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ABSTRACT Aiming at the control and optimization problem of blast furnace gas (BFG) systems in the
steel industry, a knowledge-based optimal control algorithm combining fuzzy rules extraction with neural
networks (NNs) ensemble-based prediction is proposed. On one hand, a fuzzy model is designed to extract
the expert control knowledge from the historical data of the industrial process after community detection,
and then, a great deal of scheduling knowledge is employed to compose a fuzzy rule base, which can be used
for fuzzy inference of control scheme with a new input. On the other hand, data-driven NNs ensemble is
built to model the BFG system for prediction. Meanwhile, the prediction results can provide the inputs when
using fuzzy rule base for control and optimization. Finally, a BFG system of one steel enterprise is studied
in this paper for experiments, which verifies the effectiveness and practicability of the proposed method.

INDEX TERMS Blast furnace gas, knowledge base, fuzzy rules, control, optimization.

I. INTRODUCTION
From Aug. 2005, energy saving and emission reduction has
been a key topic of the development of the industry, since
beautiful scenery is the gold and silver mines proposed by
the president Xi. In China, steel enterprises are not only a
significant part of the national industry, but also with great
deal of energy consumption and sewage [1]. Thus, one impor-
tant objective of the industrial intelligent manufacturing is to
improve the ability of energy saving and emission reduction.
Blast furnace gas, the key component of the byproduct gas
system of steel industry, is one kind of important secondary
energy. To improve the capability of optimal control of blast
furnace gaswill make sense to the energy saving and emission
reduction.

Recent years, there are many researches about the control,
scheduling and optimization of the blast furnace gas and
even the byproduct gas system. Firstly, some researchers
pointed out that it is very necessary to build the mathematical
programming model for the byproduct gas system. A mixed
integer linear program-based model was firstly proposed
in [2] to realize the long-term optimization of the by-product
gas system, in which the objective functions include mini-
mizing the fluctuation of the gas holder levels, minimizing
the fuel cost, penalty costs and the purchased power cost,

maximizing the generation of the power system, and the
constraints include restriction of process mechanism, energy
balance and security constraints. However, it seems that the
mathematical programming model reported in [2] is reason-
able and effective for the optimal control of the byproduct
gas system. However, there are some deficiencies and draw-
backs which lead to the model proposed in [2] cannot be
applied to the practical field, so some improved researches
are conducted in [3]–[5]. In [3], a dynamic mixed integer
linear programming model for multi-period optimization of
byproduct gas is proposed to optimize byproduct gas dis-
tribution. In [4], a green mixed integer linear programming
model is also proposed for byproduct gas distribution, in
which the environmental cost caused by pollutants discharge
is factored in total cost. In [5], aiming at the time-delay
problems of mathematical programming, a forecast model
of gas supply, gas demand and surplus gas in a steel plant
was proposed for the dynamic programming of byproduct gas
system to develop an optimal utilization strategy of byproduct
gas. Although mathematical programming-based techniques
are proposed relatively earlier, it has not been widely utilized
due to the following reasons. First, the over ideal or over
relaxation of the parameters of byproduct process leads to a
decreasing accuracy of the model. Second, the complexity of
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the byproduct gas system leads to the difficulties of solution
procedure. Generally, it is difficult to choose a suitable ini-
tial solution for the optimization model. Thus, the feasible
solution of the model might not exist. Third, it is lack of the
forecast or prediction for the future, the time-delay of the
programming model cannot be avoided, which will also lead
to the low accuracy of the model.

As for one byproduct gas system, gas holder is generally
viewed as the key component, which can effectively regulate
the balance of the supply and demand of system [6], [7].
When the supply is superior to the demand, the surplus gas
can be reserved by gas holder. Andwhen the supply is inferior
to the demand, the gas reserved can be supplied to the pipeline
network. However, the capability of the gas holders is limited,
so some imbalance conditions will occur in the gas sys-
tem, which will cause some unnecessary waste and sewage.
Therefore, some researchers insisted that the optimal control
problem of the byproduct gas system can be transformed to an
equilibrium control problem of the gas holder level. Recently,
the most common-used method for the equilibrium control of
gas holder level is data-driven modeling technique, which can
be divided into two steps. In the first step, a machine learning
method is employed to identify the nonlinear relationship
between the gas holder level and the flow of the generation
and consumption units of the gas system. Meanwhile, the gas
holder level and the flow of the generation and consumption
units are predicted. In the second step, the nonlinear rela-
tionship and the prediction results are used to determine the
rough control scheme. The above stated research is firstly
reported in [8], where a two-stage online prediction method
is proposed for a blast furnace gas system. In the first stage,
the flow of the generation and consumption units is predicted
based on echo state networks. And in the second stage, the
relationship between the gas holder level and the flow of the
generation and consumption units are identified, furthermore,
the gas holder level is also predicted based on the identified
relationship. Based on the abovemodeling and prediction, the
gas holder level can be effectively controlled. Subsequently,
similar researches reported in [9] and [10] are done for coke
oven gas system and converter gas system, the mechanisms of
which are also like the blast furnace gas system. The above-
mentioned optimal control technique is relatively novel and
extensively applied to many steel enterprises. In addition,
some researchers considered that the probability graphical
model can be used to build the causality relationship between
the gas holder level and adjustable users, and the correspond-
ing research was reported in [11]. The Bayesian network is
adopted to model the control problem of the blast furnace gas
holder level, i.e., a probability relationship between the gas
holder level and the adjustable users is established. And then,
the different adjustable users will be chosen with different
indicated probabilities in an operation scheme, and the users
with the biggest probability will be chosen firstly.

So far data-driven optimal control methods are still in
dominant position for the byproduct gas system. However,
it is not difficult after analyzing to find that all the

above-mentioned methods are not suitable for the special
operation condition and abnormal service condition. In the
real field of steel industry, the optimal control schemes
of special or abnormal conditions mostly depend on the
expert experience and knowledge. Therefore, the combina-
tion of the expert knowledge and scientific techniques will
be more effective way for the optimal control. Generally,
the expert knowledge can be got through the communica-
tion with the expert, yet this way is very difficult and with
low efficiency. Moreover, the expert knowledge should be
transformed into the logical language that computer can iden-
tify, which requires more computational consumption. After
investigation and study, the expert knowledge is certainly
applied into the industrial process in the form of the control
strategy, so there is plenty of latent expert knowledge in the
monitor data of industrial process. Another way of knowl-
edge extraction is data-driven machine learning techniques,
in which the latent knowledge in data could be mined for
application. However, the optimal control scheme depends
not just on the expert knowledge that might be with time-
delay. In our opinion, the expert knowledge is combined with
quantitative modeling and prediction will be more effective
to improve the capability of optimal control of byproduct gas
system.

Aiming at the optimal control problem of the blast fur-
nace gas system in steel industry, a knowledge-based optimal
control algorithm combining fuzzy rules extraction with neu-
ral networks (NNs) ensemble-based prediction is proposed
in this study. First, the community detection of complex
network-based samples selection method is proposed to par-
tition the different operational conditions of blast furnace gas
system. Meanwhile, the typical and valuable data samples
are selected from the original large-scale dataset. Second,
a fuzzy model is designed to extract the expert scheduling
knowledge from the historical data of the industrial process
after community detection. And then, a great deal of schedul-
ing knowledge is employed to compose a fuzzy rules base,
which can be used for fuzzy inference of control scheme
with a new input. Third, data-driven NNs ensemble is built
to model the blast furnace gas system for prediction. Based
on the prediction results, the control scheme can be reasoned
by using the fuzzy rule base constructed above. Finally,
a byproduct gas system of one steel industry is studied for
experiments to verify the effectiveness and practicability of
the proposed method, which shows the proposed technique
is very meaningful to the energy reservation and emission
reduction of industrial enterprises.

This rest is organized as follows. The problem about the
control and optimization of the BFG system is described
in Section II. The samples selection and the extraction of
the expert knowledge-based control rules are discussed in
Section III. In Section IV, the NNs ensemble-based pre-
diction model for the BFG system is proposed, and mean-
while the parameters of the prediction model are estimated
by the Bayesian regularization technique. The effective-
ness of the proposed method is experimentally verified
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FIGURE 1. The structural diagram of the blast furnace gas system.

in Section V. Finally, some conclusion remarks are drawn
in Section VI.

II. PROBLEMS DESCRIPTION
A typical BFG system, which contains the gas generation
units, the consumption units, transmission pipeline network
and storage units, is very complicated. Generally speaking,
the storage units are viewed as the core of the system, which
can balance the difference between the supply and demand
of the pipeline network to guarantee the security operation.
However, since the capability of the storage units is limited,
the surplus gas will be burnt in air when the gas supply is
superior to the gas demand, which leads to energy waste and
air pollution. On the contrary, when the gas supply is infe-
rior to the gas demand, some outsourcing energy leading to
additional economic cost, such as natural gas or fuel-oil, will
be consumed. A real blast furnace gas system of Bao-steel
industry, the structural diagram of which is shown in Fig. 1,
is employed here to illustrate the specific mechanism. Four
blast furnaces viewed as the generation units can supply into
the transportation network on average 1.8 million BFG per
hour, whose calorific power is about 3200KJ/Nm3 [8]. The
transportation system usually includes pipelines, mixing sta-
tions and pressure stations. The consumption users primarily
consist of coking oven, hot rolling plant, cold rolling plant,
chemical products recovery, low pressure boiler, and power
plant. Since the hot blast stoves of blast furnace expend
quite a quantity of BFG, and be continuously switched, the
generation amount flowed into transportation will frequently
fluctuate. In Bao-steel, taking the overlapping of wave crests
and troughs into consideration, the variation of generation
amount may reach 500 thousand m3 BFG per hour, which

will exhibit a drastic impact on the whole gas system [8].
Although the gas holder can be treated as a buffer storage
unit, its total capacity of only 300000 m3 is hardly enough
to completely respond to the variation present in the BFG
system [8]. Besides, there are often abnormal conditions
occurring in the production process such as blast reduction,
user shutdown or equipment fault. Such circumstance also
leads to system imbalance.

Based on the above statement, the operational level of gas
holder is one of the most important indicator for studying the
optimal control of the blast furnace gas system. In addition,
it is necessary to note that the blast furnace gas system is
not an isolated one but a key component of the total energy
system. It has a strong connection with the consumption of
outsourcing energy, coke oven gas, converter gas, the gen-
eration of steam heat and the electrical energy. Since the
byproduct gas system is not only with complicated opera-
tional mechanism, but also with coupling phenomenon, it is
hard to build a mechanism-based optimal control model.
In recent years, data-driven techniques are more and more
applied to the industrial filed and achieve some consider-
able performance. However, most of the existing data-driven
methods belong to the category of quantitative calculation,
which cannot cope with the sudden accident and some special
conditions, since they lack high level intelligence. In addition,
there are several controlled devices of the blast furnace gas
system. It is difficult to adopt the quantitative calculation-
based techniques to determine the control scheme. Thus, so
far data-driven researches cannot be effectively applied to the
practical industrial field.

In the industrial field, when the domain experts intend to
make a control scheme, operational states of some important
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users are considered firstly. According to the monitor states,
whether a control scheme is required or not is determined.
And if one scheme is necessary, the domain experts will
make it according to their accumulated knowledge. Thus,
if the expert knowledge is available, one feasible and effective
control scheme can be obtained. However, expert knowledge-
based control algorithm is short of the judgment of the
future. It is necessary to combine the expert knowledge
with the prediction technique to obtain one more effective
control scheme. The major advantage of the knowledge-
based control scheme can be applied in the industrial
field.

FIGURE 2. Chart of knowledge-based optimal control method.

III. EXPERT KNOWLEDGE-BASED CONTROL ALGORITHM
The proposed expert knowledge-based optimal control
method involves three parts, as shown in Fig 2. First, the
community detection of complex networks is employed to
choose the samples with typical and valuable characteristics
from the original training dataset. Second, the training data
sample after community detection are discretized by means
of the fuzzy C-means clustering, and the fuzzy modeling
techniques are adopted to extract the fuzzy rules hidden in
data. Then, a fuzzy rule base is built, which can be used for
fuzzy inference of the control scheme.

Finally, to avoid the time delay of expert knowledge-based
decision, a neural networks ensemble is built for modeling the
blast furnace gas system. Based on the nonlinear model, the
operational conditions of the BFG system can be predicted or
forecasted. From the prediction results, whether one control
scheme is required can be determined. And if one control
scheme is required, the prediction results can be chosen as
the novel input data for the fuzzy rules based after fuzzy
clustering. After the fuzzy inference and the de-fuzzy tech-
nique, the control scheme can be obtained. This method can
effectively utilize the expert knowledge and the large amount
of the historical process data.

A. COMMUNITY DETECTION-BASED SAMPLES SELECTION
The community detection method takes the module max-
imum as the optimization objective to obtain the optimal
community division and to further select the valuable training
samples, which can avoid the influence coming from the ran-
domness. We consider one original training dataset coming
from the industrial field.

S = {[xi(t), yi(t − 1)], yi(t)|i = 0, 1, · · · ,N } (1)

where xi(t) and yi(t − 1) are the input samples, yi(t) is the
output sample. As for the BFG system, xi(t) denotes the
generation or consumption flow of the units in the system,
and yi(t) denotes the gas holder level.

In this study, we choose the Euclidean distance to calcu-
late the connected relationship of a complex network. The
formula of the Euclidean distance is written as

mij =
√∑

i 6=j

(
sik − sjk

)2 (2)

Using the above formula, we can compute the Euclidean
distance mij between two samples [xi(t), yi(t − 1)] , yi(t) and[
xj(t), yj(t − 1)

]
, yj(t). Thus, the distance matrix M con-

taining the Euclidean distance between any two samples is
written as

M =


m11 m12 · · · m1N
m21 m22 · · · m2N
...

...
. . .

...

mN1 mN2 · · · mNN

 (3)

where mij = mji and mii = 0.
To obtain an adjacency matrixM′, a threshold parameter R

is set here. All the elements in the matrixMwill be compared
with R. If the value of some element is inferior to R, the two
related samples are viewed as adjacent samples. Otherwise it
will be viewed as non-contiguous.

m′ij =

{
1, if node i and j are connected
0, else

(4)

Then, we can get the adjacency matrix M′ as follows.

M′ =


m′11 m′12 · · · m′1N
m′21 m′22 · · · m′2N
...

...
. . .

...

m′N1 m′N2 · · · m′NN

 (5)

To explain how to use the community detection of complex
networks to select valuable samples, the community detection
of complex networks is firstly introduced. A typical network
is commonly composed by nodes or vertices and edges or
links. The nodes denote the different elements of one system
and the edges can describe the relationship among different
nodes. If there is one relationship between two nodes or the
logical relationship between two nodes is very close, these
two nodes are linked with an edge. The edge can be directed,
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also can be undirected. The degree of a vertex is the number of
the edges connected to that vertex. For undirected networks,
it can be computed as

ki =
∑
j

aij (6)

where the value of aij denotes whether the two nodes i and j
are connected. If i and j are connected, aij = 1, otherwise
aii = 0.

FIGURE 3. Community structure of complex networks.

As shown in Fig. 3, we can see a small network with com-
munity structure. In this case there are three communities,
denoted by the dashed circles, which has dense internal links
but between which there is only a lower density of external
links. To determine the optimal community division and the
number of the community, the evaluation index named mod-
ularity is proposed in [12]:

Q =
∑
i

(
eii − a2i

)
(7)

where eii denotes the ratio between the edges in the ith com-
munity and the edges of the whole network. ai =

∑
j eij

denotes the ratio between the edges of the nodes in com-
munity i connected to other community and the edges of the
whole network. The stronger the structure of the community
is, the larger the value of Q will be. Here, we use hierarchical
clustering to integrate different community. Originally, each
node can be viewed as one community, and we can integrate
each two communities in one step. The integration of the
community should follow one rule that is we should choose
the integration resulting in the maximal increase of Q. The
variety of the value of Q after the community integration can
be described as

1Q = eij + eji − 2aiaj = 2(eij − aiaj) (8)

After n steps, when 1Q < 0, the value of Q can achieve
the maximum. Now, the structure of the network is optimal
after community division. Since the original communities are
described by the nodes, if we assume that node i and j are
connected by one edge, then eij = 1/2m, otherwise eii = 0.
Meanwhile, ai = ki/2m. The original value of the matrix can
be set as

1Q =


1
2m
−

kikj
(2m)2

, if i is connected with j

0, otherwise
(9)

where m is the number of edges of the whole network.

Based on the above principle about the community detec-
tion, the optimal community can be detected by comput-
ing the value of 1Q. When using the community detection
algorithm for the matrix M′, the samples with the similar
characteristics will be divided into the same community.

As for the data-driven modeling, the quality of the training
samples has a great influence on the generalization ability
and the accuracy. When the similar training samples account
for a large proportion in the sample population to other
samples, the learning process of the prediction model will
face the over-fitting due to redundancy problem. After com-
munity detection, the samples located on the edge of the
community and connected with the other community can
be viewed as the redundancy samples. While, the samples
in one community that do not connect with the samples
in other community or has very sparse connection can be
viewed as the samples with typical characteristics. To avoid
the redundancy problem of the training samples and to effec-
tively quantify the specification of the samples, an eval-
uation index named ‘‘joint binding degree’’ is defined as
follows.

ci = ki−in/ki (10)

where ki−in is the number of the edges linked with node i
in the community and ki is the degree of node i. Gener-
ally, a large ‘‘joint binding degree’’ represents that the node
belongs to the community with a higher probability. ci = 1
means the node i belongs to this community completely while
ci < 1 means the node i is located on the edge of the
community and probably has a similarity relation with the
nodes in other community.

According to (10), we can compute the joint binding degree
of each node. Further, we sort the nodes in the community
in descending order in accordance with the joint binding
degrees. Finally, we can choose the effective samples from
different communities according to the value of the joint
binding degree of different samples. The training dataset
composed by the effective samples contains most of opera-
tional conditions in the industrial process, based on which
the generalization ability of the prediction model can be
improved obviously.

The detailed steps of implementation are listed as follows
when using the community detection of complex networks
for the sample selection.
Step 1: Construct the training dataset by sampling from

the industrial real-time database. Each training sample can
be viewed as one node of the complex network.
Step 2: Compute the Euclidean distance mij of any two

samples i and j in the training dataset according to (3). And
then the distance matrix M is obtained.
Step 3: Choose a suitable threshold parameter R. Compare

each element mij of M with the parameter R to obtain the
adjacent matrixM′.
Step 4: Compute the value of 1Q and use the community

detection algorithm for the complex network represented
byM′.
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Step 5: Based on the results of community detection, the
joint binding degree of the nodes can be computed according
to (10). Sort the nodes of one community in descending order.
Step 6: Choose the effective samples according to the joint

binding degrees to construct the training dataset.

B. CONSTRUCTION OF FUZZY RULES BASE
According to the above-mentioned problems, the gas flow
of the generated units and the consumers, the reservation
of the storage units and the amount of the adjustable units
at k are considered as the inputs of the fuzzy model. And
the variable amount of the adjustable units from k to k + h
is set as the corresponding outputs. It should be noted that
the amount of the adjustable users cannot be varied without
manual intervention. If the number of the input units is n
and the number of the adjustable units is l, the inputs are
written as X(k) = {x1(k), x2(k), · · · , xn(k)} and the outputs
are written as Y(k) = {y1(k), y2(k), · · · , yl(k)}. To extract
the control knowledge hidden in data, the original input and
output data is transformed into fuzzy sets first by themeans of
fuzzy C-means clustering [13]. Take one input component xi
as an example, assumed that Ci different clusters with cluster
centers vij are obtained, and then the cluster information and
the degree µi(k) of membership of xi(k). And so on, all the
fuzzy sets and their membership information of the inputs and
outputs variables can be obtained, and then the fuzzy rules are
extracted as the following form.

Ri : If x1 (k) is A1,1 and x2 (k) is A2,1
and · · · and xm(k) is Am,1

Then y1(k) is Bi,1 and y2(k) is B2,1
and · · · and yl(k) is Bl,1 (11)

where Ri is the jth rule. xi(k) is the ith component of inputs
at k . Ai,j denotes the jth cluster of the ith component xi(k) of
inputs. yi(k) is the ith component of outputs at k . Bi,j denotes
the jth cluster of the ith component yi(k) of outputs. Based on
the above statement, a set of fuzzy rules are built to construct
an expert knowledge base.

When Ai,j and Bi,j are viewed as the domain of the inputsX
and outputs Y, the relationship of each fuzzy rule can be
described as

Rj = (A1j × A2j × · · · × Amj)× (B1j × B2j × · · · × Blj)

(12)

And the membership function of Rj can be written as

µRj (X,Y) = µA1,j (x1) ∧ · · · ∧ µAm,j (xm) ∧ µB1,j (y1)

∧ · · · ∧ µBl,j (yl) (13)

The fuzzy relationship of all rules is obtained by combina-
tion of all the relationships, that is

R =
N⋃
j=1

Rj (14)

And the membership function of R can be written as

µR(X,Y) =
N∨
j=1

µRj (X,Y) (15)

C. EXPERT KNOWLEDGE-BASED FUZZY INFERENCE
Fuzzy inference is to deduce a conclusion based on some
fuzzy pre-conditions. If the fuzzy relationship between the
inputs and the outputs is available, a new output can be
reasonedwhen given a set of new values of the inputsX∗(k) =
{x∗1 (k), x

∗

2 (k), · · · , x
∗
n (k)}. First, the clustering technique is

also used here to obtain the fuzzy membership matrix of
each input data. And then the fuzzy sets and degree of the
membership of the different output are reasoned based on the
fuzzy relationship. Finally, the fuzzy sets of the output with
the largest degree of the membership are obtained. Based on
the de-fuzzy technique, the control scheme can be obtained.
To sum up, the expert knowledge-based inference in this
study provides the feasible control scheme, and sometimes
the optimal one, which is meaningful to the industrial utiliza-
tion since it is almost impossible to find a globally optimal
control scheme. As for the fuzzy inference, the effective
inputs are vital elements. However, historical or real-time
data cannot be chosen for inputs, since the means of control
might lag, which is fatal for industrial application. Thus, the
effective and accurate prediction is required for the BFG
system to obtain a set of advanced inputs.

IV. PREDICTION MODEL OF BFG SYSTEM
A. NEURAL NETWORKS ENSEMBLE-BASED
PREDICTION MODEL
According to the operational mechanism of the BFG system,
we design one specific NNs ensemble to predict the variety
of the BFG system whose structure is shown in Fig. 4. The
networks ensemble shown in Fig. 4 is composed by two ESNs
and one perceptron model, where two ESNs are used for
prediction the total generations and consumptions of the BFG
system, respectively. The perceptron model is designed to
predict the gas holder levels. y1 can be viewed as the total
generation amount of BFG and yl−1 can be viewed as the
total consumption amount of BFG except consumption of the
adjustable users. From y2 to yl−2 is the consumption amount
of the adjustable users, such as the boiler, power plant and
synthesizing users. z is the output of the ensemble and denotes
the gas holder level, and yl is the gas holder level in the
previous moment. From the structure of the proposed predic-
tion model, the gas holder level at time k is determined by
many factors, including the total generation amount of BFG
at time k , the total consumption amount of BFG at time k ,
the consumption amount of adjustable users at time k and the
gas holder level at time k − 1. The total generation amount
of BFG denotes the total generation of all the blast furnace.
The total consumption amount denotes the consumption of all
consumption users, including hot rolling, colder rolling, steel
pipe plant, et al. Since the consumption of the adjustable users
cannot be changed without human interruption, so we do not
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make predictions for y2, y3, · · · , yl−2. The total generation
amount and the total consumption amount are series varying
with time, the two ESNs are employed to predict y1 and yl−1.
Based on the structure of NNs ensemble, the formulas

of the proposed method are composed by the formulas of
these two ESNs and the formula of the perceptron. First, the
formula of the ESN model is written as [14], [15]

x(k) = f
(
Winu(k)+Wx(k − 1)

)
yj(k) = f out

(
Wout [u(k), x(k)]

)
(16)

where u(k) ∈ Rm×1 is the inputs of the network with the form
u(k) = [u1(k), u2(k), · · · , um(k)], m = m1 or m2. x(k) ∈
RN×1 is the internal states of the dynamical reservoir with
the form x(k) = [x1(k), x2(k), · · · , xN (k)], N = N1orN2.
yj(k) is the output, j = 1orl − 1. Here Win

∈ RN×m is
the connection matrix describing the relationships between
the elements located in the input and the DR. W ∈ RN×N is
the weight matrix of the neurons in DR. Note that to provide
sufficient memorization capabilities, W should be a sparse
matrix whose connectivity level is 1%∼5% and the spectral
radius is less than 1.Wout

∈ R(N+m)×1 is the output weights.
f is the activation of internal neurons, usually a hyperbolic
tangent function and f out is the output activation, usually an
identity. The formula of the perceptron is written as

z = f (w, y) = f (
l∑
j=1

wjyj) (17)

where wj is the weight parameters and z is the output of the
ensemble.

As for the NNs ensemble, the parameters estimation is gen-
erally a difficult task due to the complexity of the structure of
a NNs ensemble and large quantity of unknown parameters.
To reduce the difficulties of parameters estimation, the ESNs
are chosen for the individuals of the ensemble since ESN has
a lower computational complexity. The characteristics of the
ESN is that the input weights Win and the internal weights
W are given before training and fixed in the training process,
thus only the output weightsWout need to be estimated [15].
And as for the ensemble, only the weights w = {wj}lj=1
and the output weights of two ESNs Wout

1 and Wout
l−1 are

unknown. For more intuitive description, here the notation
θ is employed here to replace w,Wout

1 ,Wout
l−1. Thus, we can

construct the Bayesian regularization method to estimate the
unknown parameters.

B. BAYESIAN REGULARIZATION OF THE
POSTERIOR DISTRIBUTION
Consider the observed outputs with additive noise

ti = zi + εi (18)

where εi is a Gaussian noise with zero mean and the vari-
ance σ 2

ε . Based on the regression described in (17), the output
z(u∗, y∗, θ ) of the ensemble depends on the indirect input
u∗, direct inputs y∗ and a set of model weights θ . Then, the

conditional distribution can be written as the integral over
these parameters

p(t∗|u∗, y∗, θ ) =
∫
p(t∗|u∗, y∗, θ ) · p(θ |D)dθ (19)

where p(t∗|u∗, y∗, θ ) is a likelihood function, which denotes
the difference between the real observed targets t∗ and
the output z∗ of the ensemble when given the parame-
ters w andWout .

p(t∗|u∗, y∗, θ )

=

(
β

2π

)1/2

exp
(
β

2

{
f (u∗, y∗, θ )− t∗

}2) (20)

where β is a hyper-parameter with the value 1/β = σ 2
t .

y∗ = [y∗1, y
∗

2, · · · , y
∗
l ]
T , in which y∗2, · · · , y

∗

l−2 is the known
consumption of the adjustable users and y∗l is the gas holder
levels at the precious moment. y∗1 and y∗l−1 are the total
generation and consumption of the BFG system, respectively.

y∗1 = Wout
1 [u1(k), x1(k)] (21)

y∗l−1 = Wout
l−1 [ul−1(k), xl−1(k)] (22)

On the right side of (19), another posterior distribution
p(θ |D) is still unknown. Using the Bayes’ rule, p(θ |D) can
be written as

p(θ |D) =
p(D|θ )p(θ )

p(D)
(23)

If we assume the priori of p(θ ) is a Gaussian distribution,
the distribution p(θ |D) is written as [16]

p(θ |D) =
1
ZS

exp
(
−
β

2
ED −

α

2
EW

)
=

1
ZS

exp (−S(θ ))

(24)

where ZS is a normalizing constant.
The term ED is the contribution from likelihood p(D|θ ),

which assumes that the data is independent, can be written as
the product

p(D|θ ) =
N∏
i=1

p(tni |u
n
i , y

n
i , θ )

=
1

ZD(β)
exp

(
−
β

2

N∑
i=1

{
f (uni , y

n
i , θ )− t

n
i
}2)

=
1

ZD(β)
exp

(
−
β

2
ED

)
(25)

where now ZD is the normalizing constant given by the
integral over w and Wout which gives ZD(β) = (2π/β)N/2.
yni = [yni,1, y

n
i,2, · · · , y

n
i,l]

T , in which yni,2, · · · , y
n
i,l−2 is the

known consumption of the adjustable users and yni,l is the gas
holder levels at the precious moment. yni,1 and yni,l−1 can be
described as

yni,1 = Wout
1 [uni,1(k), x

n
i,1(k)] (26)

y∗i,l−1 = Wout
l−1

[
uni,l−1(k), x

n
i,l−1(k)

]
(27)
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FIGURE 4. Structure of NNs ensemble for BFG system.

The second term EW is the contribution from the prior over
the weights [16]

p(θ |α) = p(Wout
1 ,Wout

l−1,w|α)

=
1

ZW (α)
exp

(
3∑
i=1

[
−
αi

2
‖θ i‖

2
])

=
1

ZW (α)
exp

(
−

α

2
EW

)
(28)

where θ1 = Wout
1 , θ2 = Wout

l−1, θ3 = w, again ZW (α) is a
normalizing constant

ZW (α) =
∫

exp(−(α/2)EW )dθ

To evaluate the most probable weights θMP, we can max-
imize the posterior distribution p(θ |D) that is equivalent to
minimizing the function S(θ ). First, the function S(θ ) can be
linearized by Taylor series expansion and neglect the
third-order terms, it leads to the approximation

S(θ ) ≈ SMP + (1θ )TA(1θ ) (29)

whereA is the Hessian matrixA = ∇θ∇θSMP,1θ = θ−θMP
and S(θMP) has been written as S(θ )

S(θ ) =
3∑
i=1

[αi
2
‖θ i‖

2
]
+
β

2

N∑
i=1

{
f (uni , y

n
i , θ )− t

n
i
}2 (30)

Substituting (24) (20) into (19) leads to the relationship

p(t∗|u∗, y∗,D) ∝
∫ {

exp
(
−
β

2

{
f (u∗, y∗, θ )− t∗

}2)
· exp

(
−
1
2
(1θ )TA(1θ )

)}
dθ (31)

The function f (u∗, y∗, θ ) may now be linearly approximated
by Taylor expanding about θMP, i.e.,

f (u∗, y∗, θ ) ≈ f (u∗, y∗, θMP)+ gT1θ (32)

where g = ∇θ f (u∗, y∗, θ )|θ=θMP .
Substituting into (30) and evaluating the integral over θ

gives

p(t∗|u∗, y∗,D) =
1

(2πσ 2
t∗ )

1/2
exp

(
{t∗ − f (u∗, y∗, θMP)}2

2σ 2
t∗

)
(33)

where σ 2
t∗ = 1/β + gTAg, β is a hyper-parameter related to

the distribution of the output.

C. OPTIMIZATION OF HYPER-PARAMETERS
AND WEIGHTS
The optimal parameters including α, β, θ correspond to
the maximum of the posterior distribution of parameters
p(θ ,α, β|D). According to Bayes’ rules, the maximum of the
posterior distribution of parameters can also be interpreted as
an error function to minimize by taking the logarithm of the
likelihood function p(D|α, β, θ ), thereby giving

log p(D|α, β, θ ) = −α1EMPW1
− α2EMPW2

− α3EMPW3

−βEMPD −
1
2
ln(detA)

+
W1

2
lnα1 +

W2

2
lnα2 +

W3

2
lnα3

+
N
2
lnβ −

N
2
ln(2π ) (34)
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Here, A is the Hessian matrix A = ∇θ∇θSMP and can be
written as

A = H+ αI (35)

where H = β∇∇ED. If {λi}Wi=1 is the eigenvalue of
the matrix H, and then the eigenvalue of the matrix A
equals to

eig(A) =


λi + α1, 1 ≤ i ≤ W1

λi + α2, W1 ≤ i ≤ W2

λi + α3, W2 ≤ i ≤ W

(36)

To solve the optimal hyper-parameter α, we should cal-
culate the partial differential equations of (34) with respect
to α. Firstly, differential coefficient d ln(detA)/dαj should
be computed.

d
dαj

ln(detA) =
d
dαj

ln

(∏
i

(λi + αj)

)

=
d
dαj

∑
i

ln((λi + αj) =
∑
i

1
λi + αj

(37)

If we neglect the influence of dλi/dαj, (34) reaches
the maximal value, when the following equation is
found.

2αjEMPWj
= Wj −

Wj∑
i=1

αj

λi + αj
(38)

If we define

γ1 =

W1∑
i=1

λi

λi + α1
(39)

γ2 =

W2∑
i=W1

λi

λi + α2
(40)

γ3 =

W∑
i=W2

λi

λi + α3
(41)

Substitute (39) - (41) into (38), (38) can be rewritten as

2αEMPW = γ1 + γ2 + γ3 (42)

Now, we consider the maximization of (34) with respect
to β. Firstly, differential coefficient d ln(detA)/dβ should be
computed.

d
dβ

ln(detA) =
d
dβ

W1∑
i=1

ln(λi + α1)+
d
dβ

W2∑
i=W1

ln(λi + α2)

+
d
dβ

W∑
i=W2

ln(λi + α3) (43)

Since λi is the eigenvalues of matrix H = β∇∇ED, λi is
proportionate to β. And then

2βEMPD = N −
W1∑
i=1

λi

λi + α1

−

W2∑
i=W1

λi

λi + α2
−

W3∑
i=W2

λi

λi + α3

= N − (γ1 + γ2 + γ3) (44)

Based on the above derivation, the update equations
of α and β are obtained.

αnewi = γi/2EWi , βnew = (N − γ )/2ED (45)

where γ = γ1 + γ2 + γ3.
The optimal parameters θMP and the hyper-parameters

α and β can be optimized by an iterative process based on
the scale conjugate gradient. The detailed implementation
process that can be found in [17] will not go into details.

V. EXPERIMENTS AND RESULTS
In this study, one steel enterprise in China is selected as the
research object, and the historical data of the blast furnace gas
system is adopted for experiments. Firstly, some prediction
experiments are conducted for the total generation amount
of BFG, the total consumption amount of BFG and the gas
holder level of BFG, which can be used for monitoring the
variation of the system in the future. Secondly, according to
the prediction results, knowledge-based optimal control tech-
nique is employed for adjusting some unbalance conditions of
the BFG system by using the prediction results as the input
of the knowledge-based control model.

A. SOME PREDICTION EXPERIMENTS
First, we conduct some prediction experiments to demon-
strate the reliability of the proposed prediction model for the
generation amount, consumption amount, gas holder level of
the BFG system. The generation amount and the consumption
amount (excluding the adjustable users) belong to the time
series prediction. The prediction is completed by the two
ESN individuals. The embedding dimension of the two ESN
individuals of the predictionmodel is set as 60 and the number
of the neurons in the dynamic reservoir of the ESN is set
as 100. The number of the adjustable users of the BFG system
equals to 8, including the #1,2,3,4 boilers of the power plant
(corresponding to #1,2,3,4 GE in Fig. 1), the CCPP power
station, low pressure boiler (LPB) and #1,2 synthetizing units.
The parameters of the prediction model are optimized by the
Bayesian regularization method.

The prediction results of the total generation amount, and
the consumption amount of the BFG system are shown in
Figs. 5 and 6, respectively. From the Figs. 5 and 6, the
proposed method can predict the trend of the total genera-
tion amount and consumption amount of the BFG system.
Although, there are some prediction errors, the prediction
results can be used for the knowledge-based control model.

As for the prediction of the gas holder level, it belongs
to the factor-based prediction. The gas holder level is deter-
mined by its own state in the precious moment, the total
generation amount, the total consumption amount and the
consumption of the adjustable users. In this study, there are
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FIGURE 5. The prediction results of total generation amount of BFG.

FIGURE 6. The prediction results of total consumption amount (excluding
the adjustable users) of BFG.

eleven influential factors of the gas holder level. The predic-
tion results of the gas holder level of the BFG system are
shown in Fig. 7, from which we can see that the gas holder
level is certainly determined by these influential factors. The
generation amount and the consumption amount (excluding
the adjustable users) cannot be controlled, since they are
related to the production process. All the adjustable users can
be viewed as the controllable object, i.e., the consumption of
the adjustable users can be adjusted when the BFG system is
unbalance.

B. KNOWLEDGE-BASED CONTROL EXPERIMENTS
Knowledge-based control technique is based on the fuzzy
rules extracted from the large scale of operational data of
the domain expert. According to the prediction results, we
can monitor the variation of the system. If the performance
of the system cannot satisfy the demand of the production,
a control scheme is required for the system. In this case,

FIGURE 7. The prediction results of the gas holder level of BFG.

knowledge-based control scheme can be obtained by fuzzy
inference. The prerequisite of the fuzzy inference is the states
of the users of the system. As for the BFG system, the outputs
of the fuzzy inference are the states of the adjustable users,
based on which the adjusted amount of the adjustable users
can be calculated. The inputs of the fuzzy inference include
the gas holder level, the total generation amount, the total
consumption amount, the original states of the adjustable
users. Notably, the states of the adjustable users cannot be
changed without human interruption. The control objective
is the economic cost of the BFG system, including the con-
sumption of the outsourcing energy, the generation of the heat
energy and power energy, the waste of the byproduct energy
and the safety.

Firstly, we choose one adjustment point in the historical
data to make experiments. The goal of optimization is to
reduce the economic cost and control the gas holder level
of the BFG system below 225 km3, simultaneously. After
prediction, the gas holder level will exceed 225 km3. More-
over, the efficiency of the energy utilization is forecasted
based on the prediction results with low performance. Thus,
the extracted knowledge base is employed here to obtain
one effective control scheme. Based on the fuzzy rules-
based inference, the control scheme is reasoned as shown in
Table 1. From Table 1, the adjusted amount based on the pro-
posed method is obviously less than the original expert-based
adjusted amount in the industrial field. If the economic cost
can be reduced after the proposed method-based adjustment,
the proposed method is effective and at least superior to the
most-common-used method in the industrial field.

The goal of the control scheme is to save the economic
cost, which reflects in the following aspects shown in Table 2,
such as the reduced outsourcing energy, the reduced gas
consumed by boiler, the increased steam generated by boiler,
the increased power. From Table 2, the proposed method can
achieve one much better performance. It is obvious that the
proposed method can save 31.25kg standard coal equivalent
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TABLE 1. The control scheme of the proposed method.

TABLE 2. The optimal results produced by the control scheme.

FIGURE 8. The effect of the gas holder level after adjustment.

compared to the original human-based mode. This is because
the human-based control mode is carried out based on the
experiences of one domain expert while the proposed method
integrates the knowledge and experiences coming frommany
experts and provides one comprehensive judgment. Besides
the results shown in Table 2, the operational effect of the gas
holder level after the implementation of the control scheme
is shown in Fig. 8. From Fig. 8, the gas holder level is

predicted to exceed 225 km3 and reach 230 km3. After the
implementation of the control scheme based on the proposed
method, the gas holder level can be reduced in the desired
region.

VI. CONCLUSIONS
Aiming at the optimal control problem of byproduct gas
system in steel industry, a combination of knowledge-driven
control technique and NNs ensemble-based prediction is pro-
posed in this study. First, the community detection of complex
network-based samples selection method is proposed to par-
tition the different operational conditions of blast furnace gas
system. Meanwhile, the typical and valuable data samples are
selected from the original large-scale dataset. Second, a fuzzy
model is designed to extract the expert scheduling knowledge
from the historical data of the industrial process after commu-
nity detection. And then, a great deal of scheduling knowl-
edge is employed to compose a fuzzy rule base, which can be
used for fuzzy inference of control scheme with a new input.
Third, data-driven NNs ensemble is built to model the blast
furnace gas system for prediction. Based on the prediction
results, the control scheme can be reasoned by using the fuzzy
rule base constructed above. The most important advantage
of the proposed method is that the feasible control scheme
can be obtained under any operational circumstance due to
the introduction of expert knowledge. Theoretically, a more
reasoning and optimal operation scheme can be achieved
with the consideration of both the expert knowledge and the
prediction results. Finally, a byproduct gas system of one steel
industry is studied for experiments to verify the effectiveness
and practicability of the proposed method, which shows the
proposed technique is very meaningful to the energy reserva-
tion and emission reduction of industrial enterprises, and it
can be used to deal with more complicated problems.
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