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ABSTRACT A simple multi-objective cross-entropy method is presented in this paper, with only four
parameters that facilitate the initial setting and tuning of the proposed strategy. The effects of these parameters
on improved performance are analyzed on the basis of well-known test suites. The histogram interval number
and the elite fraction had no significant influence on the execution time, so their respective values could be
selected to maximize the quality of the Pareto front. On the contrary, the epoch number and the working
population size had an impact on both the execution time and the quality of the Pareto front. Studying the
rationale behind this behavior, we obtained clear guidelines for setting the most appropriate values, according
to the characteristics of the problem under consideration. Moreover, the suitability of this method is analyzed
based on a comparative study with other multi-objective optimization strategies. While the behavior of simple
test suites was similar to all methods under consideration, the proposed algorithm outperformed the other
methods considered in this paper in complex problems, with many decision variables. Finally, the efficiency
of the proposed method is corroborated in a real case study represented by a two-objective optimization
of the microdrilling process. The proposed strategy performed better than the other methods with a higher

hyperarea and a shorter execution time.

INDEX TERMS Cross-entropy method, multi-objective optimization, tuning parameters.

I. INTRODUCTION

Optimization plays a key role in modern science and
engineering. Multi-objective optimization has emerged as
a suitable choice for solving a wide range of techni-
cal problems associated with real-world applications that
often involve multiple and conflicting objectives [1], [2].
Nevertheless, no single point in non-trivial problems will
minimize all given objective functions at once [3]. Solv-
ing these kinds of problems is a difficult task, espe-
cially for non-convex problems [4]. Furthermore, these
problems usually include highly complex constraints and
uncertainties [5].

Two main approaches can be followed for solving multi-
objective optimization problems. In the a priori techniques,
several objectives are combined into a single one, either by
aggregation or by supplying some preferential information.
An approach that actually transforms the multi-objective
problem into a single-objective one, prior to optimization is
suggested in [6].

The second approach generates a set of optimal solu-
tions in the wider sense, i.e., when all the objectives are
simultaneously considered in the feasible region, then there
are no other superior solutions [7]. These solutions are known
as the Pareto set and the set of the corresponding objective
vectors are known as the Pareto front [8].

Evolutionary computation is inspired by ideas of natural
evolution and adaptation [9]. Nowadays, there are dozens
of successful applications of genetic algorithms [10], parti-
cle swarm optimization [10], simulated annealing [11] and
cross-entropy [12] reported in the literature. Due to their
population-based nature, evolutionary algorithms are able to
approximate the whole Pareto front in a single run [13]-[15].

The first cross-entropy method was introduced for proba-
bility estimation of rare events. The cross-entropy method has
since been adapted to multi-objective optimization [16]-[19].
Its effectiveness at solving not only typical test problems,
but also real-world challenges has been clearly demon-
strated [20], [21].
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Nowadays, evolutionary algorithms are usually highly sen-
sitive to variations in their parameters [22] and their behavior
and performance are usually studied in experimental contexts
that seek to give greater solidity to the existing theoretical
foundations [23]. So, selection of the proper values for the
algorithm parameters is one of the most demanding issues in
the application of evolutionary computation.

This paper introduces some modifications to the multi-
objective cross-entropy method previously proposed by
Beruvides et al. [24], in order to improve the setting of
parameters and convergence. Firstly, the sensitivity of the
algorithm to the remaining parameters is experimentally
studied. A 2-level half-fraction with a center point experi-
mental design was selected to evaluate the influence of the
epoch number, the working population size, the histogram
intervals number, and the elite fraction, on the quality of the
Pareto front. Subsequently, a surface analysis is performed
to obtain the relationship between the epoch number and the
population size with the execution time and the hyperarea
ratio. Finally, the performance of the proposed method is
compared with those from other evolutionary approaches,
showing better results with similar execution times.

The paper is organized in six sections. Following this
introduction, the algorithm description is presented. The third
section introduces a sensitivity analysis of the parameter
values in relation to Pareto front quality. Subsequently, a com-
parative study with other techniques to tackle well-known
test suites is depicted in section 4. A practical example to
demonstrate the efficacy of the proposed method is shown in
section 5. A two-objective optimization problem of the micro-
drilling process is presented. Finally, the main conclusions are
outlined and future works discussed.

Il. ALGORITHM DESCRIPTION
A. GENERAL DESCRIPTION

The proposed Simple Multi-Objective Cross-Entropy (SMOCE)

method (see Fig. 1) is based on the MOCE+ algorithm [24].
Similar to any multi-objective optimization technique,
SMOCE aims to solve the following problem:

min(y) =F(x) : x e R", yeR"” €))
where:
i<xi<uw, i={l,...,n} 2)
which is constrained by:
gi(x) <0, i={l,....p} 3)
At the core of SMOCE is the working population, at epoch ¢:
QY = {x1.yD", ..., (xz, y2)"); “

composed of the Z solutions x; = {x.1, ..., Xk »} and their
respective m-th evaluated objective functions f;, for the k-th
vector, X,

Yi = it = A0, - Yiem = fn(Xe)}- )
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FIGURE 1. Block diagram of the simple multi-objective
cross-entropy (SMOCE) algorithm.

The evolutionary process takes place on a loop with
a unique ending condition: arrival at the epoch number,
N. These are the two main differences between SMOCE,
the method addressed in this paper, and MOCE+, where
two nested loops and three different ending conditions are
considered. These modifications permit, on the one hand, a
reduction of objective function evaluations and, on the other
hand, the removal of some parameters such as the maximum
evaluation number and the convergence limit. Although these
parameters were introduced in the first version [24], in order
to stop the execution as soon as the Pareto front reached
the point of stability near the actual front, under practical
conditions, the main parameters, such as the epoch number,
were set ad-hoc. Consequently, removing some of them will
help to simplify the optimization method without loss of
actual effectiveness.

In the first epoch, an initial working population is randomly
created; in the following epochs, a new population, Q(¢),
is created from the previous one, Q(¢ — 1). The corresponding
values of the objective function for each solution are evalu-
ated after creating the population.

Considering the elite solutions that are extracted from the
current working population:

0 = (&, v, ..., ¢Eg, vp)"); (6)

where, (&;, v;)®) represents the i-th working population for
(x;, y). E = «Z is the elite solution number and « is the
elite fraction, both of which are required parameters of the
algorithm. These elite solutions are included in the next epoch
population, which introduces elitism in SMOCE (another
improvement with respect to the previous MOCE+). In the
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following sections, the main steps of the SMOCE algorithms
are explained in further detail.

B. GENERATING THE INITIAL POPULATION

Another difference between the (SMOCE) method that is
proposed here and the former (MOCE+-) method is the gen-
eration of the initial population. In the MOCE+ method,
the initial population is generated by using a normal random
distribution, while a uniform random distribution is used here,
ie.

i={l,...,n}, j={1,...,Z}; (7)

where, x; j is the value of the i-th decision variable in the
Jj-th solution; and, U (l;, ;) is the uniform random distribution
in the interval [/;, u;].

This distribution means that uniformly distributed indi-
viduals can be generated throughout the decision variables
domain, which is especially convenient for dealing with
problems where the Pareto solutions are concentrated in a
small section of the whole domain. When using a normal
distribution, the higher probability is close to the mean value,
which is either arbitrarily chosen or assumed in the center
of the variable interval. Evidently, the Pareto solution may
be located at a considerable distance from the selected mean
value, increasing the algorithm effort that is needed to reach
certain positions. On the contrary, uniform (flat) probability
distributions guarantee equal probability for creating initial
solutions in any region of the decision space.

xij = Ui, uw),

C. GENERATING A NEW POPULATION
The generation of the new working population, from the
current one at each epoch, is another important difference
between the two methods. In this new approach, the elite
solutions, {(§, v1), ..., (g, vE)}, are clustered by using the
histogram of the objective functions, instead of the histogram
of the decision variables. This approach appears to be most
appropriate because, a small variation in the decision space
may often lead to a large variation in the objective space.

D intervals are created in each dimension of the objective

space, to establish the histogram:
[gi’kigl‘,k]v l={17 ~7m}7 k={],,D}, (8)

where the lower and upper bounds for each interval are:

ciy = 0P + “- l)(bma* bI""; ©)
and
ix = B+ P — b (10)
and where:
MY = min({vi1,...,vig)), i={l,....,m}; (11)
and
oM™ =max({vi1,...,vig}), i={Ll,....m}; (12)
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are the minimum and maximum values of the i-¢h objective
in the elite population.

The D intervals obtained in this way are then combined
with the m variables, to obtain D" classes, and then all the «Z
elitist solutions are arranged into these classes. Thereafter, the
mean value and the standard deviations are computed from
the solutions of each class for each objective function:

#g®)}
* .
Mik = &V, i={l,...,m},
’ #{f;“”} Z Y
k=1{1,...,D™}; (13)
(k)
B Z#{V }(El(";) ,’k)z o 1
Gi,k_ #{s(k)}— ’ l_{y‘-"m}’
k={1,...,D"}; (14)

where, #{A} denotes the cardinality (i.e., the number of
elements) of the set {A}, and {(§, »)®)} is the subset of the
elite population belonging to the k-1 class, i.e.:

(EOEneo . ¢, <

V; < Cik,
Vi={l,...,m}}). (15)

Lastly, the new working population is composed of the
E elite solutions and the ¥, k = {1, ..., D™}, solutions
created from the D™ classes, giving:

W _ HE vONZ —E)
= E

These solutions from each class, are created by using nor-
mal random distributions with a mean, u; x,, and a standard
deviation, o; x, and truncated to the interval [/, u;], for i =

{1,...,m}:
(t) N(Mzk Oi ks i, u;),

. k=1{1,....D™. (16)

i={1,...,n. (7

D. EVALUATING THE POPULATION

The evaluation of the solutions not only implies computing
the values of the objective functions, but also the constraints,
which are considered by the penalty method. Therefore,
the constrained objective functions take the following form:

W= ﬁ(x(t))JrZy,gJ(x(’)
j=1
k={l,....Z} (18)

where, y; > 0 are the penalty coefficients assigned to each
constraint.

E. EXTRACTING THE ELITIST POPULATION
Elitism is considered in this method by including the elite
solutions in the working population of the next epoch.

The selection of the elitist population is also different in the
new approach. In the former (MOCE+-) method, the elite pop-
ulation includes all individuals with a lower rank than some
threshold value (which decreases from some initial value to
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TABLE 1. Levels of the algorithm parameters for the screening.

. Level val
Algorithm parameter evel values

Low Medium High

Epoch number, N 10 2505 5000
Working population size, Z 50 525 1000

Histogram intervals number, D 5 15 25
Elite fraction, & 0.10 0.35 0.60

zero, through the algorithm execution). On the contrary, in the
new (SMOCE) method, a prescribed fraction of the working
population, including the individuals with the lowest ranks,
is selected as the elite population in each epoch. This selection
is carried out through the Pareto ranking criterion, based on
vector dominance concepts. The Pareto rank of a vector, in a
vector set, is the number of the other vectors which dominate
it. The elite population is composed of those E solutions with
the lowest Pareto rank.

Ill. SENSITIVITY ANALYSIS OF THE ALGORITHM
PARAMETER VALUES

A. SCREENING

The first step in the selection of the most appropriate values
for the SMOCE parameters is to determine their influence
both on the Pareto front quality and on the execution time.
All the simulations were performed on a personal computer
with an Intel Core i3-2120 CPU (3.30 GHz) and 4.0 GB
RAM. During the experiments, all the computer resources
were taken up by the proposed optimization method and no
other applications nor communication tasks were running
simultaneously. The execution time is more inclusive rather
than the computing time for evaluation objective functions,
because it comprises other tasks such as sorting solutions and
the generation of new populations.

The four parameters of the SMOCE (epoch number,
N; working population size, Z; histogram intervals number,
D; and elite fraction, «); were considered in the intervals
shown in Table 1. A 2-level half-fraction with center point
design for the experiments was selected for the simulations.
Five replicates were executed for each experimental point.

Thirteen commonly used test problems, from three suites
conventionally known as MOP [25], ZDT [26] and WFG [27],
were considered in the simulations. All of them have two
objectives, but are very different with regard to their other
features (see Table 2).

Four metrics were used to evaluate the quality of the
Pareto fronts: the hyperarea ratio, HR; generational distance,
GD; convergence, CV; and spacing, SP. While genera-
tional distance and convergence measure the front con-
vergence (i.e., how close the front that is estimated is
to the true Pareto front), the spacing reflects its diver-
sity (i.e., how uniformly the solutions are distributed through-
out the Pareto front), and the hyperarea ratio combines both
criteria.
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TABLE 2. Features of the selected test problems.

Pareto front

Problem  Variables Modality
geometry

MOP1 1 Convex Unimodal/Unimodal
MOP2 3 Concave Unimodal/Unimodal
MOP3 2 Disconnected ~ Multimodal/Unimodal
MOP4 3 Disconnected =~ Multimodal/Unimodal
MOP6 2 Disconnected =~ Unimodal/Multimodal
ZDT1 30 Convex Multimodal/Unimodal
ZDT2 30 Concave Multimodal/Unimodal
ZDT3 30 Disconnected ~ Unimodal/Multimodal
WFG2 32 Disconnected ~ Unimodal/Multimodal
WFG3 32 Degenerated Unimodal/Unimodal
WFG4 32 Concave Multimodal
WFG5 32 Concave Deceptive
WFG6 32 Concave Unimodal

| @ Positive correlated QO Negative correlated l

D o
—_—— —_—

MOPI

MOP2

MOP3

MOP4

MOP6

ZDTI

ZDT2

ZDT3 :8:
WFG2

WFG3 ::
WFG4

WEG5

WFGS

t HA GD Cv SP

t HA GD Cv SP t HA GD CV SP t HA GD CV SP

FIGURE 2. Relationships resulting from the screening analysis.

The effect of each parameter was evaluated through a
multiple regression, by considering the Student 7-test of the
corresponding coefficients. The relationship is considered
significant at a 95% confidence level. Fig. 2 represents the
relationships that were obtained. The epoch number has a
direct relationship with the execution time in all the test prob-
lems under consideration. This fact was expected, in view of
the structure of the SMOCE algorithm, because this parame-
ter represents the only ending condition that was included.
An increase in the epoch number, also improves the front
diversity (expressed by an inverse relationship with the spac-
ing) in most of the test problems (except in MOPI and
MOP2). However, there is no significant relationship with
other metrics.

A rise in the population size increases the execution time
for all of the test problems. It also improves the (convergence)
and the (diversity) quality of the Pareto front that is obtained
in most of the test problems.

The execution time is not affected by the histogram interval
number. A rise in this parameter causes an improvement in
the front convergence (shown in the direct relationship with
the convergence metric and the inverse relationship with the
generational distance for most of the test problems), and in
front diversity (indicated by the inverse relationship with the
spacing). There is also a direct relationship with the hyperarea
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FIGURE 3. Execution time and hyperarea ratio vs. population size and
epoch number for MOP test-problem suite.

for most of the problems. Finally, the elite ratio has no influ-
ence on the execution time and the quality metrics, except in
the spacing for the problems in sets ZDT and WFG, where an
improvement was noted.

Considering the previous analyses, the values of the his-
togram interval number and the elite fraction were chosen at
their respective higher levels (i.e., D = 25 and ¢ = 0.65),
because they yielded a better quality Pareto front without
shortening the execution time.

B. RESPONSE SURFACE

The following response surface analysis was performed to
obtain the relationship between both the epoch number and
population size with the execution time and Pareto front
quality.

A full 3-level experimental design was selected, in order
to complete the study. Both factors (population size, Z, and
epoch number, N) were held at their respective levels and
used as screening (see Table 1). Twenty replications were
performed at each experimental point.

The hyperarea ratio was selected for the analysis of Pareto
front quality, because this parameter characterizes both con-
vergence and diversity. Fig. 3 shows the graphical represen-
tation of the execution time and hyperarea ratio obtained for
each experimental level for the MOP suite.

Both, the population size and the epoch number, have
a direct impact on the execution time as shown in Fig. 3.
On the contrary, they only increase the front quality up to
medium levels. After this point, there is no significant change
in the front quality. Therefore, the most convenient values for
the experimental factors are those corresponding (or near) to
the middle levels, i.e., Z = 525, N = 2505.

It is important to point out that the hyperarea ratio val-
ues obtained for this suite are very high. Except for the
MOP6 problem, the higher values are near to one. This result
means that the Pareto front that is modeled is close to the
theoretical solution.

Figs. 4 and 5 show the results for suites ZDT and WFG,
respectively. Similar behavior is depicted in both the execu-
tion time and the hyperarea ratio. In every case, the combi-
nation of medium levels (Z = 525, N = 2505) means that
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FIGURE 4. Execution time and hyperarea ratio vs. population size and
epoch number behavior for the ZDT test-problem suite.
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FIGURE 5. Execution time and hyperarea ratio vs. population size and
epoch number for WFG test-problem suite.

we can obtain near-optimal front quality within a reasonable
execution time.

The most noticeable difference is shown by the lower
values of the hyperarea ratio in the two last test suites
compared with MOP. This difference may be due to the
higher complexity of the problems in these suites. Never-
theless, the differences in execution times are negligible.
Accordingly, the execution time depends on the number of
evaluations, but not on the complexity of the optimization
problem (number of variables, characteristics of the target
function, etc.).

It should also be noted that the quality of the Pareto
front cannot be improved beyond some region independently
of any increase in the algorithm parameters (population
size and epoch number), at least, over the intervals under
consideration.

IV. COMPARISON WITH OTHER HEURISTIC METHODS
The WFG test suite was selected for comparing the perfor-
mance of the SMOCE with some of the most popular multi-
objective optimization heuristics due to the complexity of this
benchmark. The comparison was carried out not only with the
base (MOCE+) algorithm [24], but also taking into account
the following strategies:
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FIGURE 6. Performance comparison of SMOCE and other optimization heuristics.

« Non-Sorting Genetic Algorithm IT (NSGA-II) [28].

values were chosen so that the execution time would be

o Multi-Objective Evolutionary Algorithm based on
Decomposition (MOEA/D) [29].
o Multi-Objective  Particle ~ Swarm  Optimization
(MOPSO) [30].
o Strength Pareto Evolutionary Algorithm (SPEA-II) [31].
o Pareto Archived Evolutionary Strategy (PESA-II) [32].
The SMOCE parameters were selected on the basis of
the results shown in section 3, corresponding to the medium
level values of population size and epoch number, because
after these values, there is no remarkable increment in the
hyperarea ratio.
The population size and epoch number of the other heuris-
tics were selected in the ratio 1:4, i.e., the epoch number
that is four times higher than the population sizes. Both
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approximately equal (actually, slightly higher) than that of
the SMOCE. In all, 25 replications were performed for each
heuristic, in order to ensure algorithm convergence.

Fig. 6 depicts the main results. The effectiveness of the
SMOCE method (i.e., the average hyperarea ratio), for a
similar computational effort (given by the execution time),
is higher than the other strategies considered in the compari-
son, except for NSGA-II in relation to the specific benchmark
WFG4. It is important to remark that NSGA 1II has less
Z and N, but the execution time is longer than the proposed
method. The main rationale for this behavior is linked to the
computing time, not only used in evaluating the objective
functions, but also in other tasks such as sorting solutions and
generating new populations.
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b) Spindle, tool
and refrigeration
system

¢) Kistler Minidyn 9256
force dynamometer

d) Micro-drilling
experiment matrix

a) Ultra Precision Kern Evo Machine

FIGURE 7. Experimental setup.

Although the tests are not enough to consider that SMOCE
absolutely outperforms the other approaches under any cir-
cumstance, these outcomes clearly support the statement on
the effectiveness and efficiency of the proposed algorithms
and its potential application to real world problems.

V. TWO-OBJECTIVE OPTIMIZATION OF A
MICRODRILLING PROCESS. A PRACTICAL EXAMPLE.
Micro-scale manufacturing processes are non-linear, time-
variant processes that are difficult to represent with precise
mathematical equations. Among them, micro-mechanical
drilling has been widely applied and reported in various
applications. For instance, drilling of micro-holes is a key
process in laminated printed circuit boards. Nevertheless, this
widely applied process brings additional complexity to the
cutting mechanism as the edge radius is comparable to chip
thickness at low feeds [33], [34].

The selection of the optimal cutting conditions is a
key issue in micro-manufacturing processes. However, the
development of accurate models that relate objectives and
constraints with decision variables is not straightforward.
Likewise, computationally efficient strategies have to be pre-
pared before the optimization problem is in itself addressed.

A two-objective optimization problem of a microdrilling
process is selected, in order to demonstrate the efficiency of
the proposed algorithm in a real scenario. A two-objective
optimization problem focused on both production and qual-
ity maximization is the most common challenge from the
industrial viewpoint. Indeed, this optimization can be consid-
ered relatively simple from the academic viewpoint, but it is
truly challenging from the micro-manufacturing perspective.
The microdrilling process of a titanium-aluminum-vanadium
alloy (Ti6Al4V) was considered. A Kern-Evo high-precision
machining center (see Fig. 7) was used in the experimental
setup, equipped with a Kistler Minidyn 9256 piezoelectric
force dynamometer. Drills with a diameter of 0.2 mm were
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FIGURE 8. Results of the optimization methods applied to the
microdrilling process.

used for drilling 0.8 mm-deep holes. The following cutting-
parameter intervals (cutting speed, v; feed rate, f; and peck
drilling step, s), which are also the decision variables of the
optimization problem, were considered:

9.4 m/min < v < 27.6 m/min
10 mm/min < f < 200 mm/min
0.02 mm < 5 < 0.04 mm (19)

The first objective was the drilling time, t, which can be
computed by:

2
r:i[(E) +<’3)—2}+@ (20
o[ \'s s fz

where, hq is the hole depth and fj is the fast-feed used for
the backward motion. This objective represents the produc-
tivity process, as the lower the drilling time the higher the
number of manufactured holes in a given period.

The second optimization objective is the amplitude of the
vibrations, A, on the plane perpendicular to the drilling axis.
This goal characterizes the quality of the manufactured holes
and it is modeled using a two-layer feed-forward neural net-
work (i.e., a multi-layer perceptron):

A= CDNN(V,f, S) (21)

where, ®ny is a function described by:

ZWj 1

N
ONN(X) = ¢+ ; 1+ exp[—Z (bj +30 ulfxi)]
22)

where x = {x;} = {v,f, s} is the input vector; U = {u;;},
i={l...M},j = {1...N}, is the weights matrix of the
hidden layer; B = {b;},j = {1...N}, is the biases vector of
the hidden layer; W = {w;}, j = {1...N}, is the weights
vector of the output layer; and C = {c} is the bias of the
unique neuron of the output layer. Moreover, all implemented
functions for the case study are available in a repository [35].

It is obvious that both objectives should be minimized by
means of a high-productivity drilling process that guaran-
tees high-hole quality (closely related with the amplitude of
vibrations).

Furthermore, an important constraint should be considered
regarding the thrust force, F';, which should be lower than the
permissible thrust force, Fyy, that is pre-established to avoid
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FIGURE 9. Pareto set (a) and Pareto front (b) calculated by SMOCE.

buckling-related breakage of the tool. This constraint can be
expressed by:

F; < Fa; (23)

which, for a more convenient homogeneous representation,
can be rearranged as:

Iy

— —1<0. (24)
al

The thrust force, F, is also modeled using a multilayer
perceptron similar to (22):

Fo = &N, f, 5) (25)

fitted from the experimental data. The corresponding weights
and biases are given in [35]. The permissible force can be
determined with Euler’s equation:
257 .
Fu = nTmimin (26)
uL

where, E = 650 MPa is the Young’s modulus of the tool
material, I, = 9.52 x 107° mm?* is the minimum area
moment of inertia of the drill cross-section, . = 2 is the
coefficient that takes into account the boundary conditions,
L = 2.5 mm is the length of the drill flute, and n = 0.5 is a
security factor.

The optimization process was not only performed with the
proposed SMOCE algorithms but also with other techniques
used in the previous section. SMOCE and NSGA-II had the
same values for population size and epochs number (i.e.,
500), whereas for MOCE+, MOEAD, MOPSO and PESA-II,
the value, for both population size and epoch number, was
200. Finally, the population size and the epoch number were
set to 200 and 50, respectively for the SPEA-II method. These
parameters were chosen by simulations, in order to obtain the
best Pareto front quality on the basis of the hyperarea and the
execution time.
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In all, 25 replicates were run for each algorithm, in order
to analyze the convergence of the obtained Pareto front.
Fig. 8 depicts the hyperarea and the execution time from
each method considered in the comparative study. SMOCE
showed both a higher hyperarea and a lower execution time
than the other methods. Only the NSGA-II method yielded
a similar hyperarea but with a lengthier execution time.
Another important point relates to the convergence of the
Pareto fronts. The results of SMOCE show a lower spread
than the other techniques, meaning better convergence and,
therefore, higher reliability.

The Pareto set and the corresponding Pareto front, com-
puted with SMOCE, are shown in Fig. 9 as well as the
distribution of the non-dominated solutions. Solutions are
grouped into four well-differentiated sets: two corresponding
to higher values of cutting speeds and, the others, to the
higher values of the peck-drilling steps. Selecting the most
convenient solution relies on the technologist or the machine
tool operator, depending on the specific workshop conditions.
If the part or component quality is an important aspect, solu-
tions with lower vibrations will be selected, but higher drilling
time, should be selected. On the contrary, if productivity plays
akey role, the lower drilling time, corresponding to the higher
vibration levels, should be selected. Finally, other trade-off
solutions can be selected in other non-extreme conditions.

VI. CONCLUSION
This paper has presented a simple multi-objective cross-
entropy method. Only four parameters (epoch number, work-
ing population size, histogram interval number, and elite
fraction) are required, in order to perform the tuning process.
The analysis on the basis of well-known test suites has
demonstrated that the histogram interval number and the elite
fraction had no impact on improving the performance of the
proposed method, and therefore both were removed from the
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study. On the contrary, the epoch number and the working
population size had a remarkable influence on the execution
time. Likewise, the epoch number and the working population
size clearly influenced the Pareto front quality, up to a level,
where the quality was no longer improved. It should be noted
that this behavior was similar for all test suites considered in
this study.

The proposed method has also been compared with
other multi-objective optimization strategies to address well-
known test suites. The proposed strategy showed better
results in terms of hyperarea ratio for similar execution times.
Finally, the efficacy of the proposed method has been demon-
strated in a real case study represented by a two-objective
optimization problem of the microdrilling process. The pro-
posed strategy outperformed the other methods with higher
hyperarea and shorter execution time.

Two important issues will be addressed in future works.
The first one is the way the algorithm deals with constraints,
which is based on the penalty method. This approach has
usually been highly dependent on the penalty values, which
are often selected by trial and error. Secondly, the self-
adaptiveness of the parameters has the potential to improve
both the effectiveness and the efficiency of the algorithm,
so the introduction of this capability will be considered in
further studies.
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