that is, wi = SROCCi
(i = 1, 2, . . . , 5). Eq. (3) can be defined as:

FMIQA =

∑5
i=1 SROCCi · Si∑5
i=1 SROCCi

(9)

where SROCCi (i = 1, 2, 3, 4, 5) are determined as:
SROCC1 = 0.9487, SROCC2 = 0.9581, SROCC3 = 0.9598,
SROCC4 = 0.9587, and SROCC5 = 0.9636.

B. PERFORMANCE ANALYSIS
1) COMPARISON OF INDICES
Table 2 lists the SROCC values of FMIQA index and other
FR- and NR-IQA metrics for noise-distorted images on
the LIVE, CSIQ, and TID2013 databases, where PSNR,
SSIM [16], GMSD [58], GSSIM [59], MS-SSIM [60],
RFSIM [51], and FSIM [61] are classical FR-IQA metrics,
BLIINDSII [45], FRIQUEE [46], CORNIA [62], NIQE [63],
QAC [64], IL-NIQE [65], and FMIQA proposed in this paper
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FIGURE 8. Scatter plots of predicted quality scores on LIVE database. From left to right, top to bottom are the (a) PSNR,
(b) SSIM, (c) FSIM, (d) BLIINDSII, (e) FRIQUEE, and (f) FMIQA.

TABLE 2. SROCC of different metrics for noise-distorted images on
different databases (Italicized metrics are NR-IQA metrics; others are
FR-IQA metrics).

are NR-IQA metrics. The top three performance NR-IQA
indices are highlighted in bold. We can see that, FMIQA
index has good performance on all three databases, which
performs better than some of the FR-IQA metrics and
most NR-IQA metrics mentioned in this paper. Results of
CORNIA [62] and QAC [64] are taken from the original
papers.

Fig. 8 shows the scatter plots of six different IQA metrics
for noise distorted images in LIVE database. It is easy to see
that BLIINDSII [45] and FRIQUEE [46] are not monotonic

when the image is highly distorted (DMOS is about
80 ∼ 110), and the scatter plot fitted by FMIQA index is
evenly distributed in the whole coordinate system and has a
strong linear relationship with DMOS, which further proves
the robust performance of FMIQA index.

2) STABILITY TEST
A stable NR-IQA metric should be a monotonic function
of the image distortion level. However, when the degree of
distortion is high, some of the metrics lose stability, such
as BLIINDSII [45] and FRIQUEE [46]. In order to com-
pare the stability between the proposed FMIQA and other
NR-IQAmetrics, we select 6 noise-distorted images from the
LIVE database. Fig. 9a, 9b, 9c, 9d, 9e, 9f are noise-distorted
images in different degrees, the DMOS values of which are
different. We calculate the objective values of the distorted
images using FMIQA and other metrics. The results can be
found in Fig. 9.

Assessment results indicate that when the degree of dis-
tortion is high, the BLIINDSII and FRIQUEE metrics are no
longer monotonic, and the scores of the images with different
DMOS values are the same. However, when the degree of
distortion is high, FMIQA still has the monotonicity and with
the larger DMOS value, the higher the IQA score, which
means the higher degree of distortion. Consequently, FMIQA
is more stable than the NR-IQA metrics BLIINDSII and
FRIQUEE mentioned in this paper.

In order to illustrate the stability of the metric more intu-
itively, we plot the function curves between DMOS and
BLIINDSII, FRIQUEE, and FMIQA according to Fig. 9.
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FIGURE 9. Stability test results on LIVE database. (a) img60, DMOS = 97.6570, BLIINDSII = 99, FRIQUEE = 4.981, FMIQA = 0.9870, (b) img113,
DMOS = 97.9247, BLIINDSII = 99, FRIQUEE = 4.981, FMIQA = 0.9876, (c) img137, DMOS = 102.0154, BLIINDSII = 99, FRIQUEE = 4.981,
FMIQA = 0.9892, (d) img33, DMOS = 102.7237, BLIINDSII = 99, FRIQUEE = 4.981, FMIQA = 0.9905, (e) img87, DMOS = 105.1017,
BLIINDSII = 99, FRIQUEE = 4.981, FMIQA = 0.9911, and (f) img20, DMOS = 111.7747, BLIINDSII = 99, FRIQUEE = 4.981, FMIQA = 0.9955.

FIGURE 10. The function curves between DMOS and BLIINDSII, FRIQUEE,
and FMIQA according to Fig. 9. In the case of highly distorted images, the
proposed FMIQA keeps good monotonicity while BLIINDSII and FRIQUEE
does not vary with the DMOS.

As shown in Fig. 10 (the BLIINDSII and FRIQUEE indices
are normalized), in the case of highly distorted images, the
proposed FMIQA keeps good monotonicity while BLIIND-
SII and FRIQUEE do not vary with the DMOS. It validates
that FMIQA achieves good prediction performance.

V. CONCLUSIONS
IQA for noise-distorted images is an important prob-
lem in the field of image processing analysis. In this
paper, an effective and novel NR-IQA metric for assessing

noise-distorted images named FMIQA index is proposed.
FMIQA combines BEMD and Riesz transform with appro-
priate application of CSF curve, which takes the sensitive
features of HVS into account. In order to obtainmore accurate
image boundary frequency information, we propose a new
method: frequency mapping. The metric is tested on LIVE,
CSIQ, and TID2013 databases. The scatter plots and stabil-
ity test experiments are carried out on LIVE database. The
experimental results show that the FMIQA index has good
performance in assessing the noise-distorted images.
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