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ABSTRACT Precoding algorithm is used to transmit signals effectively and to reduce the interferences from
other user terminals in the massive multiple-input–multiple-output (MIMO) systems. In order to decrease
the computational complexity of the precoding matrix, this paper proposes a new precoding algorithm.
We use Chebyshev iteration to estimate the matrix inversion in the regularized zero-forcing precoding (RZF)
algorithm. It does not need to compute the matrix inversion directly but uses iterations to estimate the matrix
inversion. Therefore, the computational complexity can be decreased in this way. Furthermore, Chebyshev
iteration has lower convergence rate, and it can gain precoding matrix quickly. This paper analyzes the
performance of the Chebyshev-RZF precoding algorithm using average achievable rate and computes the
complexity of the algorithm. Then, this paper optimizes initial values of the Chebyshev iteration algorithm on
the basis of the feature of massive MIMO systems and makes initial values easier to be obtained. Simulation
results show that after two iterations, the Chebyshev-RZF precoding algorithm can get similar average
achievable rate as the RZF precoding algorithm does. An optimized Chebyshev-RZF precoding algorithm
gets similar performance to the Chebyshev-RZF precoding algorithm after one iteration.

INDEX TERMS RZF precoding, Chebyshev iteration, Newton iteration, massive MIMO.

I. INTRODUCTION
Mobile communication has developed fast after several gen-
erations. The increase of data traffic and the popularity of
intelligent terminals lead to high requirement of network.
However, the 4G cannot satisfy users in aspects of capac-
ity, speed and spectrum. The massive MIMO technology
is one of important technologies of the 5G [1] and it pro-
vides high transmission rate, spectral efficiency and power
efficiency [2]. In the massive MIMO systems, the base sta-
tion (BS) is equipped with a large number of antennas and
serves many users. However, a large number of antennas
may result in pilot pollution, cell interference and multiuser
interference at the user terminal (UT). In order to avoid this
interference and enhance the accuracy of signal transmission,
the transmitting signals are precoded at the BS using precod-
ing algorithms.

Precoding algorithms need to get the channel state infor-
mation (CSI) first. UTs transmit mutually orthogonal pilot
signals to the BS and then the BS obtains CSI from
pilot signals. Then Precoding algorithms use CSI to create
a related precoding matrix. Precoding algorithms can be
divided into linear precoding algorithms and non-linear pre-
coding algorithms. Linear precoding algorithms contain zero-
forcing (ZF) precoding algorithm, minimum mean square
error (MMSE) precoding algorithm, matched filter (MF)
precoding, regularized zero-forcing (RZF) precoding and
so on. Non-linear precoding algorithms include Constant
Enveloper (CE) algorithm, dirty paper coding (DPC) pre-
coding algorithm, vector perturbation (VP) precoding algo-
rithm and Tomlinson-Harashima precoding (THP) algorithm.
In the massive MIMO systems, linear precoding algorithms
are used because of their low complexity [3]. Particularly,
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RZF precoding algorithm is improved from ZF precoding
algorithm and has better performance. Therefore, this study
chooses RZF precoding algorithm.

There is amatrix inversion in the RZF precoding algorithm.
If it is computed directly, it leads to a large computational
complexity with the increase of the number of antennas as
exponential form. Therefore, it is quite important to find a
way to reduce the complexity of precoding algorithms [4].

There are two research directions in recent years to reduce
the complexity of matrix inversion. The first method is to
express the matrix inversion as the polynomial expansion
and then truncate it [5]. Polynomial expansion applies into
the precoding algorithm includes Taylor series, Neumann
series [6] and Kapteyn series [7]. The Kapteyn series has bet-
ter performance than Neumann series and Taylor series gets
the worst performance under the same conditions. The second
method is to use iteration algorithms to get the estima-
tion of matrix inversion. Many iteration algorithms have
been used in precoding algorithms. In [8], the successive
over-relaxation (SOR) iteration is used to evaluate the matrix
inversion in RZF precoding. Symmetric successive over
relaxation (SSOR) is improved from SOR and estimates
the matrix inversion in ZF precoding [9]. Recently, some
researchers try to use Newton iteration algorithm to approxi-
mate the matrix inversion [10]–[12].

The main contributions of this paper are as follows. Firstly,
the paper applies Chebyshev iteration into RZF precoding
and reduces complexity of RZF precoding. Secondly, we can
get the inversion matrix faster. Thirdly, the initial value of
improved Chebyshev-RZF precoding is easier to be gotten
and the performance of Chebyshev-RZF precoding is better.

The rest of this paper is organized as follows. In Section II,
systemmodel, RZF precoding matrix and the average achiev-
able rate are described. In Section III, Newton iteration
algorithm, Chebyshev iteration algorithm and improved
Chebyshev iteration algorithm are used in RZF precoding
algorithm. Then the complexity of Newton iteration and
Chebyshev iteration are calculated. In Section IV, the aver-
age achievable rate of Newton-RZF precoding algorithm,
Chebyshev-RZF precoding algorithm and RZF precoding
algorithm are simulated. Section V concludes the paper.

II. SYSTEM MODEL
This section defines the massive MIMO system with flat-
fading channel. We consider the downlink channel of a mas-
sive MIMO system. The system includes an M -antenna BS
and K single-antenna UTs and it is shown in Fig. 1. In the
uplink channel, UTs transmit pilot signals to the BS under
TDD mode and then the BS gets the CSI using reciprocity
between uplink channel and downlink channel. The estimated
channel between the BS and UTs is modeled as Ĥ ∈ CM∗K

and it can be expressed as Ĥ = [ĥ1, . . . , ĥK ] where ĥk ∈
CM∗1 is the channel between the BS and the k-th UT. ĥk fol-
lows Gaussian distribution CN (0M∗1,8) where 8 ∈ CM∗M

is the channel covariance matrix. The imperfect channel

FIGURE 1. System model.

estimate [5]

ĥk =
√
1− τ 2hk + τnk (1)

where hk is the real channel matrix. τ ∈ [0, 1] is the
scalar parameter affecting the quality of channel estimation.
nk is the estimated channel noise which follows the Gaussian
distribution CN (0, σ 2) and it is independent and identically
distributed with hk . When τ = 0, the estimated channel
matrix equals to the real channel.

The received signal yk at the k-th UT is

yk = hHk x+ zk (2)

where x is the transmitting signal. zk is the additive
white Gaussian noise following the Gaussian distribution
CN (0, σ 2).
In order to reduce multiuser interference, the transmitting

signal is precoded at the BS. The data signal is set as s =
[s1, . . . , sK ]T where sk is the signal which is transmitted to
the k-th UT. Based on this assumption, the transmitting signal
can be expressed as

x = Gs (3)

where G is a precoding matrix. In this study, we use RZF
precoding algorithm and its precoding matrix is defined as

G = β (ĤĤH
+ ξIM )−1Ĥ (4)

where β ensures G to satisfy the equation tr(GGH) = P.
P is the transmitting power at the BS. ξ is a regularization
coefficient. When ξ → 0, the RZF precoding matrix is equal
to ZF precoding matrix. When ξ → ∞, the RZF precoding
matrix is similar to MF precoding matrix.

The signal to interference and noise ratio (SINR) at the
k-th UT is [5]

SINRk =
hHk gkg

H
k hk

hHk GGHhk -hHk gkg
H
k hk+σ

2
(5)

where gk is the k-th column of the precoding matrix.
Its corresponding achievable rate is shown as

r = log2(1+ SINRk ) (6)

We use average achievable rate tomeasure the performance
of precoding algorithms.
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III. CHEBYSHEV ITERATION
In this section, we use Newton iteration algorithm and
Chebyshev iteration algorithm to estimate the matrix inver-
sion of RZF precoding algorithm and reduce its compu-
tational complexity. Then we optimize the initial value of
Chebyshev iteration algorithm. Compared with Newton iter-
ation algorithm, Chebyshev iteration algorithm has higher
convergence rate.

A. NEWTON ITERATION
As for the question f (x) = x−1−A, we can use Newton iter-
ation algorithm to get the answer x. The traditional Newton
iteration algorithm is represented as [13]

xn+1 = xn −
f (xn)
f ′ (xn)

(7)

where n ∈ (0,+∞) is the iteration time. Then we put
equation (7) into f (x) = x−1 − A, and we can obtain the
Newton iteration process.

Xn+1 = Xn(2I− AXn) (8)

When n = 0, X0 is the initial value of iteration. With the
increase of iteration, Xn gets closer to A−1. When n → ∞,
lim
n→∞

Xn = A−1.
Newton iteration process can be converged when

X0 = αAT. α can be gained as follows.
WhenA is a Hermitematrix, we can get the diagonalization

based on eigenvalues of matrix A as

A = U6UT (9)

where U is unitary matrix. 6 = diag(δ1, δ2, . . . δn) and δn is
eigenvalue of A.

According to X0 = αAT, if A is a Hermite matrix, X0 is
also a Hermite matrix. Therefore, we can get the diagonaliza-
tion based on eigenvalues of matrix X0 as

X0 = U9UT (10)

where 9 = αdiag(δ1, δ2, . . . δn).
Similarly, we can get the diagonalization of AXn as

AXn = URnUT (11)

where Rn = diag(pn1, p
n
2, . . . , p

n
k ) is the eigenvalue of AXn.

pni = αδ
2
i .

Then we multiply A on the left side of equation (8)

AXn+1 = AXn(2I− AXn) (12)

and put equation (11) into it. We can get

URn+1UT
= URnUT

(
2I− URnUT

)
(13)

Then equation (13) is reduced to

URn+1UT
= 2URnUT

− UR2
nU

T (14)

We can get iteration about eigenvalue

pn+1i = 2pni −
(
pni
)2
= 1−

(
1− pni

)2 (15)

According to equation (15), we can simply it as

1− pn+1i =
(
1− pni

)2 (16)

In order to make equation (8) converge,
∣∣1− p01∣∣ < 1.

According to pni = αδ
2
i , p

0
1 = αδ

2
1 . Therefore, the condition

of convergence is 0 < α < 2
δ21
.

According to [14], we can set α = 2
δ21+δ

2
r
where δ1 is the

minimum characteristic value of A and δr is the maximum
characteristic value of A.

As for RZF precoding algorithm, A = ĤĤH
+ ξIM . After

some iterations, Xn gets closer to the matrix inversion of
ĤĤH

+ ξIM . In the massive MIMO system, we can treat
δ21 = δ

2
r = M2. Therefore, the initial value X0 is

X0 =
1
M2A

T (17)

The Newton-RZF precoding algorithm is shown in detail
as Algorithm 1 where n is the iteration times.

Algorithm 1 Newton-RZF Precoding (Input H; Output G)

1. A = (ĤHĤ+ ξIk )
2. σ1 = λmax(A), σr = λmin(A)
3. X = 2

σ1+σr
AT

4. times = 0
5. while times<n
6. T = AX
7. X = X(2I− T)
8. times = times +1;
9. End
10. G = βNH

B. CHEBYSHEV ITERATION
Newton iteration algorithm make the matrix inversion eas-
ier to be gotten. However, the Newton iteration algorithm
is two-order convergence and its convergence rate is slow.
In consideration of three-order convergence, Newton iteration
algorithm can be changed into [15]

xn+1 = xn −
f (xn)
f ′ (xn)

−
f
′′

(xn)
2f ′ (xn)

(
f (xn)
f ′ (xn)

)2

(18)

The equation (18) is Chebyshev iteration algorithm. Sim-
ilarly, we put it into f (x) = x−1 − A and get Chebyshev
iteration process

Xn+1 = Xn(3I− AXn(3I− AXn)) (19)

According to Newton iteration algorithm, the initial value
of iteration is also X0 = αAT.

In terms of RZF precoding, (ĤHĤ+ξIk ) is Hermitematrix,
so it replaces the matrixA and put it into Chebyshev iteration
process. According to Newton iteration, we can first suppose
the initial value is X0 =

2AT

δ21+δ
2
r
[16]. Then we put X0 into the

condition of convergence, we can have

||I− AX0|| =
δ21 − δ

2
r

δ21 + δ
2
r
=
κ2 − 1
κ2 + 1

(20)
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where κ = δ1
δr
. According to (20), when X0 =

2AT

δ21+δ
2
r
,

||I− AX0|| < 1 [17].
The Chebyshev-RZF precoding algorithm is shown in

detail as Algorithm 2 where n is the iteration time.

Algorithm 2Chebyshev-RZF Precoding (InputH; OutputG)

1. A = (ĤHĤ+ ξIk )
2. σ1 = λmax(A), σr = λmin(A)
3. X = 2

σ1+σr
AT

4. times = 0
5. while times<n
6. T = AX
7. X = X(3I− T(3I− T))
8. times = times +1;
9. End
10. G = βNH

C. OPTIMIZATION OF INITIAL VALUE
The initial value decides the convergence rate. Therefore,
a good initial value can make the convergence rate quicker.
We find thatA = (ĤHĤ+ξIk ) is a positive definite symmet-
ric matrix, so we set the initial value as

X0 = βI+ αA (21)

Then the diagonalization of AX0 is

AX0 = U
(
β6 + α62

)
UT (22)

Corresponding eigenvalue is

f (δ) = βδ + αδ2 (23)

α and β need to make ||I−AX0||2 minimum, and we can get

β =
4δmid

2δ2mid − θ
2

(24)

α =
−2

2δ2mid − θ
2

(25)

where δmid =
δ1+δn

2 and θ = δ1 − δmid . Then we can get
X0 =

4δmid
2δ2mid−θ

2 I−
2

2δ2mid−θ
2A.

In the massive MIMO system, we use approximate value
of α = − 1

M2 and β = 2
M . In this way, we avoid finding

eigenvalues of A. Finally, the initial value is

X0 =
2
M

I−
1
M2A (26)

D. ANALYSES OF COMPLEXITY
First of all, we define the complexity as the number of matrix
additions and matrix multiplications.

We calculate the complexity of Newton iteration algo-
rithm and Chebyshev iteration algorithm. According to equa-
tion (8), one Newton iteration needs one matrix addition and
two matrix multiplications. According to equation (18), one

TABLE 1. Complexity of Newton iteraion and Chebyshev iteration.

Chebyshev iteration needs two matrix additions and three
matrix multiplications. It can be seen clearly in the Table 1.

When Newton iteration algorithm and Chebyshev iteration
algorithm are used in RZF precoding algorithm, we suppose
that Ĥ, s, 2I, 3I and ξ , β

M2 are known matrices and constants
and we do not need to calculate them.

In the process of Newton-RZF precoding algorithm, the
transmitting signal is x = β

M2 Ĥ(ĤHĤs+ ξs) after one itera-
tion. Steps of the algorithm are 1) one matrix and vector mul-
tiplication Ĥs; 2) onematrix and vector multiplication ĤHĤs;
3) one constant and vector multiplication and one matrix
addition ĤHĤs+ ξs; 4) one matrix and vector multiplication
Ĥ(ĤHĤs + ξs); 5) one constant and vector multiplication
β

M2 Ĥ(ĤHĤs + ξs). According to these steps, Newton-RZF
precoding algorithm needs 3KM + M + K multiplications
and 3KM-2M additions after one iteration.

When we get transmitting signal after two Newton itera-
tions, the transmitting signal is

x =
β

M2 Ĥ
(
2I−

1
M2

(
ĤHĤ+ ξI

) (
ĤHĤ+ ξI

))
× (ĤHĤs+ ξs) (27)

In this process, V1 = (ĤHĤs + ξs) has been calculated
and it is a K∗1 vector. Steps of the process are 1) One matrix
and vector multiplication 2IV1; 2) one matrix and vector
multiplication V2 =

(
ĤHĤ+ ξI

)
V1; 3) one matrix and

vector multiplication V3 =

(
ĤHĤ+ ξI

)
V2; 4) one con-

stant and vector multiplication 1
M2V3; 5) one vector addition

2IV1 −
1
M2V3; 6) one matrix and vector multiplication and

one constant and vector multiplication β

M2 Ĥ(2IV1 −
1
M2V3).

Newton-RZF precoding algorithm after two iterations needs
7KM +M +K multiplications and 7KM-4M +K additions.

Similarly, we can calculate Newton-RZF precoding algo-
rithm after three iterations and it needs 15KM + 13K + M
multiplications and 15kM-8M + 3K additions.

Analyses above are shown in Table 2.

TABLE 2. Complexity of Newton-RZF precoding algorithm.

In the process of Chebyshev-RZF precoding algo-
rithm after one iteration, the transmitting signal is also
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x = β

M2 Ĥ(ĤHĤs + ξs) and its complexity is the same as
Newton-RZF precoding algorithm.

When we gain the transmitting signal after two Chebyshev
iterations, the transmitting signal is

x =
β

M2 Ĥ
(
3V3 −

1
M2

(
ĤHĤ+ ξI

) (
ĤHĤ+ ξI

)
×

(
3V3 −

1
M2V3

))
(28)

where V3 is the vector given above. Steps of the process
are 1) one matrix and vector multiplication and one constant
and vector multiplication 3V3 and 1

M2V3; 2) one vector and

vector addition V4 =

(
3V3 −

1
M2V3

)
; 3) two matrix and

vector multiplications V5 =

(
ĤHĤ+ ξI

) (
ĤHĤ+ ξI

)
V4;

4) one constant and vector multiplication 1
M2V5; 5) one vector

and vector addition 3V3 −
1
M2V5; 5) one matrix and vector

multiplication and one constant and vector multiplication
β

M2 Ĥ (3V3 −
1
M2V5). Chebyshev-RZF precoding algorithm

after two iterations needs 11KM + 9K + M multiplications
and 11KM-6M + 2K additions.
Analyses above are clearly shown in Table 3.

TABLE 3. Complexity of Chebyshev-RZF precoding algorithm.

According to analyses above, it can be seen that Chebyshev
iteration is more complex after one iteration than Newton
iteration. However, when two algorithms get the same per-
formance with the same initial value, Chebyshev iteration
algorithm needs less iterations and it is less complex than
Newton iteration algorithm. The relationship between the
number of iterations of Chebyshev iteration algorithm and
Newton iteration algorithm is

‖E0‖2
m
= ‖E0‖3

n
(29)

where E0 = I − AX0, m is the number of Newton iteration
and n is the number of Chebyshev iteration. Then we can get

m
n
=

ln 3
ln 2
≈ 1.585 (30)

IV. SIMULATION RESULTS
In this section, we use Chebyshev iteration algorithm and
some other algorithms to evaluate the matrix inversion in
RZF precoding, and compare their average achievable rate.
We assume the number of transmitting antennas is 256,
the number of single-antenna users is 32. The channel covari-
ance matrix uses the exponential model [8]i,j = aj−i,
a = 0.1.

Fig. 2 compares the average achievable rate of Chebyshev-
RZF precoding algorithm with other precoding algorithms,

FIGURE 2. Average achievable rate (τ = 0.1,n = 1).

FIGURE 3. Average achievable rate (τ = 0.1,n = 2).

including Newton-RZF precoding, Neumann-RZF precod-
ing and Taylor-RZF precoding. The estimated channel is
imperfect, and τ is 0.1. RZF precoding algorithm compute
the matrix inversion directly, so it has best performance. Its
performance is a standard. After one iteration, Chebyshev-
RZF precoding algorithm has better performance. With the
increase of SNR, the advantage of RZF precoding algorithm
also enhances. Moreover, Chebyshev-RZF precoding algo-
rithm is always better than other precoding algorithms.

Fig. 3 shows the performance of precoding algorithms after
two iterations. The average achievable rate of Chebyshev-
RZF precoding algorithm gets close to that of RZF precoding
algorithm, and it is higher than other precoding algorithms.
With the increase of SNR, the advantage is more obvious.
Chebyshev-RZF precoding algorithm and Newton-RZF pre-
coding algorithm are better than Taylor-RZF precoding algo-
rithm and Neumann-RZF precoding algorithm in Fig. 2 and
Fig. 3. Therefore, we compares Chebyshev-RZF precoding
and Newton-RZF precoding in the next simulation.

In Fig. 4, we simulate average achievable rate of
Chebyshev-RZF precoding and Newton-RZF precoding
algorithm under different channel estimation parameter.
We choose that Chebyshev-RZF precoding iterates two times
and Newton-RZF precoding iterates three times. It can
be found that Newton-RZF precoding algorithm’s perfor-
mance is similar to RZF precoding algorithm’s performance,
but Chebyshev-RZF precoding algorithm still better than
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FIGURE 4. Average achievable rate (Chebyshev-RZF: n = 2; Newton-RZF:
n = 3).

FIGURE 5. Average achievable rate after optimizing initial
value (τ = 0.1,n = 1).

FIGURE 6. Average achievable rate after optimizing initial
value (τ = 0.1,n = 2).

Newton-RZF precoding algorithm. Besides, the complexity
of Chebyshev-RZF precoding algorithm after two iterations
is lower than Newton-RZF precoding algorithm after three
iterations from analyses of complexity in Section III. There-
fore, Chebyshev-RZF precoding gets better performancewith
lower complexity than Newton-RZF precoding.

In Fig. 5, red lines are the performances of Newton-RZF
precoding algorithm and Chebyshev-RZF precoding algo-
rithm after optimizing their initial values. It can be seen that
their performance is much better than previous ones.

In Fig. 6, it can be seen that the average achievable rates
of Newton-RZF precoding algorithm and Chebyshev-RZF

precoding algorithm after optimizing initial values get much
closer to RZF precoding algorithm after two iterations and
the complexity of Newton-RZF precoding algorithm is lower
than Chebyshev-RZF precoding algorithm when the number
of iteration is the same. Therefore, we can use optimized
Newton-RZF precoding algorithm after two iterations.

V. CONCLUSION
This paper introduces Newton iteration algorithm and
Chebyshev iteration algorithm and uses them to estimate the
matrix inversion in RZF precoding. Compared with com-
puting matrix inversion directly, Chebyshev-RZF precoding
reduces computational complexity. Moreover, we compare
the Chebyshev iteration with Newton iteration in aspects of
convergence rate and complexity.When they use the same ini-
tial value, Chebyshev-RZF can get good performance faster
with lower complexity. Furthermore, this paper optimizes the
initial value of Chebyshev iteration algorithm so as to make it
easier to be gotten. According to simulation results, the per-
formance of Chebyshev-RZF precoding algorithm is better
than that of Newton-RZF precoding algorithm under the same
iterations. By optimizing the initial values of Chebyshev algo-
rithm, the improved Chebyshev-RZF precoding algorithm
can get better performance and lower complexity compared
with Chebyshev-RZF precoding. Furthermore, the improved
Chebyshev-RZF precoding algorithm can get similar average
user arrival rate to RZF precoding after one iterations.
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