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ABSTRACT We derive closed-form expressions for the achievable rates of a buffer-aided full-
duplex (FD) multiple-input multiple-output Gaussian relay channel. The FD relay still suffers from residual
self-interference (RSI) after the application of self-interference mitigation techniques. We investigate both
cases of a slow-RSI channel where the RSI is fixed over the entire codeword, and a fast-RSI channel where
the RSI changes from one symbol duration to another within the codeword. We show that the RSI can be
completely eliminated in the slow-RSI case when the FD relay is equipped with a buffer while the fast
RSI cannot be eliminated. For the fixed-rate data transmission scenario, we derive the optimal transmission
strategy that should be adopted by the source node and relay node to maximize the system throughput.
We verify our analytical findings through simulations.

INDEX TERMS Buffer, full-duplex, relay, MIMO, achievable rate, precoding.

I. INTRODUCTION
Relay nodes play an important role in wireless commu-
nications due to their ability to increase the data rate
between a pair of communicating nodes [1]. Relays can
operate in three different modes, namely, half-duplex (HD)
mode [2]–[4], full-duplex (FD) mode [5]–[11], or hybrid
HD/FD mode [12]–[14]. In the FD mode, data transmission
and reception at the FD relay node occur simultaneously and
over the same frequency band. However, due to the simul-
taneous reception and transmission, FD relays are impaired
by loopback self-interference (LSI), which occurs due to
energy leakage from the transmitter radio-frequency (RF)
chain into the receiver RF chain [12], [15]–[17]. LSI can
be suppressed by up to 120 dB in certain scenarios, as dis-
cussed in [18]. However, the LSI cancellation process is never
perfect, thereby leaving some non-negligible residual self-
interference (RSI). In many modern communication systems
such as WiFi, Bluetooth, and Femtocells, the nodes’ trans-
mit power levels and the distances between communicating
nodes have been decreasing. In such scenarios, the high

computation capabilities of modern terminals enable efficient
implementation of the FD radio technology [19]–[21]. In the
HD mode, transmission and reception occur over orthogonal
time slots or frequency bands. As a result, HD relays do not
suffer from RSI, but at the cost of wasting time and frequency
resources. Hence, the achievable data rates of an FD relaying
system might be significantly higher than that of an HD
relaying system when the RSI has low power. In the hybrid
HD/FD mode [14], the relay can operate in either HD mode
or FD mode to maximize the achievable rate. The key idea
is to dynamically switch between the two modes based on
the RSI power level. When the RSI power level is high, the
HD mode can achieve higher rates. On the other hand, when
the RSI power level is low, the FD mode can result in much
higher data rates.

Integrating multiple-input multiple-output (MIMO) tech-
niques with relaying further improves the communication
performance and data rates [22], [23]. Although most pre-
vious research efforts have focused on MIMO-HD relay-
ing, recent research has also investigated the performance
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of MIMO-FD relaying [24]–[26]. MIMO techniques provide
an effective means to mitigate the RSI effects in the spatial
domain [24]–[26]. With multiple transmit or receive antennas
at the FD relay node, data precoding at the transmit side and
filtering at the receive side can be jointly optimized to miti-
gate the RSI effects. Minimum mean square error (MMSE)
and zero forcing (ZF) are two widely adopted criteria in
the literature for the precoding and decoding designs [27].
ZF aims to completely cancel out the undesired self-
interference signals and results in an interference-free chan-
nel at the relay node’s receive side. Although ZF normally
results in a sub-optimal solution to the achievable per-
formance (i.e., data rate and bit error rate), its perfor-
mance is asymptotically optimal in the high signal-to-noise
ratio (SNR) regime. On the other hand, MMSE improves the
performance of the precoder/decoder design compared to ZF
since it takes into account the noise impact at the cost of a
higher complexity. However, due to the implementation sim-
plicity and optimality in the high-SNR regime, ZF has been
proposed as a useful design criterion to completely cancel
the RSI and separate the source-relay and relay-destination
channels.

Assuming there is no processing delay at the relay, the
optimal precoding matrix for a Gaussian FD amplify-and-
forward (AF) relay that maximizes the achievable rate under
an average power constraint is studied in [28]. In this case,
the design approach and the resulting precoding solution are
similar to the HD case. The joint precoding and decoding
design for an FD relay is studied in [16], [29], where both
ZF and MMSE solutions are discussed. The ZF solution used
in [17] and [30] and most early works use a conventional
approach based on the singular value decomposition (SVD)
of the RSI channel. The main drawback of this approach is
that the ZF solution only exists given that the numbers of
antennas at the source, FD relay and the receiver satisfy a cer-
tain dimensionality condition. To overcome this limitation,
[25] adopts an alternative criterion and proposes to maximize
the signal-to-interference ratios between the power of the
useful signal to the power of RSI at the relay input and output,
respectively. Conventional ZF precoding and decoding are
designed based on the singular vectors of the RSI channels.
In [30], a joint design of ZF precoding and decoding is
proposed to fully cancel the RSI at the relay, taking into
account the source-relay and relay-destination channels.
In [8] and [31], the precoding and decoding vectors are jointly
optimized to maximize the end-to-end performance.

Buffer-aided schemes for decode-and-forward (DF)-FD
Gaussian relay channels were proposed in [14], [33],
and [34]. Zlatanov et al. [32] assumed that the RSI at
the FD relay is negligible which is not realistic.
Phan and Le-Ngoc [33] assumed that the RSI is fixed and
does not vary with time. This may or may not be the case
depending on system parameters and the employed self-
interference cancellation techniques [16], [17]. In addition,
Phan and Le-Ngoc [33] do not investigate the case when
both the source and the relay transmit with a fixed rate in

all time slots; a scenario which is investigated in this paper.
Riihonen et al. [12] and Khafagy et al. [14] proposed a hybrid
HD/FD scheme to maximize the throughput of a relaying sys-
tem for fixed-rate data transmissions. However, the authors
neglected the fact that the relay knows its transmitted data
signal and can do better in mitigating its impact as will be
fully investigated in this paper.

Most of the aforementioned research assumed that the
RSI is known but the data symbols are unknown. The first
assumption is impractical since, by definition, the RSI is the
remaining interference after applying all kinds of practically
feasible interferencemitigation techniques. Plausibility of the
assumption that the data symbols are unknown depends on the
operating scenario. For instance, in DF-FD relaying, the relay
needs to know the entire codeword to know the transmitted
sequence. Hence, it makes sense to assume that the symbols
are unknown until the entire codeword is decoded. However,
if we assume that the relay has a buffer to store the data
received from the source node, the relay will have its own
data which is possibly different from the data that is currently
received from the source. Hence, an FD mode can be applied
and the entire transmitted sequence is known a priori by the
relay.

In this paper, we consider a buffer-aided MIMO-FD Gaus-
sian relay channel. Since the relay has a buffer, it knows
the codewords that it transmits. Given this information, the
contributions of this paper are summarized as follows
• We derive closed-form expressions for the achievable
rates of the source-relay and relay-destination links
when the RSI is changing slowly or quickly.

• We show that the buffer can help in completely canceling
the impact of RSI for the case of slow RSI, when the
buffer is non-empty. The maximum achievable rate of
the source-relay link under the FD mode is that of the
source-relay link without interference.

• For fast RSI, we show that the achievable rate of
the source-relay link is degraded due to RSI and the
degradation is quantified analytically. When the optimal
precoder that maximizes the achievable rate of the relay-
destination link is used, we derive a closed-form expres-
sion for the achievable rate of the source-relay link.

Notation: Unless otherwise stated, lower- and upper-
case bold letters denote vectors and matrices, respectively.
IN denotes the identity matrix whose size is N × N . CM×N

denotes the set of all complex matrices of size M × N .
0M×N denotes the all-zero matrix with sizeM ×N . (·)>, (·)∗,
and (·)H denote transpose, complex conjugate, and Hermi-
tian (i.e., complex-conjugate transpose) operations, respec-
tively. | · | denotes the absolute of the value in brackets.
CN (x, y) denotes a complex circularly-symmetric Gaussian
random variable with mean x and variance y. E{·} denotes
statistical expectation.⊗ is the Kronecker product. diag = {·}
denotes a diagonal matrix with the enclosed elements as its
diagonal elements. Trace{·} denotes the sum of the diagonal
entries of the matrix enclosed in braces. vec{·} converts the
input M × N matrix into a column vector of size MN × 1.
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II. SYSTEM MODEL AND MAIN ASSUMPTIONS
We consider a dual-hop DF-FD MIMO Gaussian relay chan-
nel, where a multi-antenna source node communicates with
its multi-antenna destination node through an FD multi-
antenna relay node, as shown in Fig. 1. Each node is equipped
with M antennas.1 A direct link between the source and its
destination (i.e., source-destination link) does not exist due to
shadowing and large distances between them [14], [32], [33].
We assume that the relay node is equipped with a finite-
size buffer/queue to store the incoming data traffic from the
source node. We denote the buffer at the relay node as QR
and its maximum size as Qmax. The source node is always
backlogged with data to transmit. It is assumed that the time
is partitioned into discrete equal-size time slots of T seconds,
where the duration of one time slot is equal to the channel
coherence time and the channel bandwidth is W . We use
subscripts S, R, and D to denote the source node, relay node,
and destination node, respectively.

FIGURE 1. The considered dual-hop network. In the figure, we denote the
RSI coefficient matrix by HRR ∈ CM×M in the slow-RSI case and by
H̃RR ∈ CnM×nM in the fast-RSI case. The two matrices are different, since
in the slow-RSI case, the RSI matrix remains constant over the entire
codeword, while in the fast-RSI case, the RSI matrix changes from one
symbol duration to another within the codeword. HSR ∈ CM×M and
HRD ∈ CM×M are the channel matrices of the source-relay link and
the relay-destination link, respectively.

Each wireless link exhibits a quasi-static fading where a
channel matrix between two nodes remains unchanged within
the duration of one time slot and changes independently from
one time slot to another. We consider slow-RSI and fast-
RSI scenarios, where the RSI is fixed over the entire code-
word or changes from one symbol duration to another within
the codeword, respectively.2 We denote the RSI coefficient
matrix by HRR in the slow-RSI case and by H̃RR in the
fast-RSI case. The elements of the RSI coefficient matrices
are independent and identically distributed (i.i.d.) zero-mean
circularly-symmetric Gaussian-distributed random variables
with variance σ 2

RR [16], [17], [34], [35]. Each link is also cor-
rupted by an additive white Gaussian noise (AWGN) process
with zeromean and variance κm. It is assumed that the average
transmit power at Node m ∈ {S,R} is Pm. We assume that

1For simplicity of presentation, we assume equal number of antennas at
all nodes. However, the same analysis can be easily extended to the scenario
of different number of antennas at all nodes.

2Typically, slow-RSI is assumed in the literature (e.g. [14], [32]), which
represents an optimistic assumption and the best-case scenario in sys-
tem design. However, in this paper, we investigate both scenarios of
slow-/fast-RSI.

the source node employs an equal-power allocation scheme.
For notation simplicity, unless otherwise stated, we drop the
time slot (coherence time) index from the equations and
use only the symbol duration index. However, it is worth
mentioning that the channels between the source and the relay
and between the relay and the destination are constant within
each coherence time and changes independently from one
coherence time to another.

The RSI channel is time-varying even when the commu-
nication links do not exhibit fading [16], [34], [36]–[38].
The RSI variations are due to the cumulative effects of vari-
ous distortion sources including noise, carrier frequency off-
set, oscillator phase noise, analog-to-digital/digital-to-analog
conversion (ADC/DAC) imperfections, in-phase/quadrature
(I/Q) imbalance, imperfect channel estimation, etc [16], [34],
[36]–[38]. These impairments and distortions have a signifi-
cant impact on the RSI channel due to the very small distance
between the transmitter-end and the receiver-end of the
LSI channel. Moreover, the variations of the RSI channel are
random and thereby cannot be accurately estimated at the
FD node [16], [34], [36]–[38]. The statistical properties of the
RSI variations are dependent on the hardware configuration
and the adopted LSI suppression techniques. In [34], the
RSI is assumed to be fixed/constant during the transmis-
sion of a codeword comprised of many symbols. Hence, the
RSI model proposed in [34], and most of the papers in the
literature, captures only the long-term, i.e., codeword-by-
codeword, statistical properties of the RSI channel. However,
the symbol-by-symbol RSI variations are not captured by the
model proposed in [34] since these variations are averaged
out. Nevertheless, for a meaningful information-theoretical
analysis, the symbol-by-symbol variations of the RSI should
be taken into consideration. The statistics of the RSI varia-
tions affect the achievable rates of the considered FD Gaus-
sian relay channels. In this paper, we derive the achievable
rates of the considered Gaussian relay channels for both
the best-case RSI model (slow-RSI case) and the worst-case
RSI model (fast-RSI case). In addition, the slow-RSI model is
suitable for the cases of fixed-rate transmission andwhen ana-
lyzing the system based on average performance [38]. Hence,
it will be adopted when we study the fixed-rate transmission
scenario in Section V.

In the following sections, we derive the closed-form
expressions for the achievable rate of the source-relay link
for slow-RSI and fast-RSI cases.

III. SLOW-RSI CASE
In this case, the RSI varies across time slots (i.e., from one
coherence time duration to another), but remains fixed within
each time slot.

A. ACHIEVABLE RATES DERIVATIONS
The achievable rates of the communication links in buffer-
aided relay networks change based on the relaying queue state
(i.e., empty or non-empty). That is, if the relay’s queue is
empty, FDmode operation is not possible since, as mentioned
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in [39], the practicality of DF-FD relaying is questionable
when the relay does not have the entire codeword prior to data
transmission. Hence, we simply assume that, when the relay
buffer is empty, it operates in an HDmode and it receives data
of the source node. Assume that the source node transmitsM
independent codewords of length n, n > M . The data matrix
transmitted by the source node, denoted by XS ∈ Cn×M , is
given by

XS =


XS,1(1) XS,2(1) . . . XS,M (1)
XS,1(2) XS,2(2) . . . XS,M (2)
...

...
...

...

XS,1(n) XS,2(n) . . . XS,M (n)

, (1)

where the elements of XS are assumed to be i.i.d. Gaus-
sian circularly-symmetric random variables with zero mean
and variance P̃S = PS/M (i.e., variance per data stream).
We assume Gaussian data signals at the source and relay
nodes as in, e.g., [14], [16], [17], [32], [34], [35] and the
references therein. The received signal at the relay is given
by

YR = XSH>SR + εεεR, (2)

where εεεR ∈ Cn×M is the AWGN noise matrix at the relay,
and HSR ∈ CM×M is the channel matrix between the source
node and the relay node with element (v, `) in HSR being the
channel coefficient between the source’s v-th antenna and the
relay’s `-th antenna. Hence, the achievable rate of the source-
relay link is given by

IHD
SR =

M∑
v=1

log2

(
1+

P̃S
κR
ηv

)
, (3)

where ηv is the v-th eigenvalue of HSRHH
SR. The expression

in (3) can be deduced from Appendix A by setting the relay’s
data precoding matrix to zero (i.e.,999 = 0M×M ).
If the relay’s queue is non-empty, the relay transmits a

codeword that is different from the source’s codeword and
the FD mode operation is possible. The received signal at the
relay’s receiver is given by

YR = XSH>SR + XR999H>RR + εεεR, (4)

where XR ∈ Cn×M is the data matrix transmitted by the relay
node and has the same structure as XS in (1) but with the
codewords transmitted by the relay which are independent
from those transmitted by the source node. The elements of
XR are i.i.d. with 1

nE{vec{XR}
Hvec{XR}} = PR and, hence,

a realization of XR has a rank equal to M with probability
one. The relay node applies the data precoding matrix 999 ∈
CM×M to its data vectors, where Trace{999999H

} = M . Matrix
HRR ∈ CM×M is the RSI coefficient matrix. Element (v, `)
in H>RR represents how transmission from the relay’s `-th
antenna impacts the relay’s received signal at its v-th antenna.
We collect the elements of the matrix YR in a vector to
compute the information rate (i.e., mutual information rate)

under Gaussian signaling as follows [40]

IFD
SR =

1
n

[
log2 det

(
E
{
vec {YR} vec {YR}

H
})

− log2 det
(
E
{
vec

{
XR999H>RR + εεεR

}
×

(
vec

{
XR999H>RR + εεεR

})H})]
, (5)

where

vec{YR} = (HSR ⊗ In) vec{XS} + (IM ⊗ XR999) vec{H>RR}

+ vec{εεεR}, (6)

by exploiting the following property of vec{.}

vec{AB} =
(
B> ⊗ In

)
vec{A} = (IM ⊗ A) vec{B}, (7)

where A ∈ Cn×l and B ∈ Cl×M .
Proposition 1: The information rate of the source-relay

link under Gaussian signaling is given by

IFDSR =
1
n

M∑
v=1

(
log2 det

(
P̃SηvIn+σ 2

RRXR999999
HXH

R + κRIn
)

− log2 det
(
σ 2
RRXR999999

HXH
R + κRIn

))
, (8)

where ηv is the v-th eigenvalue of HSRHH
SR.

Proof: See Appendix A. �
Proposition 2: The precoder that maximizes the infor-

mation rate of the source-relay link under Gaussian relay
channel, which is referred to as the I FD

SR -maximizing pre-
coder, is rank-1.

Proof: See Appendix B. �
In the next two propositions, we present a closed-

form expression for the achievable information rate of the
source-relay link when the relay uses the rank-1 precoder
(i.e., IFD

SR -maximizing precoder) in Proposition 2 and
the IFD

RD-maximizing precoder derived in Appendix C,
respectively.
Proposition 3: Letting 999 =

√
MqqH , where q ∈ CM×1

with qHq = 1, and substituting with999 =
√
MqqH into (8),

the information rate of the source-relay link under the slow-
RSI scenario is given by

IFDSR =
M∑
v=1

log2

(
1+

P̃S
κR
ηv

)

+
1
n

M∑
v=1

(
log2

(
1+

σ 2
RR

(P̃Sηv + κR)
qHXH

RXRq

)

− log2

(
1+

σ 2
RR

κR
qHXH

RXRq

))
, (9)

where q is the normalized eigenvector corresponding to the
minimum eigenvalue of XH

RXR.
Proof: See Appendix D. �

Proposition 4: When the optimal precoder that maximizes
the information rate of the relay-destination channel derived
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in Appendix C is used by the relay node, the information rate
expression of the source-relay link can be rewritten as

IFDSR =
M∑
v=1

log2(1+
P̃Sηv
κR

)

+
1
n

M∑
v=1

(
log2 det

(
IM +

σ 2
RR

P̃Sηv + κR
EEHXH

RXR

)

− log2 det

(
IM +

σ 2
RR

κR
EEHXH

RXR

))
, (10)

where 999 = EQH
RD is full rank with E denoting a diagonal

matrix such that EEH contains the power fractions assigned
to each data stream and Trace{99H

} = M.
Proof: See Appendix E. �

The first term in (10) is the achievable rate of the source-
relay channel when there is no RSI.
Proposition 5: When n goes to infinity, the achievable

rate of the source-relay channel in the slow-RSI case is
given by

IFDSR =
M∑
v=1

log2

(
1+

P̃S
κR
ηv

)
, (11)

which is the achievable rate of the source-relay channel with
no interference.

Proof: When n→∞, the diagonal elements of 1
nX

H
RXR

in (10) converge to PR and the off-diagonal elements scaled
by 1/n converge to zero almost surely [41]. Thus,

IFD
SR = lim

n→∞

1
n

M∑
v=1

(
n log2

(
1+

P̃S
κR
ηv

)

+

M∑
`=1

log2

(
1+

σ 2
RR

P̃Sηv + κR
nPR|E`|2

)

−

M∑
`=1

log2

(
1+

σ 2
RR

κR
nPR|E`|2

))
, (12)

where E` is the `-th element on the main diagonal of E. The
last two terms go to zero for finiteM (n� M ). Thus, we get
the expression in (11). �
The intuition behind the result in Proposition 5 is that,

since the relay knows the transmitted codeword and the
RSI channel is fixed (but unknown) over the entire codeword,
the samples of the received self-interference at the relay are
correlated additive Gaussian noise random variables where
the randomness of the received signal is due to the random-
ness of the RSI channel (since the data is known at the relay).
Since all the codeword symbols are correlated, the relay can
exploit this correlation over the entire codeword to cancel the
RSI impact.

The result in Proposition 5 is promising since it implies
that, regardless of the precoder employed at the relay,
the achievable rate of the source-relay channel under

FD operation equals to the rate of the source-relay chan-
nel with no interference. Hence, if the relay uses the
precoder that maximizes the achievable rate of the relay-
destination link (i.e., IFD

RD-maximizing precoder derived
in Appendix C), the achievable rates of the two links
(i.e., source-relay and relay-destination links) will be simul-
taneously maximized. Accordingly, the channel capacities of
the two links (source-relay and relay-destination links) can be
achieved.

A SPECIAL CASE- SINGLE-INPUT SINGLE-OUTPUT (SISO)
For the SISO case where M = 1, the achievable rate of the
source-relay link for the slow-RSI case is given by

IFD
SR

∣∣∣
M=1
= log2

(
1+

P̃S
κR
ηv

)
= log2

(
1+

P̃S
κR
|hSR|2

)
(13)

where hSR is the channel coefficient between the source and
the relay in case of SISO. Note that ηv is the v-th eigenvalue
ofHSRHH

SR which is the channel gain between the source and
the relay (i.e., |hSR|2) in case of SISO.

IV. FAST-RSI CASE
In the case of fast-RSI, the RSI changes independently from
one symbol duration to another. That is, each symbol within
the codeword experiences a different RSI realization.

A. ACHIEVABLE RATES DERIVATIONS
Assuming M independent codewords transmitted by the
relay node, the data matrix, denoted by X̃R ∈ Cn×nM , is
given by

X̃R =


XR(1) 0 . . . 0

0 XR(2) . . . 0
...

...
. . .

...

0 0 . . . XR(n)

 , (14)

where XR(j) = [XR,1(j) XR,2(j) . . . XR,M (j)] ∈ C1×M

is the data symbols vector transmitted by the relay at the
jth symbol duration. The RSI coefficient matrix, denoted by
H̃RR ∈ CnM×M , is given by

H̃RR =


H̃>RR(1)

H̃>RR(2)
...

H̃>RR(n)

 , (15)

where each block H̃RR(j) is M ×M .
Hence, the received signal vector at the relay’s receiver

YR = XSH>SR + X̃R9̃H̃RR + εεεR, (16)

where εεεR ∈ CN×M is the noise matrix at the relay and
9̃99 ∈ CnM×nM is the data precoding matrix used at the
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relay node, H̃RR ∈ CnM×nM is the RSI channel matrix.
Matrix 9̃99 ∈ CnM×nM has the block diagonal structure
9̃99 = diag{888,888, . . . ,888}, where888 is an M ×M matrix with
Trace{888888H

} = M .
Proposition 6: The information rate of the source-relay

link for the fast-RSI case is given by

IFDSR

=
1
n

M∑
v=1

(
log2 det

(
P̃SηvIn + σ 2

RRX̃R9̃
(
X̃R9̃

)H
+ κRIn

)

− log2 det
(
σ 2
RRX̃R9̃

(
X̃R9̃

)H
+ κRIn

))
. (17)

Proof: See Appendix F. �
Using the same approach as in the slow-RSI case to

derive the precoder that maximizes the information rate of
source-relay link (i.e., I FD

SR -maximizing precoder), if 9̃R =

diag{81,82, . . . ,8N }, then choosing the columns of 8k to

be linear combinations of the columns of
(
IM −

X∗R(j)X
>
R (j)

‖XR(j)‖2

)
null the relay’s transmission at the relay’s receiver. In other
words, although this precoder cancels the relay’s transmission
from the relay’s receive side, but it also cancels the trans-
missions from everywhere else. Thus, this precoder reduces
the achievable rate of the relay-destination link to zero,
and effectively makes the relay operate as an HD terminal.
In the sequel, we study the achievable rates of the
source-relay and relay-destination links, respectively,
when the precoder 8 follows the IFD

SR -maximizing and
I FD
RD -maximizing precoder designs derived for the slow-

RSI case. Moreover, we study the asymptotic case
as n→∞.

Note that the IFD
SR -maximizing precoder is not

necessarily the precoder that also maximizes the information
rate of the relay-destination link. The optimal precoder at the
relay should be designed based on a selected performance
criterion (e.g., maximum rate between the two information
rates of the communications hops, minimum end-to-end bit-
error-rate probability, maximum sum-rate of the two commu-
nication hops, etc). For example, if the goal is to maximize
the minimum between the information rates of the two hops
(i.e. maximize min{IFD

SR , I
FD
RD}), we need to derive the opti-

mal precoder based on that. That is, we need to find the
optimal precoder that maximizes IFD

RD . However, this pre-
coder is difficult to obtain analytically even for M = 2.
To gain some insights, we provide a heuristic solu-
tion which is realized as follows. The relay uses the
two precoders: IFD

SR -maximizing and IFD
RD-maximizing pre-

coders. Then, it computes the minimum achievable rates
of the two hops under each case. After that, the relay
selects the precoder with the highest minimum achievable
rate.
Proposition 7: The achievable rate of the source-relay

link for the fast-RSI case, when the relay uses the
IFDSR -maximizing precoder of the slow-RSI case, which has

the form888 =
√
MqqH , is given by

IFDSR =
M∑
v=1

log2

(
1+

P̃S
κR
ηv

)

+

M∑
v=1

E

log2
1+

σ 2RR
κR

1+ P̃S
κR
ηv

|XR(j)q|2


− log2

(
1+

σ 2
RR

κR
|XR(j)q|2

)}
. (18)

Proof: See Appendix G. �
The next proposition considers the case where the relay

uses the precoder that maximizes the information rate of the
relay-destination link (i.e., the IFD

RD-maximizing precoder).
Proposition 8: The achievable rate of the source-relay link

for the fast-RSI case, when the relay uses the IFDRD -maximizing
precoder of the slow-RSI, which has the form888 = EQ∗RD, is
given by

IFDSR =
M∑
v=1

log2

(
1+

P̃S
κR
ηv

)

+

M∑
v=1

(
E

log2
1+

σ 2RR
MκR

∑M
i=1 |XR,i(j)|

2

1+ P̃S
κR
ηv


−E

{
log2

(
1+

σ 2
RR

MκR

M∑
i=1

|XR,i(j)|2
)})

. (19)

Proof: See Appendix H. �
For the case of equal power allocation to data

streams, when M is large, we can approximate X (j) ≈∑M
i=1 |XR,i(j)|

2
= MPR from the strong law of large numbers.

Hence, the achievable rate of the source-relay link is

IFD
SR ≈

M∑
v=1

log2

1+
P̃S
κR
ηv

1+ σ 2RRPR
κR

 . (20)

A SPECIAL CASE- SISO
Let hRD denote the channel coefficient of the relay-
destination link. Since n is very large, from the strong law
of large numbers, 1

n

∑n
i=1 log2

(
1+ γq|xR(i)|2

)
will almost

surely converge to E
{
log2

(
1+ γq|xR(i)|2

)}
where γq ∈

{γ1, γ2} with γ1 = 1
κR+P̃S |hSR|2

and γ2 = 1
κR
. Since |xR(i)|2

is an exponentially-distributed random variable, the average
of log2

(
1+ γq|xR(i)|2

)
is given by

E
{
log2

(
1+ γq|xR(i)|2

)}
=

∫
∞

0
log2

(
1+ γq|xR(i)|2

)
d |xR(i)|2

=

exp
(

1
γqσ

2
RRPR

)
ln(2)

Ei

(
1

γqσ
2
RRPR

)
, (21)

where Ei(x) =
∫
∞

x
exp(−u)

u du is the exponential inte-
gral. Substituting in the information rate expression of the
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source-relay link, we have

IFD
SR

∣∣∣
M=1
= log2

(
1+ |hSR|2

P̃S
κR

)

+
1

ln(2)
exp

(
1

γ1σ
2
RRPR

)
Ei

(
1

γ1σ
2
RRPR

)

−
1

ln(2)
exp

(
1

γ2σ
2
RRPR

)
Ei

(
1

γ2σ
2
RRPR

)
.

(22)

The achievable rate of the relay-destination link is given by

IFD
RD

∣∣∣
M=1
= IHD

RD

∣∣∣
M=1
= log2

(
1+ |hRD|2

PR
κD

)
. (23)

V. A CASE STUDY: FIXED-RATE TRANSMISSION
In this section, we study the fixed-rate transmission case
where the source and relay transmit with a fixed rate
of R bits/sec/Hz. Since we assume fixed-rate transmissions
under queueing constraints, the RSI channel is assumed to be
slow-varying to capture only the long-term, i.e., codeword-
by-codeword, statistical properties [38]. The relaying queue
can be modeled as a birth-death process since only one packet
is decoded at the relay, one packet is transmitted by the relay,
or one packet is decoded and one packet is transmitted by the
relay at the same time.

When the relaying queue is empty, the probability that the
source packet is correctly decoded and stored at the relay
(i.e., the queue state transits from state 0 to state 1) is given
by

a0 = Pr
{
IHD
SR ≥ R

}
. (24)

If the relaying queue is non-empty, the optimal transmission
scheme is that both the source and the relay transmit data
simultaneously. This is because the two links (i.e., source-
relay and relay-destination links) are completely independent
and separable because, when RSI is slow and n → ∞,
the self-interference at the relay is removed and the source-
relay channel is not affected by relay transmissions. The
probability that the queue transits from state ` > 0 to state
`+1, denoted by a`, is equal to the probability that the source-
relay link is not in outage and that of the relay-destination is
in outage. Hence, a` is given by

a` = a = Pr
{
IFD
SR ≥ R

}
Pr
{
IFD
RD < R

}
, (25)

where ` > 0 and it denotes the state of the relaying queue
(i.e., number of packets at the relaying queue) and IFD

RD is
the achievable rate of the source-destination link which is
derived in Appendix C. Similarly, the probability that the
queue transits from state 0 < ` < Qmax to state `−1, denoted
by b`, is equal to the probability that the source-relay link is
in outage while the relay-destination link is not. Hence, b` is
given by

b` = b = Pr
{
IFD
RD ≥ R

}
Pr
{
IFD
SR < R

}
. (26)

When the relaying buffer is full, the transition probability,
denoted by bQmax , is given by

bQmax = Pr
{
IFD
RD ≥ R

}
, (27)

since the relay cannot accept any new packets before deliver-
ing the ones stored in its buffer.

Analyzing the relaying queue Markov chain as in [4], the
local balance equations are given by

βνaν = βν+1bν+1, 0 ≤ ν ≤ Qmax − 1, (28)

where βν denotes the probability of having ν packets in the
relaying queue. Using the balance equations recursively, the
stationary distribution of βν is given by

βν = β0

ν−1∏
%=0

a%
b%+1

, (29)

where β0 =
(
1+

∑Qmax
ν=1

∏ν−1
%=0

a%
b%+1

)−1
is obtained using the

normalization condition
∑Qmax
ν=0 βν = 1.

By using the normalization condition, we get

βν = β0

ν−1∏
%=0

a%
b%+1

=


β0
a0
a
aν

bν
, ν < Qmax

β0
a0b

abQmax

aQmax

bQmax
, ν = Qmax.

(30)

The probability of the queue being empty is given by

β0 =

(
1+

a0
a

Qmax−1∑
ν=1

(a
b

)ν
+

b
bQmax

(a
b

)Qmax

)−1

=

(
1+

a0
b

1−
( a
b

)Qmax−1

1−
( a
b

) +
a0b

abQmax

(a
b

)Qmax
)−1

.

(31)

If the queue is unlimited in size (i.e., Qmax → ∞), a < b
is a necessary condition for the queue stability and for the
steady-state solution to exist. Simplifying Eqn. (31), we get

β0 =
(
1+

a0
b

1

1−
( a
b

))−1 = b− a
b− a+ a0

. (32)

The system throughput in packets/slot, which is the number
of correctly decoded packets at the destination per time slot,
is given by

µd = (1− β0)Pr{IFD
RD ≥ R}, (33)

which represents the probability that the queue is non-empty
and that the relay-destination link is not in outage.

VI. NUMERICAL RESULTS AND SIMULATIONS
In this section, we verify the analytical findings in each
of the investigated scenarios. We start with the slow-RSI
case followed by the fast-RSI case. Then, we show numer-
ical results for the case of fixed-rate transmission. Unless
otherwise stated, we use the following system’s parameters
to generate the results: the fading channels are assumed
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TABLE 1. Channel matrices used to generate the first three time slots in the figures.

FIGURE 2. Information rate of the source-relay channel for the slow-RSI
scenario when block size is n = 50.

to be complex circularly-symmetric Gaussian random vari-
ables with zero mean and unit variance, κR = κD = κ ,
PS/κ = 10 dB, PR/κ = 10 dB, and σ 2

RR = 0 dB.

A. SLOW-RSI CASE
To verify our derivations, we provide some numerical results
for the achievable rate in the case of slow RSI. Our main mes-
sage from the numerical results in this subsection is to verify
that the optimal precoder that maximizes the achievable rate
of the source-relay link in case of finite block size n is the
rank-1 precoder (which we refer to as the IFD

RD-maximizing
precoder). Moreover, we want to verify that when the block
size is sufficiently large, any precoder can be used, including
the one that maximizes the achievable rate of the relay-
destination link, with no rate loss (i.e., the information rate
under slow RSI converges to the information rate of the no
interference case). Figs. 2 and 3 show the information rate
of the source-relay link for both cases of IFD

SR -maximizing
and IFD

RD-maximizing precoders when the block size is finite
and equal to n = 50 and n = 2000 symbols, respectively.
We also show the maximum achievable rate for the source-
relay link when the RSI is zero. Figs. 2 and 3 are generated
using unit-variance channels, M = 2, and the instantaneous
randomly-generated channel matrices in Table 1 for three
time slots. As shown in Fig. 2, the IFD

SR -maximizing precoder
achieves a rate which is closer to the upper bound than that of

FIGURE 3. Information rate of the source-relay channel for the slow-RSI
scenario when block size is n = 2000.

FIGURE 4. Average information rate of source-relay link for the slow-RSI
scenario.

the IFD
RD-maximizing precoder. In Fig. 3, all curves overlap

thereby implying that for slow-RSI regardless of the used
precoder at the relay, the RSI is completely canceled when
n is sufficiently high; which verifies our theoretical findings.
For the case of M > 2 and due to the significant increase
in the number of system’s parameters and channel matrices,
we plot the average information rate versus M in Fig. 4.
As it can be seen from the figure, the IFD

SR -maximizing
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FIGURE 5. Information rate of source-relay link for the fast-RSI scenario.

precoder achieves almost the no-interference achievable rate
when the block size is finite, i.e., n = 50. Increasing the
number of antennas increases the information rate of the
source-relay link.

B. FAST-RSI CASE
We evaluate the information rate expressions that we obtained
for the fast-RSI scenario. First, we present some numerical
results for the instantaneous achievable rate expressions by
using Table 1 for the case of M = 2. Then, for the case
of M > 2 and since the size of the channel matrices and
the system’s parameters increase significantly, we present
the average of the achievable rate expressions, averaged
across channel realizations, versus M . In Fig. 5, we show
the achievable rate of the fast-RSI scenario when both
the IFD

SR -maximizing and I FD
RD -maximizing precoders of the

slow-RSI are used by the relay. As expected, the
IFD
SR -maximizing precoder achieves a higher source-relay

link achievable rate than the IFD
RD-maximizing precoder.

This is because the IFD
SR -maximizing precoder decreases the

interference caused by the data transmissions at the relay.
Fig. 6 shows the average achievable rate of the source-
relay link versus M for the cases of IFD

RD-maximizing and
IFD
SR -maximizing precoders. The IFD

SR-maximizing precoder
achieves a higher rate than the IFD

RD-maximizing precoder
since the latter increases the interference at the FD relay’s
receiver due to the increased number of data streams trans-
mitted by the relay.

In Fig. 7, we show the minimum between the achiev-
able rates of the source-relay and the relay-destination
links. When M = 2 and for the given channel real-
izations, the IFD

SR -maximizing precoder outperforms the
IFD
RD-maximizing precoder. However, this is not true in gen-

eral since the IFD
SR -maximizing precoder degrades the achiev-

able rate of the relay-destination link significantly, especially
at high M . This is clear from the values of achievable rate
evaluated for the other channel realizations as shown in Fig. 7
and in the average achievable rate curves presented in Fig. 8.

FIGURE 6. Average achievable rate of the source-relay link for the
fast-RSI case under IFD

RD-maximizing and I FD
SR -maximizing precoders.

FIGURE 7. The minimum between the achievable rates of the source-relay
link and the relay-destination link for the fast-RSI scenario. The case of
IFD

RD-maximizing and IFD
SR -maximizing precoders are considered.

It is noteworthy that whenM = 2 as shown in Fig. 7, the relay
might switch between IFD

RD-maximizing precoder and the
IFD
SR -maximizing precoder to maximize the minimum achiev-

able rate of the two hops, i.e., maximize min{IFD
SR , I

FD
RD}.

As shown in Fig. 8, the expected value of the mini-
mum between the achievable rate of the source-relay link
and the achievable rate of the relay-destination link when
the I FD

SR -maximizing precoder is slightly better than the
IFD
RD-maximizing precoder when M = 2. Starting from
M = 3, the IFD

RD-maximizing precoder is superior and
can achieve very high rates. On the other hand, the
I FD
SR -maximizing precoder remains fixed regardless of M

since the total achievable rate is determined by the minimum
rate between the two communications linkswhich is degraded
by the use of a single data stream at the relay’s transmit side.

C. FIXED-RATE TRANSMISSION
In Fig. 9, we plot the throughput of our proposed scheme
and the conventional FD scheme for R = 1 bits/sec/Hz.
In the conventional FD scheme, the source node and the relay
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FIGURE 8. Average achievable rate of the source-relay link for the
fast-RSI case under IFD

RD-maximizing and I FD
SR -maximizing precoders. The

average of the minimum between the achievable rate of the source-relay
and relay-destination links is plotted for both cases of IFD

RD-maximizing
and IFD

SR -maximizing precoders.

FIGURE 9. Throughput versus the maximum buffer size at the relay, Qmax.

cooperatively transmit the data in each time slot using the
DF relaying scheme and the RSI is treated as a noise signal
with a known variance. As shown in Fig. 9, the throughput
increases by increasing the buffer size at the relay. This
is expected since increasing the buffer size allows more
data transfer to and from the relay; however, the increase is
insignificant. Moreover, the throughput is fixed for all queue
sizes that are greater than or equal to 3 packets. This implies
that a data buffer with size 3 packets can be used without any
throughput loss. Moreover, our proposed scheme achieves
a throughput higher than that achieved by the conventional
FD relaying. The throughput gain is more than 2866% when
the buffer’s maximum size is Qmax ≥ 3 packets. We also plot
an upper bound which is the case when the relay always has
data packets and sends them to the destination. As shown in
Fig. 9, the buffer-aided scheme outperforms the conventional
FD scheme and it is closer to the upper bound. The throughput
gap between the upper bound and the buffer-aided FD scheme
is 6% for Qmax ≥ 2 packets.

FIGURE 10. Throughput in bits/sec/Hz versus the transmission rate, R.

FIGURE 11. Throughput in packets/slot versus the number of
antennas, M.

In Fig. 10, we plot the throughput in bits/sec/Hz versus
the transmission rate R. The throughput in bits/sec/Hz is
given by µd × R. The throughput in bits/sec/Hz increases
with R until a peak is reached. This is expected since the
throughput in packets/slot, given by µd, is monotonically
non-increasing. Thus, multiplyingµd byR results in a peak at
some R. After that, the throughput decreases until it reaches
zero. The value of R that maximizes the throughput for the
buffer-aided FD case is 2.5 bits/sec/Hz. The figure also shows
the significant gain of our scheme relative to the conventional
FD case. To show the impact of the RSI variance, we plotted
the cases of σ 2

RR = 0 dB and σ 2
RR = −10 dB. The buffer-

aided FD scheme does not depend on the RSI since it can be
completely canceled as it was shown in the analytical proof
in Appendix A and verified here through simulations. On the
other hand, the conventional FD scheme suffers from self-
interference and the throughput increases with decreasing
RSI variance.

Finally, we demonstrate the impact of the number of anten-
nasM on the system’s throughput in Fig. 11 for two different
values of R, i.e., R = 1 and R = 6 bits/sec/Hz. It can
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be seen that the throughput is monotonically nondecreasing
with M . When R = 1 bits/sec/Hz and R = 6 bits/sec/Hz,
the throughput is almost equal to 1 packet/slot, which is the
maximum value for the system’s throughput, for M ≥ 2 and
M ≥ 3, respectively. IncreasingR increases the outage prob-
abilities of the communications’ links and, hence, degrades
the throughput measured in packets/slot.

VII. CONCLUSIONS AND FUTURE WORK
We derived closed-form expressions for the achievable rates
of the communications links in a buffered FD wireless relay
network under the two scenarios of slow and fast RSI.
We showed that, when the relay is equipped with a buffer, the
impact of slow RSI can be completely eliminated in the time
slots when the buffer is non-empty since the relay transmits
a known codeword that is different from the source. That
is, when the buffer is non-empty, the achievable rate of the
source-relay link in the FD mode is equal to the achievable
rate of the source-relay link without RSI. For fast RSI, we
showed that the achievable rate of the source-relay link is
degraded due to RSI and the degradation was quantified
analytically. We designed two precoders that can be used at
the relay, namely, the IFD

SR -maximizing and IFD
RD-maximizing

precoders. We derived the closed-form expressions for the
achievable rate of the source-relay and relay-destination links
under each precoder. For the fixed-rate transmission scenar-
ios, when the RSI is slow and the block size is large, we
proposed an optimal scheme that maximizes the throughput,
which is the number of packets received at the destination per
time slot. Our numerical results showed that the throughput
gain of our proposed buffer-aided FD scheme is substantial
relative to the conventional FD scenario.

A possible future extension of this work is to consider the
case of relay selection and study the gain of the buffers in such
cases under FD constraints.Moreover, themulti-user scenario
wheremultiple source nodes are communicating with a single
or a set of relay nodes can be investigated.

APPENDIX A
PROOF OF PROPOSITION 1
Starting from Eqn. (6), the Hermitian of the vec{YR} is given
by

vec{YR}
H
= vec{XS}

H
(
HH
SR ⊗ In

)
+ vec{H>RR}

H
(
IM ⊗999HXH

R

)
+ vec{εεεR}H .

(34)

The expectation of vec{YR}vec{YR}
H over XS and HRR is

given by

E
{
vec{YR}vec{YR}

H
}

= P̃S (HSR ⊗ In) (HSR ⊗ In)H

+ (IM ⊗ XR999)���(IM ⊗ XR999)
H
+ κRInM , (35)

where E
{
vec{XS}vec{XS}

H
}
= P̃SInM and ��� =

E{vec{H>RR}(vec{H
>
RR})

H
}. Using the Kronecker product

properties,

E
{
vec{YR}vec{YR}

H
}

= P̃S
(
HSRHH

SR ⊗ In
)

+ (IM ⊗ XR999)���(IM ⊗ XR999)
H
+ κRInM . (36)

If��� = σ 2
RRIM2 , we can use the achievable rate expression for

Gaussian vectors to obtain

IFD
SR

=
1
n
log2 det

(
P̃S
(
HSRHH

SR ⊗ In
)

+ σ 2
RR (IM ⊗ XR999) (IM ⊗ XR999)

H
+ κRInM

)
−

1
n
log2 det

(
σ 2
RR(IM ⊗ XR999)(IM ⊗ XR999)H+κRInM

)
.

(37)

Consider the eigendecomposition forHSRHH
SR=QSR333SRQH

SR,
where QSR is unitary and 3SR is diagonal. We can
write the term

(
HSRHH

SR ⊗ In
)
as
(
QSR333SRQH

SR ⊗ In
)
=

(QSR ⊗ In) (333SR ⊗ In)
(
QH
SR ⊗ In

)
. Hence, the achievable

information rate expression can be rewritten as in (38) at the
top of next page where ηv denotes the v-th eigenvalue of
HSRHH

SR.

APPENDIX B
PROOF THAT THE OPTIMAL PRECODER
FOR SLOW-RSI IS RANK-1

Let γv = 1+ P̃Sηv
κR

and 0 =

√
σ 2RR
κR

XR. Note that γv > 0. The
achievable rate expression in (8) becomes

IFD
SR =

1
n

M∑
v=1

log2 det
(
γvIn + 0999999H0H

)
− log2 det

(
In + 0999999H0H

)
. (39)

Let 0999999H0H
= Q333QH

= Q diag{λ1, λ2, . . . , λn}QH ,
where λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of 0999999H0H

with
∑n

k=1 λk = Trace{0999999H0H
} =

σ 2RRPR
κR

n = λtot. The
achievable rate is thus given by

IFD
SR =

1
n

M∑
v=1

n∑
k=1

[
log2 (γv + λk)− log2 (1+ λk)

]
. (40)

By using λ1 = λtot −
∑n

k=2 λk , the achievable rate can be
rewritten as

IFD
SR =

1
n

M∑
v=1

[
log2

(
γv + λtot −

n∑
k=2

λk

)

− log2

(
1+ λtot −

n∑
k=2

λk

)

+

n∑
k=2

(
log2 (γv + λk)−

1
n
log2 (1+ λk)

)]
.

(41)
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IFD
SR =

1
n
log2 det

(
P̃S (333SR ⊗ In)

+σ 2
RR

(
QH
SR ⊗ In

) (
IM ⊗ XR999999

HXH
R

)
(QSR ⊗ In)+ κRInM

)
−

1
n
log2 det

(
σ 2
RR

(
IM ⊗ XR999999

HXH
R

)
+ κRInM

)
=

1
n
log2 det

(
P̃S (333SR ⊗ In)+ σ 2

RR

(
IM ⊗ XR999999

HXH
R

)
+ κRInM

)
−
M
n

log2 det
(
σ 2
RRXR999999

HXH
R + κRIn

)
=

1
n

M∑
v=1

n∑
j=1

(
log2

(
1+

P̃S
κR
ηv +

σ 2
RR

κR
XR(j)88HXH

R (j)

)
− log2

(
1+

σ 2
RR

κR
XR(j)88HXH

R (j)

))

=
1
n

M∑
v=1

n∑
j=1

(
log2

(
1+

P̃S
κR
ηv +

σ 2
RR

κR
|XR(j)q|2

)
− log2

(
1+

σ 2
RR

κR
|XR(j)q|2

))
. (38)

∂IFD
SR

∂λj
=

1
n ln(2)

M∑
v=1

[
−

1
γ + λtot −

∑n
k=2 λk

+
1

1+ λtot −
∑n

k=2 λk
+

1
γ + λj

−
1

1+ λj

]

=

M∑
v=1

γv − 1
n ln(2)

[
1(

γv + λtot −
∑n

k=2 λk
) (
1+ λ tot −

∑n
k=2 λk

) − 1(
γv + λj

) (
1+ λj

)]

=

M∑
v=1

γv − 1
n ln(2)

γv + γvλj + λj + λ2j −
(
γv + γv

(
λ tot −

∑n
k=2 λk

)
+
(
λtot −

∑n
k=2 λk

)
+
(
λtot −

∑n
k=2 λk

)2)(
γv + λtot −

∑n
k=2 λk

) (
1+ λtot −

∑n
k=2 λk

) (
γv + λj

) (
1+ λj

)


=

M∑
v=1

γv − 1
n ln(2)

[
γv + γvλj + λj + λ

2
j −

(
γv + γvλ1 + λ1 + λ

2
1

)
(γv + λ1) (1+ λ1)

(
γv + λj

) (
1+ λj

) ]
. (42)

The derivative of IFD
SR with respect to λj (j ∈ {2, 3, . . . , n}), is

given by (42) at the top of this page.

If λ1 > λj, then
∂IFD

SR
∂λj

< 0. Hence, λj = 0 maximizes
the information rate. That is, λ1 = λtot and λj = 0 for

j ∈ {2, 3, . . . , n}. If λ1 < λj,
∂IFD

SR
∂λj

> 0. In this case,
λj = λtot and λi = 0 for all i 6= j maximizes the
information rate. Therefore, I FD

SR is maximized when one of
the eigenvalues of 0999999H0H is λtot and the rest are zeros.
This implies that the matrix 0999999H0H should be a rank-1
matrix. Since 0 has a rank of M , 999999H and, consequently,
999 is a rank-1 matrix.

APPENDIX C
ACHIEVABLE RATE OF THE RELAY-DESTINATION
CHANNEL
The received signal matrix at the destination node is given by

YD = XR999H>RD + εεεD, (43)

where XR ∈ Cn×M is the data matrix transmitted by the
relay node, HRD ∈ CM×M is the channel matrix between the
relay node and the destination node, 999 ∈ CM×M is the data
precoding matrix used at the relay node, and εεεD ∈ CN×M is
the noise matrix at the destination node. Writing the matrix
YD in a vector form, we have

vec{YD} = (IM ⊗ XR999) vec{H>RD} + vec{εεεD}. (44)

The expectation of vec{YD}vec{YD}
H over XR is given by

E
{
vec{YD}vec{YD}

H
}

= PR
(
HRD9> ⊗ In

) (
HRD9> ⊗ In

)H
+ κDInM

= PR
(
HRD9>9∗HH

RD ⊗ In
)
+ κDInM . (45)

By using the achievable rate expression, we get

IFD
RD =

1
n
log2 det

(
IMn +

PR
κD

(
HRD9>9∗HH

RD ⊗ In
))

= log2 det
(
IM +

PR
κD

(
HRD9>9∗HH

RD

))
. (46)

By using Sylvester’s determinant identity, we have

IFD
RD = log2 det

(
IM +

PR
κD

HH
RDHRD9>9∗

)
. (47)

Consider the eigendecompositionHH
RDHRD = QH

RD333RDQRD.
Thus, the achievable rate is given by

IFD
RD = log2 det

(
IM +

PR
κD
333RDQRD9>9∗QH

RD

)
. (48)

According to Hadamard’s inequality for Hermitian pos-
itive semidefinite matrices, IFD

RD is maximized when
QRD9>9∗QH

RD is diagonal. Hence, 9> = QH
RDE where

E is a diagonal matrix such that EEH contains the power
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fractions assigned to each data stream and its trace is equal to
Trace{99H

} = M . Accordingly, the achievable rate of the
relay-destination link in (48) is rewritten as

IFD
RD =

M∑
v=1

log2

(
1+

PR
κD
`v|Ev|2

)
. (49)

where `v is the v-th singular value in333RD.

APPENDIX D
PROOF OF PROPOSITION 3

Setting a =
σ 2RR
κR

, bv =
σ 2RR

P̃Sηv+κR
< a, and α = qHXH

RXRq,
we maximize the following function over α

J (α) =
M∑
v=1

(
log2 (1+ bvα)− log2 (1+ aα)

)
. (50)

Taking the first derivative with respect to α, we get

∂J (α)
∂α

=
1

ln(2)

M∑
v=1

(
bv

1+ bvα
−

a
1+ aα

)
=

1
ln(2)

bv − a
(1+ bvα)(1+ aα)

. (51)

Since bv < a, the derivative is always negative. Hence, J (α)
is maximized when α is minimized. Now, α = qHXH

RXRq is
minimized when q is the normalized eigenvector correspond-
ing to the minimum eigenvalue of XH

RXR. Substituting the
precoder matrix, we get

IFD
SR =

1
n

M∑
v=1

(
log2 det

(
P̃SηvIn + σ 2

RRXRqqHXH
R + κRIn

)
− log2 det

(
σ 2
RRXRqqHXH

R + κRIn
))

=

M∑
v=1

log2

(
1+

P̃S
κR
ηv

)

+
1
n

M∑
v=1

(
log2

(
1+

σ 2
RR

P̃Sηv + κR
qHXH

RXRq

)
− log2

(
1+

σ 2
RR

κR
qHXH

RXRq

))
. (52)

APPENDIX E
PROOF OF PROPOSITION 4
When the optimal precoder that maximizes the achievable
rate of the relay-destination channel derived in Appendix C
is used, 999 is the product of a unitary and a diagonal matrix.
Assuming that the matrix 999 = EQH

RD is full rank, the
achievable rate expression of the source-relay link can be
rewritten as

IFD
SR =

1
n

M∑
v=1

(
log2 det

(
(P̃Sηv + κR)In + σ 2

RRXREEHXH
R

)
− log2 det

(
σ 2
RRXREEHXH

R + κRIn
))
. (53)

Taking the data signal component as a common factor, we get

IFD
SR =

1
n

M∑
v=1

(
n log2

(
P̃Sηv + κR

)
+ log2 det

(
In +

σ 2
RR

P̃Sηv + κR
XREEHXH

R

)

− log2 det
(
σ 2
RRXREEHXH

R + κRIn
))
. (54)

By using Sylvester’s determinant identity, we get the expres-
sion in (10).

APPENDIX F
PROOF OF PROPOSITION 6
We vectorize the elements of the matrix YR in (16) to obtain

vec{YR} = (HSR ⊗ In) vec{XS}

+

(
IM ⊗ X̃R9̃

)
vec{H̃RR} + vec{εεεR}. (55)

The expected value of vec{YR}vec{YR}
H is

E
{
vec{YR}vec{YR}

H
}

= P̃S (HSR ⊗ In) (HSR ⊗ In)H

+ σ 2
RR

(
IM ⊗ X̃R9̃

) (
IM ⊗ X̃R9̃

)H
+ κRInM , (56)

by assuming vec{H̃RR}vec{H̃H
RR}

H
= σ 2

RRInM . The achiev-
able rate is thus given by

IFD
SR

=
1
n
log2 det

(
P̃S
(
HSRHH

SR ⊗ In
)

+σ 2
RR

(
IM ⊗ X̃R9̃

) (
IM ⊗ X̃R9̃

)H
+ κRInM

)
−

1
n
log2 det

(
σ 2
RR(IM ⊗ X̃R9̃)(IM ⊗ X̃R9̃)H+κRInM

)
.

(57)

Using the same matrix eigendecomposition forHSRHH
SR as in

the slow-RSI case, the achievable rate expression in (57) can
be rewritten as:

IFD
SR

=
1
n
log2 det

(
P̃S (333SR ⊗ In)

+σ 2
RR

(
QH
SR ⊗ In

)(
IM ⊗ X̃R9̃

(
X̃R9̃

)H)
(QSR ⊗ In)

+κRInM )

−
1
n
log2 det

((
IM ⊗ X̃R9̃(X̃R9̃)H

)
+ κRInM

)
=

1
n
log2 det

(
P̃S (333SR ⊗ In)+ σ 2

RR(IM ⊗ X̃R9̃(X̃R9̃)H )

+κRInM )

−
M
n

log2 det
(
σ 2
RRX̃R9̃

(
X̃R9̃

)H
+ κRIn

)
. (58)

After simplifications, we get the expression in (17).
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APPENDIX G
PROOF OF PROPOSITION 7
By assuming the IFD

SR -maximizing precoder of the slow-RSI
case, which has the form888 =

√
MqqH , the information rate

of the source-relay link is given by

IFD
SR

=
1
n

M∑
v=1

n∑
j=1

(
log2

(
1+

P̃S
κR
ηv +

σ 2
RR

κR
XR(j)88HXH

R (j)

)

− log2

(
1+

σ 2
RR

κR
XR(j)88HXH

R (j)

))

=
1
n

M∑
v=1

n∑
j=1

(
log2

(
1+

P̃S
κR
ηv +

σ 2
RR

κR
|XR(j)q|2

)

− log2

(
1+

σ 2
RR

κR
|XR(j)q|2

))
. (59)

This can be simplified as follows

IFD
SR =

M∑
v=1

log2

(
1+

P̃S
κR
ηv

)

+
1
n

M∑
v=1

n∑
j=1

(
log2

1+

σ 2RR
κR

1+ P̃S
κR
ηv

|XR(j)q|2


− log2

(
1+

σ 2
RR

κR
|XR(j)q|2

))
. (60)

Since q ∈ CM×1 is unit norm and XR(j) ∈ C1×M

is a complex Gaussian random vector with i.i.d. ele-
ments, XR(j)q is a Gaussian random variable with
the same statistics as any element in XR(j). From
the strong law of large numbers, when n is large,

the term 1
n

∑M
v=1

∑n
j=1

(
log2

1+
σ2RR
κR

1+ P̃S
κR
ηv

|XR(j)q|2

 −
log2

(
1+ σ 2RR

κR
|XR(j)q|2

))
converges to its statistical mean.

Accordingly, when n → ∞, the achievable rate is given
by (18).

APPENDIX H
PROOF OF PROPOSITION 8
Assuming that the IFD

RD-maximizing precoder of the slow-RSI
case, which has the form888 = EQ∗RD, is used by the relay, the
information rate of the source-relay link in (62) for the fast-
RSI case is rewritten as

IFD
SR =

1
n

M∑
v=1

n∑
j=1

(
log2

(
1+

P̃S
κR
ηv+

σ 2
RR

κR
XR(j)EEHXH

R (j)

)

− log2

(
1+

σ 2
RR

κR
XR(j)EEHXH

R (j)

))
. (61)

Assuming that Ei is the i-th element on the main diagonal
of E, the information rate is thus given by

IFD
SR

=
1
n

M∑
v=1

n∑
j=1

(
log2

(
P̃Sηv + σ 2

RR

M∑
i=1

|XR,i(j)|2|Ei|2 + κR

)

− log2

(
σ 2
RR

M∑
i=1

|XR,i(j)|2|Ei|2 + κR

))

=

M∑
v=1

log2

(
1+

P̃S
κR
ηv

)

+
1
n

M∑
v=1

n∑
j=1

(
log2

1+

σ 2RR
κR

∑M
i=1 |XR,i(j)|

2
|Ei|2

1+ P̃S
κR
ηv


− log2

(
1+

σ 2
RR

κR

M∑
i=1

|XR,i(j)|2|Ei|2
))
. (62)

From the strong law of large numbers, we can approximate

log2

(
σ 2RR
κR

∑M
i=1 |XR,i(j)|

2
|Ei|2 + 1

)
as follows

M lim
n→∞

n∑
j=1

log2

(
σ 2RR
κR

∑M
i=1 |XR,i(j)|

2
+ 1

)
n

→ ME

{
log2

(
σ 2
RR

κR
X (j)+ 1

)}
, (63)

where X (j) =
∑M

i=1 |XR,i(j)|
2
|Ei|2 is the weighted-sum of

exponentially-distributed random variables and is equal in
distribution to a scaled Chi-squared with 2M degrees of
freedom when |Ei|2 = 1/M (i.e., the case of equal power
allocation to the data streams). Note that E is assumed fixed
over the entire codeword for a given channel realization and,
hence, {X (j)}nj=1 are i.i.d. random variables, which is true
since all X (j) are identical.
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