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ABSTRACT We consider the problem of sampling pulse streams with known shapes. The recent finite
rate of innovation (FRI) framework has shown that such signals can be sampled with perfect reconstruction
at their rate of innovation, which is usually much lower than the Nyquist rate. Although FRI sampling of
pulse streams was treated in various works, either the work was unstable for high rate of innovation, or
the sampling stage was complex and redundant. In this paper, we propose an FRI sampling and recovery
method for pulse streams, which is based on the real parts of the Fourier coefficients. The proposed method
is simple and efficient, and leads to stable recovery even when the rate of innovation is very high. This is
achieved through modulating the input signal in each channel with a properly chosen cosine signal, followed
by filtering with a low-pass filter. Since the modulating process will lead to the signal spectrum aliasing, we
propose a spectrum de-aliasing algorithm to solve this problem, resulting in the real parts of a band of Fourier
coefficients from each two channels. Combining with the multi-channel sampling structure, we propose a
more efficient way to obtain arbitrary frequency bands from the aliased spectrum, which improves the utility
of the signal spectrum. By using a sparsity-based recovery algorithm, the time delays and amplitudes of the
pulse streams can be recovered from the obtained real parts of the Fourier coefficients. Finally, simulation
results have shown that the proposed scheme is flexible and exhibits better noise robustness than previous
approaches.

INDEX TERMS Pulse streams, sub-Nyquist sampling, finite rate of innovation (FRI), Fourier coefficients,
multi-channel.

I. INTRODUCTION
Thewell known Shannon-Nyquist theorem states that in order
to perfectly reconstruct an analog signal from its samples, it
must be sampled at the Nyquist rate, i.e., twice its highest
frequency [1]. This assumption is required when the only
knowledge on the signal is that it is bandlimited. However,
other prior knowledge on the signal, rather than band lim-
itation, can be exploited in order to reduce the sampling
rate. A specific prior was explored by Vetterli et al. [2],
Maravic and Vetterli [3], and Blu et al. [4], who considered
signals consisting of a stream of short pulses, where the pulse
shape is known. Such signals are prevalent in applications
such as wireless communication [5]–[7], bio-imaging [8], [9]
and radar [10], [11]. These parametric signals have a finite
number of degrees of freedom per unit time, also known

as the finite rate of innovation (FRI) property. The rate of
innovation is the average number of degrees of freedom
per unit of time. It was shown that, by using an adequate
sampling kernel and a sampling rate greater or equal to the
rate of innovation, it is possible to reconstruct such signals
uniquely. The FRI framework treats sampling and recovery
of signals characterized by a finite number of degrees of
freedom per unit time. For such models, the goal is to design
a sampling scheme operating at the innovation rate, which
is the minimal possible rate from which perfect recovery is
possible [12]–[14]. In many cases the FRI sampling rate is
much lower than the Nyquist rate.

Following this point of view, various single channel sam-
pling methods were proposed based on Gaussian kernels [2]
or polynomial and exponential reproducing kernels [15], [16].
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However, these methods are instable for a large number of
pulses per unit time. As mentioned in [3], Gaussian kernels
are unstable when the pulse number is larger than 6. The
authors in [17] also show that the polynomial and exponential
reproducing kernels are unstable when the pulse number is
larger than 5. In [2], the authors proposed Sinc sampling
kernel, i.e., ideal low-pass filter (LPF), to obtain the Fourier
coefficients. They showed that the time delays and amplitudes
of the pulse streams can be recovered from a set of the signal’s
Fourier coefficients. However, using a LPF can only extract
a consecutive set of Fourier coefficients, which would lead
to a poor recovery performance. To extract arbitrary sets of
Fourier coefficients, Tur et al. [17] introduced a pre-sampling
filtering scheme. Such sampling kernel required multiple
pass-bands and extremely high frequency selectivity, which
are difficult to satisfy when designing a practical analog filter.

Above methods are composed of a single sampling chan-
nel. Multichannel sampling schemes offer additional degrees
of freedomwhich can be utilized to achieve the rate of innova-
tion. The work in [18] was the first to address multi-channel
sampling scheme to obtain discrete Fourier coefficients dis-
tributed over a larger part of the signal’s spectrum. They
suggest the use of multi-channel mixers and integrators to
directly compute and sample the Fourier coefficients. In this
method, one channel can only obtain one Fourier coefficient.
Implementing this kind of multi-channel circuits in hardware
results in a complicated system, characterized by high num-
ber of components and large physical dimensions. Another
multi-channel sampling scheme was proposed in [19]–[21]
to sample distinct bands of the Fourier coefficients. However,
in order to avoid spectrum aliasing, this approach samples a
band of Fourier coefficients through a complex and redundant
way, in which the desired band is modulated to the pass-
band of a BPF and then, after filtering, is demodulated to the
baseband. In [22] we have proposed a simplified FRI sam-
pling system for pulse streams, based on constraint random
modulation. It present a simple and efficient way to sample
distinct bands of the pulse streams’ spectrum. However, a
drawback of this system is that it can only obtain a few
constraint bands from the aliased spectrum,which reduces the
utility of the signal spectrum and would affect the recovery
performance in the presence of noise.

In this paper, we build on previous work in [22] and
propose a more efficient way to obtain arbitrary frequency
bands from the aliased spectrum, which improves the utility
of the signal spectrum as well as the recovery performance
in the presence of noise. Specifically, we propose a simpli-
fied multi-channel FRI sampling system for pulse streams
to obtain the real parts of arbitrary bands of Fourier coeffi-
cients. This is achieved through modulating the input signal
in each channel with a properly chosen cosine signal and
then filtering with a LPF, followed by sampling at twice
its cut-off frequency. The sampling structure is very simple,
but the modulating process will lead to the signal spec-
trum aliasing and unavailable. Note that the zero-frequency
component of the aliased spectrum is equal to the real part

of the modulation-frequency component of the input signal
spectrum. We propose a spectrum de-aliasing algorithm to
calculate the real parts of the Fourier coefficients one by
one from two staggered and aliased spectrums, which can
be obtained from each two channels with close modulation
frequencies. We next present a sparsity-based recovery algo-
rithm to recover the time delays and amplitudes of the pulse
streams by using these real parts of the Fourier coefficients.
Finally, simulation results demonstrate the effectiveness and
robustness of our system.

The remainder of the paper is organized as follows:
Section III establishes the signal model of pulse streams and
then proposes a FRI-based multi-channel sampling frame-
work to obtain the real parts of distinct bands of Fourier
coefficients. In Section IV, a sparsity-based recovery algo-
rithm is proposed to estimate the time delays and amplitudes
of pulse streams, by using the obtained real parts of the
Fourier coefficients. Finally, Section V shows the results of
MATLAB simulations and in Section VI we conclude with a
brief summary.

II. NOMENCLATURE
The following notations are used throughout the paper.

L Number of pulses
T Observation time
ρ The rate of innovation, ρ = 2L/T
fs Sampling rate
Ts Sampling period, Ts = 1/fs
ωcut Cutoff frequency of LPF
1ω Frequency interval of the obtained real parts of the

Fourier Coefficients
M Quantizing number of bins for frequency period

[0, ωcut ) with step 1ω, M =
⌊
ωcut
1ω

⌋
P Number of channels of the muti-channel

sampling system
K Total number of the obtained real parts of the

Fourier Coefficients
N Quantizing number of bins for time period [0,T )
δ Quantizing step for time period [0,T ) , δ = T/N

III. OBTAIN REAL PARTS OF THE FOURIER COEFFICIENTS
FROM THE ALIASED SPECTRUM
A. PROBLEM FORMULATION
In this work, our interest focuses on the sampling and recov-
ering of signals consisting of a stream of short pulses, where
the pulse shape is known. Such signals are typical FRI signals,
and can be modeled as:

x(t) =
L∑
l=1

alh(t − tl), al ∈ C, tl ∈ [0,T ), (1)

where h(t) is the known pulse shape with a short duration
in time domain. Obviously, the only unknown parameters
are time delays and amplitudes {al, tl}Ll=1. Thus, the pulse
streams are essentially a delayed and scaled version of the
known pulses, which can be thought of as a parametric signal.
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Since x(t) has 2L degrees of freedom within any length-T
time interval, Dragotti et al. [15] shows that at least 2L sam-
ples (Fourier coefficients) per time T are required in order to
recover the signal x(t). That is, x(t) can be sampled uniformly
at the rate fs = ρ using an appropriate sampling kernel and
then be perfectly reconstructed. If L/T is sufficiently small
with respect to h(t)’s bandwidth, this implies a significant
reduction in sampling rate.

Calculated with respect to a time period [0,T ), the
continuous-time Fourier transform (CTFT) of x(t) can be
written as:

X (ω) =
∫
∞

−∞

[
L∑
l=1

alh(t − tl)]e−jωtdt

=

L∑
l=1

al

∫
∞

−∞

h(t − tl)e−jωtdt

= H (ω)
L∑
l=1

ale−jωtl , (2)

where H (ω) is the CTFT of the known pulse h(t). If we
substitute ω = kω0, where k is an integer, Eq. (2) can be
rewritten as:

X (kω0) = H (kω0)
L∑
l=1

ale−jkω0tl . (3)

Because the transmit pulse h(t) and its Fourier transform
H (ω) are known, the parameters {al, tl}Ll=1 can be solved
by acquiring a set of nonzero Fourier coefficients X (kω0),
where H (kω0) 6= 0. Many algorithms for solving (3) exist,
among which are annihilating filter [2], matrix pencil [23],
ESPRIT [24] and many others that can be found in [25].

B. FREQUENCY SELECTION AND SPECTRUM
ALIASING PROBLEM
Acquiring a consecutive Fourier subset can be done using
a LPF, followed by sampling at twice its cut-off frequency.
The discrete Fourier transform (DFT) of the samples pro-
vides the desired Fourier coefficients. However, the recovery
performance is enhanced when using a set of coefficients
distributed over a larger part of the signal’s spectrum. For
the acquisition of an arbitrary set of Fourier coefficients, we
have proposed a modulating and LPF based sampling scheme
in [22]. In the proposed sampling setup depicted in Fig. 1,
the original continuous-time signal x(t) is modulated and
then filtered before being (uniformly) sampled with sampling
period Ts.

Firstly, the pulse streams x(t) is modulated with a cosine
signal p(t), which can be written as:

p(t) = cos(ωpt), (4)

where ωp is the frequency of the cosine signal and can be
called modulation frequency. The CTFT of the modulation
signal p(t) is:

P(ω) = π [δ(ω + ωp)+ δ(ω − ωp)], (5)

FIGURE 1. Sampling setup.Here, x(t) is the pulse streams, p(t) is the
modulation signal, and Ts is the sampling period. The samples
are y [n].

where P(ω) is the CTFT of p(t), δ(ω) is the Dirac function.
So the modulated signal can be described as g(t) = x(t) ·p(t),
and the CTFT of y(t) is:

G(ω) =
1
2π

X (ω) ∗ P(ω)

=
1
2
X (ω) ∗ [δ(ω + ωp)+ δ(ω − ωp)]

=
1
2
[X (ω + ωp)+ X (ω − ωp)], (6)

where G(ω) is the CTFT of the modulated signal g(t),
X (ω) is the CTFT of the input signal x(t).
After the modulating process, the modulated signal g(t) is

filtered with a LPF, followed by sampling at twice its cut-off
frequency with an analog-digital converter (ADC). Suppose
that the signal g(t) is filtered with an ideal LPF with cutoff
frequency ωcut , that is,

Y (ω) = rect(
ω

2ωcut
)G(ω)

=


1
2
[X (ω + ωp)+ X (ω − ωp)], |ω| ≤ ωcut

0, |ω| > ωcut .
(7)

Assume that ωmax is the maximum frequency of x(t), the
modulating process can be divided into three cases:
Case 1, ωp > ωmax + ωcut . In this case, the modulated

signal’s Fourier spectrum is outside the low-pass frequency
domain, as shown in Fig. 2(b). This will lead to a set of zero
sampling values.
Case 2, ωmax ≤ ωp ≤ ωmax + ωcut . In this case, the

modulated signal’s Fourier spectrum is inside the low-pass
frequency domain, as shown in Fig. 2(c). However, since
ωcut << ωmax, modulating in this case will extremely reduce
the Fourier spectrum utilization.
Case 3, ωp < ωmax. In this case, the modulating pro-

cess would lead to spectrum aliasing problem, with the
frequencies aliasing area [−(ωmax − ωp), (ωmax − ωp)], as
shown in Fig. 2(d). In [22] we have proposed a modulation
frequency selection strategy to solve this spectrum alias-
ing problem, obtaining reconfigurable Fourier coefficients
from the aliased spectrum. However, this system can only
obtain a few constraint bands from the aliased spectrum,
which reduces the utility of the signal spectrum and would
affect the recovery performance in the presence of noise.
In the the next subsection, we will remove this limitation
and extend the sampling range to the entire Fourier spectrum
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FIGURE 2. The modulating results: (a) Original signal spectrum;
(b) Case 1, ωp > ωmax + ωcut ; (c) Case 2, ωmax < ωp ≤ ωmax + ωcut ; and
(d) Case 3, ωp ≤ ωmax.

through obtaining the real parts of arbitrary bands of Fourier
coefficients.

C. SPECTRUM DE-ALIASING
We use two modulation processes from different channels to
solve the spectrum aliasing problem, which allows to extract
the real parts of an arbitrary band of Fourier coefficients from
the aliased spectrum.
Theorem 1: Consider pulse streams x(t) =

∑L
l=1 al

h(t − tl), with maximum frequency ωmax. The signal x(t) is
splited into two channels and modulated with cosine signals
p1(t) = cos(ω1t) and p2(t) = cos((ω1 +1ω)t), respectively.
The modulated signal in each channel is then filtered with a
LPF with cutoff frequency ωcut . Assume that 0 < 1ω < ωcut
and 0 < ω1 < ωmax − 1ω. M =

⌊
ωcut
1ω

⌋
, and the CTFT

of the filtered signals are denoted as Y1(ω) and Y2(ω). Then
2M + 2 real parts of the Fourier coefficients of x(t) can be
extracted from these two aliased spectrums Y1(ω) and Y2(ω).
Actually, we can obtain a set as: U = {XR(ω1 + b1ω)|b =
−M , 1−M , · · · ,M + 1}, where XR(·) denotes the real part
of the Fourier coefficient X (·).
Proof: Assuming that two modulation signals are p1(t) =

cos(ω1t) and p2(t) = cos((ω1 + 1ω)t), where 0 < 1ω <

ωcut , 0 < ω1 < ωmax−1ω. It can be shown from Eq.(7) that
these two aliased spectrums can be described as:{

Y1(ω) = 1
2 [X (ω + ω1)+ X (ω − ω1)]

Y2(ω) = 1
2 [X (ω + ω1 +1ω)+ X (ω − ω1 −1ω)],

(8)

where |ω| < ωcut .
We begin by finding the relationship between X (ω)

and X (−ω). Combining with the famous Euler’s formula
e−jω = cosω − j sinω, the CTFT of the pulse streams x(t)

can be calculated as:

X (ω) =
∫
∞

−∞

x(t)e−jωtdt

=

∫
∞

−∞

x(t)[cos(ωt)− j sin(ωt)]dt

=

∫
∞

−∞

x(t) cos(ωt)dt − j
∫
∞

−∞

x(t) sin(ωt)dt. (9)

Let X∗(ω) denote the complex conjugate of X (ω), we have:

X∗(ω) =
∫
∞

−∞

x(t) cos(ωt)dt + j
∫
∞

−∞

x(t) sin(ωt)dt

= X (−ω). (10)

Making use of this property, i.e., X∗(ω) = X (−ω), Eq.(8) can
be rewritten as:{
Y1(ω) = 1

2 [X (ω1 + ω)+ X∗(ω1 − ω)]
Y2(ω) = 1

2 [X (ω1 +1ω + ω)+ X∗(ω1 +1ω − ω)],
(11)

where |ω| < ωcut . Next we will discuss the steps required
to recover X (ω) from the above formula. In practice, we
would like to obtain a set of real parts of the Fourier
coefficients as {XR(ω1),XR(ω1 ±1ω),XR(ω1 ± 21ω), · · · },
where XR(ω) denotes the real part of X (ω).

Firstly, calculate the initial values. Let ω = 0, Eq.(11) can
be rewritten as:

Y1(0) = 1
2 [X (ω1)+ X∗(ω1)] = XR(ω1)

Y2(0) = 1
2 [X (ω1 +1ω)+ X∗(ω1 +1ω)]

= XR(ω1 +1ω).

(12)

In this way, we can obtain two real parts of the Fourier coef-
ficients from the zero-frequency component of the aliased
spectrum, i.e., XR(ω1) = Y1(0) and XR(ω1 +1ω) = Y2(0).
Secondly, deduce the iterative formula. IfM =

⌊
ωcut
1ω

⌋
≥ 1,

we can obtain more real parts of the Fourier coefficients
from the aliased spectrum. Let ω = m1ω, where m =
1, 2, · · · ,M . From Eq. (11) we can calculate the CTFT of
the first filtered signal:

Y1(m1ω) =
1
2
[X (ω1 + m1ω)+ X∗(ω1 − m1ω)]

⇒ X∗(ω1 − m1ω) = 2Y1(m1ω)− X (ω1 + m1ω)

⇒ XR(ω1 − m1ω) = 2Y1R(m1ω)− XR(ω1 + m1ω), (13)

where Y1R(ω) denote the real part of Y1(ω). Similarly, from
Eq.(11) we can also calculate the CTFT of the second filtered
signal:

Y2(m1ω) =
1
2
[X (ω1 + (m+ 1)1ω)

+X∗(ω1 − (m− 1)1ω)]

⇒ XR(ω1 + (m+ 1)1ω) = 2Y2R(m1ω)

−XR(ω1 − (m− 1)1ω) (14)

where Y2R(ω) denotes the real part of Y2(ω).
In conclusion, we can easily deduce the iterative formula

from Eq.(13) and Eq.(14), combining with the initial values
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XR(ω1) and XR(ω1+1ω) in Eq.(12). The iterative formula of
the spectrum de-aliasing process can be described as:

XR(ω1) = Y1(0)
XR(ω1 +1ω) = Y2(0)
XR(ω1−m1ω)=2Y1R(m1ω)−XR(ω1+m1ω)
XR(ω1 + (m+ 1)1ω) = XR(ω1 + (m− 1)1ω)
−2Y1R((m− 1)1ω)+ 2Y2R(m1ω),

(15)

where m = 1, 2, · · · ,M and M =
⌊
ωcut
1ω

⌋
≥ 1. Thus, by

using the above iterative formula, we can get 2M + 2 real
parts of the Fourier coefficients, which can be described as:

U = {XR(ω1 + b1ω)|b = −M , 1−M , · · · ,M + 1} (16)

whereU is a set of real parts of the Fourier coefficients of the
pulse streams x(t). �

The spectrum de-aliasing algorithm is summarized in
Algorithm 1. We can easily obtain a set of real parts of
the Fourier coefficients from each two sampling channels,
by using Algorithm 1. In the the next subsection, we will
propose a multi-channel sampling structure, aiming to obtain
the real parts of arbitrary and discrete bands of Fourier
coefficients.

Algorithm 1 Spectrum De-Aliasing Algorithm
Require: Modulation frequency ω1 and 1ω; The corre-

sponding aliased spectrum Y1(ω) and Y2(ω); Cutoff fre-
quency of LPF ωcut .

Ensure: A set of real parts of the Fourier coefficients U .
1: XR(ω1) = Y1(0). (Calculate the initial value).
2: XR(ω1 +1ω) = Y2(0). (Calculate the initial value).
3: M =

⌊
ωcut
1ω

⌋
.

4: if M = 0 then
5: U = {XR(ω1),XR(ω1 + 1ω)}. (Obtain 2 real parts of

the Fourier coefficients).
6: else
7: for m = 1 to M do
8: XR(ω1 − m1ω) = 2Y1R(m1ω)− XR(ω1 + m1ω).
9: XR(ω1 + (m + 1)1ω) = XR(ω1 + (m − 1)1ω) −

2Y1R((m− 1)1ω)+ 2Y2R(m1ω).
10: end for
11: U = {XR(ω1 + b1ω)|b = −M , 1−M , · · · ,M + 1}.

(Obtain 2M + 2 real parts of the Fourier coefficients).
12: end if

D. MULTI-CHANNEL SAMPLING STRUCTURE
In [26], it was suggested to use a non-consecutive set of
Fourier coefficients selected in a distributed manner, as many
detection systems (e.g., ultrasound in [26] and radar in [21])
benefit from wide frequency aperture. It is also shown in [21]
that a distributed selection of the signal spectrum results
in better recovery and noise robustness than consecutive
coefficients.

Here we present a simplified multi-channel sampling sys-
tem to obtain the real parts of the Fourier coefficients in a

FIGURE 3. Multi-channel sampling of pulse streams.

FIGURE 4. Multi-channel sampling structure. Here, each two sampling
channels can obtain 2M + 2 (M =

⌊
ωcut
1ω

⌋
) real parts of the Fourier

coefficients.

manner that is both practical and efficient. This approach
makes use of several parallel channels in which the real
parts of distinct bands of the signal spectrum are obtained,
as illustrated in Fig. 3.

The proposed multi-channel sampling structure is shown
in Fig. 4. It mainly consists of a multiplier, a LPF and a
low rate ADC in each channel. The DFT of the samples
provide the signal spectrum. The real parts of a band of
Fourier coefficients can be obtained from each two sampling
channels, in which the signal x(t) is modulated with cosine
signals p2i−1 = cos(ωit) and p2i = cos((ωi + 1ω)t)
(i = 1, 2, · · · ,P), respectively. The modulation frequencies
should satisfy 0 < 1ω < ωcut and 0 < ωi < ωmax − 1ω,
where ωmax is the maximum frequency of the input pulse
streams x(t), and ωcut is the cutoff frequency of the LPF.
In this way, we can obtain 2M + 2 (M =

⌊
ωcut
1ω

⌋
) real parts of

the Fourier coefficients from channel 2i − 1 and channel 2i,
by using Algorithm 1. That is, the obtained real parts of the
Fourier coefficients are Ui = {XR(ωi + b1ω)|b = −M , 1 −
M , · · · ,M + 1}. For the convenience of calculation, we set
ωi = mi1ω, wheremi is a positive integer. Then the obtained
real parts of the Fourier coefficients can be expressed as:

Ui = {XR((mi + b)1ω)|mi =
ωi

1ω
;

b = −M , 1−M , · · · ,M + 1}. (17)

We use 2P sampling channels to obtain the real parts
of P bands of Fourier coefficients. In order to separate the
bands from each other, the modulation frequencies should
satisfy:

|ωi − ωj| ≥ 2ωcut +1ω, ∀i 6= j, (18)
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where i, j = 1, 2, · · · ,P. Then, we can obtain (2M+2)P real
parts of the Fourier coefficients from all 2P channels:

U = {U1,U2, · · · ,UP}, (19)

where U is usually called as the measurements. Finally,
by using a sparsity-based recovery algorithm introduced in
Section IV, the time delay and amplitude parameters of the
pulse streams x(t) can be estimated with K = (2M + 2)P ≥
cL log(N/L)� N real parts of the Fourier coefficients, with
c a small constant and N the quantizing number of bins.
So the proposed multi-channel sampling structure can sample
the pulse streams x(t) with perfect reconstruction at a sub-
Nyquist rate.

To illustrate the proposed muti-channel sampling system
more clearly, we show how to set the system parameters
as follows. Firstly, the signal x(t) is formed by L pulses in
the time period [0,T ) and has the highest frequency ωmax.
Secondly, the number of channels, the cutoff frequency of
LPF and the frequency interval of the obtained real parts of
the Fourier coefficients are set as 2P, ωcut and 1ω, respec-
tively, and should satisfy 0 < 1ω < ωcut < ωmax. Thirdly,
the modulation frequencies are set as ωi = mi1ω, where
i = 1, 2, · · · ,P andmi is a positive integer, and should satisfy
Eq. (18). DenoteM =

⌊
ωcut
1ω

⌋
, then K = (2M+2)P real parts

of the Fourier coefficients can be obtained from the proposed
2P-channel sampling system. Finally, the quantizing number
of bins for time period [0,T ) is set asN . Furthermore, in order
to recover the 2L parameters {al, tl}Ll=1 of x(t), the system
parameters P, ωcut and 1ω should satisfy K = (2

⌊
ωcut
1ω

⌋
+

2)P ≥ cL log(N/L), with c a small constant.

IV. RECOVERY ALGORITHM
A. RECOVERY PROBLEM
Having gone through the sampling stage, we will now discuss
the recovery process by using these real parts of the Fourier
coefficients. Assume that we have obtained K = (2M +
2)P real parts of the Fourier coefficients from the proposed
sampling system. The measurements U = {XR(k1ω)}k∈κ ,
where κ = {mi+b|mi =

ωi
1ω
; i = 1, 2, · · · ,P; b = −M , 1−

M , · · · ,M + 1}. Since the Fourier coefficients of the known
pulse H (k1ω) is a complex number, it can be expressed as:

H (k1ω) = ckejϕk , (20)

where ck is the modulus and ϕk is the phase. Recall
e−jkω0tl = cos kω0tl − j sin kω0tl and let ω0 = 1ω, (3) can
be rewritten as:

X (k1ω)

= H (k1ω)
L∑
l=1

ale−jk1ωtl

=

L∑
l=1

alcke−j(k1ωtl−ϕk )

=

L∑
l=1

alck [cos(k1ωtl−ϕk )−j sin(k1ωtl−ϕk )]. (21)

Extracting the real part from (21):

XR(k1ω) =
L∑
l=1

alck cos(k1ωtl − ϕk ). (22)

Obviously, there are only 2L unknown parameters {al, tl}Ll=1
in (22). So it can be solved given a set of nonzero real parts
of the Fourier coefficients XR(k1ω). In the next subsection,
we will show how to recover the parameters {al, tl}Ll=1 from
the measurements U = {XR(k1ω)}k∈κ .

B. SPARSITY-BASED RECOVERY ALGORITHM
Theorem 2: Consider pulse streams x(t) =

∑L
l=1 al

h(t − tl), t ∈ [0,T ), where the pulse shape h(t) and number
of pulses L are known. If the analog time t ∈ [0,T ) is quanti-
fied into N uniform bins, then the unknown time delay and
amplitude parameters {al, tl}Ll=1 can be recovered through
K ≥ cL log(N/L)� N real parts of the Fourier coefficients,
with c a small constant.
Proof:We begin by quantizing the analog time axis with a

resolution step of δ. Thus, the analog time t can be approxi-
mated to t = nδ, with n = 0, 1, . . . ,N−1 andN = T/δ. The
unknown time delay parameters can be expressed as tl ≈ nlδ,
where nl ∈ {0, 1 · · · ,N − 1} is the discrete numeric value of
time delays tl . In this way, equation (22) can be approximated
as:

XR(k1ω) ≈
L∑
l=1

alck cos(k1ωnlδ − ϕk ), (23)

where k = κ1, κ2, · · · , κK , with κi (i = 1, 2, · · · ,K ) the fun-
damental element of the
set κ . It can be written in matrix form as follows:

uκ1
uκ2
...

uκK

=

dκ1,n1 · · · dκ1,nL
dκ2,n1 · · · dκ2,nL
...

. . .
...

dκK ,n1 · · · dκK ,nL

 ·

a1
a2
...

aL

, (24)

where uκi = XR(κi1ω) and dκi,nl = cκi cos(κi1ωnlδ − ϕκi ),
with κi (i = 1, 2, · · · ,K ) the fundamental element of the set
κ .

Considering that the time domain of the pulse streams x(t)
is limited to tl ∈ [0,T ), a complete set of the analog time can
be obtained as η = {0, δ, 2δ, · · · , (N − 1)δ} with N = T/δ,
in the condition of ignoring quantization error. Thus the time
delays parameters set is γ = {n0δ, n1δ, · · · , nL−1δ}, which
constitute a smaller subset of the set η, that is γ ⊂ η with
L � N . Thus, if we replace the time delay parameters set γ
with its complete set η, Eq.(24) can be rewritten as a sparsity
matrix:

uκ1
uκ2
...

uκK

=

dκ1,0 · · · dκ1,N−1
dκ2,0 · · · dκ2,N−1
...

. . .
...

dκK ,0 · · · dκK ,N−1

 ·


s0
s1
...

sN−1

, (25)

where [s0, s1, · · · , sN−1]T is a N × 1 vector, formed by
L amplitude parameters {al}Ll=1 and N − L zero values.
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That is, al = snl , where l = 1, 2, · · · ,L and nl ∈
{0, 1, · · · ,N − 1}. Our goal is to find the nonzero entries of
the vector [s0, s1, · · · , sN−1]T from the measurement values.
For simplicity, Eq.(25) may be written as:

u = 8s, (26)

where u is a K × 1 vector formed by K nonzero measure-
ments uκi , with i = 1, 2, · · · ,K ; 8 = [φκ1;φκ2; · · · ;φκK ]
is a K × N matrix formed by the vector φκi =

cκi [cos(ϕκi ), cos(κi1ωδ − ϕκi ), · · · , cos(κi1ω(N − 1)δ −
ϕκi )], with κi (i = 1, 2, · · · ,K ) the fundamental element of
the set κ; s ∈ RN×1 is an L -sparse vector with nonzero entries
at indices {nl}

L−1
l=0 , and the corresponding nonzero element

values are {al}
L−1
l=0 .

The most direct way to solve Eq.(26) is by solving a L0
norm optimization problem described as:{

ŝ = argmin ||s||0
s.t.u = 8s,

(27)

where the L0 norm ||s||0 means the number of non-zero
coefficients in vector s. Solving Eq.(27) is an NP-hard
problem. The solution can be obtained, for example, by
using the well-known orthogonal matching pursuit (OMP)
algorithm [27]–[30]. The algorithm iteratively finds the
nonzero entries of s by seeking the maximal correlations
between u and the columns of 8, while maintaining an
orthogonalization step at the end of each iteration. It is
showed in [27] and [28] that the L-sparse signal s of length N
can be recovered from only K ≥ cL log(N/L) � N mea-
surements, with c a small constant.

Once the L-sparse signal s is solved, the position of
the nonzero elements nl(l = 1, 2, · · · ,L) can be known.
Then the time delay parameters can be directly calculated as
t̂l = n̂lδ, and the amplitude parameters are estimated via
âl = s[n̂l]. As the pulse streams is essentially a delayed and
scaled version of the pulse h(t), the original signal x(t) can be
perfectly recovered if we know the pulse shape. That is,

x̂(t) =
L∑
l=1

âlh(t − t̂l), t ∈ [0,T ), (28)

where T is the observation time. �
A pseudo-code of the proposed sparsity-based recovery

algorithm is given in Algorithm 2. Obviously, Algorithm 2
requires that the time delays {tl}Ll=1 are all on the grids, that
is, the quantization error should be ignored. However, such
situation is not common in practice.Wewill analyze the effect
of the quantization error in the next subsection.

C. EFFECT OF THE QUANTIZATION ERROR
Assume that the unknown time delay parameters can be
expressed as tl = nlδ + σl , where nl ∈ {0, 1 · · · ,N − 1}
is the discrete numeric value of time delays tl and σl ∈ [0, δ)
is the quantization error. In this way, equation (22) may be

Algorithm 2 Sparsity-Based Recovery Algorithm
Require: Pulse spectrumH (ω); Number of pulses L; Obser-

vation time T ; Quantizing number of binsN ;K measure-
ments U = {XR(k1ω)}k∈κ , with K ≥ cL log(N/L) �
N .

Ensure: Estimated time delays
{
t̂l
}L
l=1; Corresponding esti-

mated amplitudes
{
âl
}L
l=1.

1: δ = T/N . (Quantify the the analog time axis).
2: for i = 1 to K do
3: k = κi.
4: ck = abs(H (k1ω)). (The modulus of H (k1ω)).
5: ϕk = angle(H (k1ω)). (The phase of H (k1ω)).
6: φk = ck [cos(ϕk ), cos(k1ωδ−ϕk ), · · · , cos(k1ω(N−

1)δ − ϕk )].
7: end for
8: 8 = [φ1;φ2; · · · ;φK ]. (Calculate the measurement

matrix).
9: u = 8s. (Solve the sparse solution ŝ with the OMP

algorithm in [27] and [28]).
10:

{
n̂l
}L
l=1 = find(ŝ 6= 0). (Find the positions of the nonzero

elements).
11: t̂l = n̂l1. (Estimate the time delays).
12: âl = s[n̂l]. (Estimate the amplitudes).

rewritten as:

XR(k1ω) =
L∑
l=1

alck cos(k1ωnlδ + k1ωσl − ϕk )

=

L∑
l=1

alck [cos(k1ωnlδ − ϕk ) cos(k1ωσl)

− sin(k1ωnlδ − ϕk ) sin(k1ωσl)]. (29)

Because the DFT of the samples provide the Fourier coeffi-
cients, we set 1ω = 2π

T for convenience. Since 0 ≤ kσl <
Kδ � T , we have sin(k1ωσl) → 0 and cos(k1ωσl) → 1.
If we substitute a∗l = al cos(k1ωσl), (29) can be transformed
into:

XR(k1ω) ≈
L∑
l=1

a∗l ck cos(k1ωnlδ − ϕk ). (30)

Obviously, (23) is an approximate version of (30). So the
quantization error would lead to an attenuation of the esti-
mated amplitude parameters, i.e., âl = a∗l = µlal with
µl = cos(k1ωσl)→ 1.
The time delays can be estimated as t̂l = n̂lδ, with l =

1, 2, · · · ,L. It is showed in [27] that n̂l ≈ nl when the
number of measurements K ≥ cL log(N/L), with c a small
constant. So we have t̂l ≈ nlδ = tl − σl . The quantization
error would also lead to a deviation of the estimated time
delay parameters. Note that 0 ≤ σl < δ = T

N , we have
tl − T

N < t̂l ≤ tl . So the reconstruction error of time delays
can be minimized through increasing the number of bins N .
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Denote the reconstruction error of the time delays tl as:

errorl =
|t̂l − tl |
|tl |

. (31)

To guarantee the reconstruction error errorl ≤ E , with
E ∈ (0, 1), the number of quantization bins should satisfy
N ≥ T

E ·min{t1,t2,··· ,tL }
.

D. NOISE AND MODEL MISMATCH
Our algorithm can perfectly reconstruct pulse streams with
known shapes in noiseless settings. It is then natural to won-
der how it would performwhen noise is present or when there
is model mismatch. Consider the signal x(t) with additive
noise w(t), which can be written as:

x̄(t) = x(t)+ w(t). (32)

Then the noise measurements in Eq. (22) can be expressed as:

X̄R(k1ω) = XR(k1ω)+WR(k1ω)

=

L∑
l=1

alck cos(k1ωtl − ϕk )+ wk , (33)

where wk = WR(k1ω), with WR(ω) the the real part of the
Fourier coefficient of w(t).

Then we consider the model mismatch problem. In many
practical cases of interest, the pulse shape may be distorted
due to physical properties of propagation and transmission.
For example, the signal would experience fading and shadow-
ing effect during the transmission in wireless communication.
Assume that the Fourier coefficients of the distorted version
of the pulse shape h(t) can be expressed as:

H̃ (k1ω) = H (k1ω)+ rkejθk

= ckejϕk + rkejθk (34)

where rkejθk is the offset from H (k1ω) to H̃ (k1ω), with rk
the modulus and θk the phase. Then the distorted measure-
ments can be calculated as:

X̃ (k1ω)

= H̃ (k1ω)
L∑
l=1

ale−jk1ωtl

=

L∑
l=1

alcke−j(k1ωtl−ϕk ) +
L∑
l=1

alrke−j(k1ωtl−θk )

⇒ X̃R(k1ω) =
L∑
l=1

alck cos(k1ωtl − ϕk )+ bk , (35)

where bk =
L∑
l=1

alrk cos(k1ωtl − θk ). So the distorted mea-

surements X̃R(k1ω) have similar function model with the
noise measurements X̄R(k1ω) in Eq. (33).
In order to address the problems with noise and model

mismatch and improve the robustness of our system, we
can employ several strategies as follows. Firstly, to improve
the temporal resolution and avoid the ambiguity of the time

delay parameters [21], a wider frequency aperture can be
obtained by appropriately selecting the modulation frequen-
cies {ωi}Pi=1. Secondly, to achieve more robust recovery of
the CS formulation of (26), more measurements [31], [32]
can be generated by selecting higher cutoff frequency of LPF,
smaller frequency interval of the obtained real parts of the
Fourier coefficients and more sampling channels. Thirdly, to
improve the robustness and the estimation accuracy of the
time delay parameters, a larger quantizing number of bins for
time period [0,T ), i.e., N , can be selected in accordance with
the guideline in [20], [21], and [33]. Finally, to obtain a more
robust solution of the L0 norm optimization problem (27)
with the noisy measurements, the improved OMP algo-
rithm [34] can be used.

V. SIMULATIONS
In this section we provide several experiments in which we
examine various aspects of our method. The simulations are
divided into 4 parts: 1)

1) Demonstration of the effectiveness for pulse streams
with a large number of pulses overlapped in time
domain;

2) Verification of the stability of the system with the num-
ber of pulses increasing;

3) Analysis of the effect of quantization error to the recov-
ery method;

4) Evaluation of the performance in the presence of noise,
and comparison to other techniques.

We examined our technique’s success in recovering the
pulse streams defined in (1): The basic pulse shape is Sinc
function h(t) = sinc(2Bt), with the maximum frequency
ωmax = B = 20e3(rad/s); Time delays are drawn uniformly,
at random, within the intervals [0, 1)sec and the amplitudes
of the pulses varied randomly between (0, 1]. Throughout
this section we consider the four-channel sampling structure,
which can obtain the real parts of two bands of Fourier
coefficients. The four modulation signals are:

p1(t) = cos(ω1t)
p2(t) = cos((ω1 +1ω)t)
p3(t) = cos(ω2t)
p4(t) = cos((ω2 +1ω)t),

(36)

where ω1 = 2π f1 and ω2 = 2π f2, with f1 and f2 randomly
selected in {1, 2, · · · , 20} kHz; 1ω = 2π (rad/s). The cutoff
frequency of LPF is ωcut = 200π (rad/s). So we can obtain
K = (2M+2)×2 = 404 real parts of the Fourier coefficients,
where M =

⌊
ωcut
1ω

⌋
= 100.

In the recovering process, we quantify the analog time axis
with the same step as δ = 0.001 sec. To measure the recovery
performance of the system, mean squared error (MSE) was
considered as the evaluation index. For better comparison, the
logarithm of MSE was considered:

MSE[dB] = 10log10(
1
L

L−1∑
l=0

(tl − t̂l)
2). (37)
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FIGURE 5. Performance for signal with 100 pulses.

where L is the number of pulses, tl is the true values and t̂l is
the estimated time delays. Because the error in the amplitudes
is proportional to the error in the time instants, we only use
the MSE in the time instants to measure the efficiency of the
method.
Simulation 1: The first experiment step we introduce is

examining the effectiveness of our method for pulse streams
with high rate of innovation. Fig. 5 shows the performance
of our system in condition that 100 noise free pulses were
overlapped randomly in time domain. It can be seen that
the time delays and amplitudes were recovered with high
precision.
Simulation 2: Then we examined the the performance

of our method for a large number of pulses corrupted by
white Gaussian noise. The experimental tests were carried out
30 times, with the number of pulses increased from 1 to
100. The average recovery results under noise environment
are illustrated in Fig. 6. The figure showed that the recovery
curves all have very little up-and-down motion with the num-
ber of pulse increasing. It means that our method has little
influence on the input signal’s rate of innovation even in the
presence of noise. We can also conclude that the recovery
performance improved with the signal-to-noise ratio (SNR)
level increasing.
Simulation 3: The next experiment is aim to measure the

performance of the recovery method under different quanti-
zation accuracy. We examined the proposed method in recov-
ering 10 Sinc pulses, after its corruption by noise. A typical
reconstruction of the pulse streams is illustrated in Fig. 7.
The results showed that the recovery accuracy improved with
the number of bins (N) increasing, which means that dense
quantizing couldminimize the effect of the quantization error.
Simulation 4: Finally, we demonstrate the performance of

our method in the presence of white Gaussian noise and com-
pare to other Fourier spectrum based methods. In practice,
we compare our results to those achieved by the LPF-based
methods (annihilating filter [2] and state space method [35])
and the multi-channel method in [22], since these approaches

FIGURE 6. Simulation results with the number of pulses increasing.

FIGURE 7. Simulation results under different quantization resolutions.

all sample the Fourier spectrum. In this experiment we set
the number of pulses L = 8 and the quantizing number of
bins N = 1000. We consider the 4-channel FRI sampling
system with OMP recovery algorithm in [22]. The modula-
tion frequencies are [1, 5, 7, 8] kHz and the cutoff frequency
of LPF is 200π (rad/s). For better comparison, we quantify
the analog time axis with the same step as 0.001 sec. Since we
quantify the analog time axis with the same step and solve the
CS formulation with the same OMP algorithm, the computa-
tional cost of the proposed method and the 4-channel (OMP)
method is similarly the same. The MSE of the estimated time
delays is depicted in Fig. 8, for all methods. Evidently, our
approach outperforms the LPF based annihilating filter and
state space method at lower SNR values. This corresponds
to the fact that in noisy realizations the frequency aperture is
critical. As the SNR increases, the frequency aperture plays
a less significant role, and the total number of samples deter-
mines the reconstruction performance. Examining the results
we also infer that our method yields better performance than
the multi-channel method in [22], which can only obtain con-
straint band of the signal spectrum. But as the SNR improves
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FIGURE 8. Comparison of different approaches.

the performance gap drops and finally coincides. For high
enough SNR values, the quantization accuracy determines the
recovery performance of the 4-channel (OMP) method and
our method.

The LPF based methods can only extract a consecutive
band and the 4-channel (OMP) method can extract 4 con-
straint bands of the signal spectrum. However, as discussed
in [21], recovery performance is enhanced when using a set
of coefficients distributed over a larger part of the signal’s
spectrum. So it is not surprising that our method has better
recovery performance and noise robustness, since we provide
a flexible selection of the signal spectrum.

VI. CONCLUSIONS
In this work, we propose a new FRI sampling scheme for
pulse streams, which is based on sampling and recovering
with the real parts of the Fourier coefficients. The proposed
sampling structure mainly consists of a multiplier, a LPF and
a low rate ADC in each channel, which is very simple and
can be easily implemented in hardware. Combining with a
spectrum de-aliasing algorithm, it can easily extract the real
parts of distinct bands of Fourier coefficients from the aliased
signal spectrum. We also propose a sparsity-based recovery
algorithm to recover the pulse delays and amplitudes with
these real parts of the Fourier coefficients. As we demonstrate
by simulation, our method performs stably even many pulses
are overlapped randomly in time domain, and exhibits better
noise robustness than previous works.
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