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ABSTRACT The classic K-SVD based sparse representation denoising algorithm trains the dictionary
only with one fixed atom size for the whole image, which is limited in accurately describing the image.
To overcome this shortcoming, this paper presents an effective image denoising algorithm with the improved
dictionaries. First, according to both geometrical and photometrical similarities, image patches are clustered
into different groups. Second, these groups are classified into the flat category, the texture category, and
the edge category. In different categories, the atom sizes of dictionaries are designed differently. Then, the
dictionary of each group is trainedwith the atom size determined by the category that the group belongs to and
the noisy level. Finally, the denoisingmethod is presented by using sparse representation over the constructed
grouped dictionaries with adaptive atom size. Experimental results show that the proposed method achieves
better denoising performance than related denoising algorithms, especially in image structure preservation.

INDEX TERMS Adaptive dictionary learning, image denoising, K-SVD, non-local grouping, sparse
representation.

I. INTRODUCTION
Images often contain noises, which may be caused by sen-
sor imperfection, poor illumination, communication errors
and so on. Hence, denoising remains an important research
problem in image processing. The problem of denoising
can mathematically be shown as estimating the latent clean
image X from the noise degraded observation model:

Y = X + V (1)

where V is additive white Gaussian noise (AWGN) with
zero-mean and standard deviation σ .
Being the simplest possible and important inverse problem,

noise removal has been widely studied. In the past decades,
plenty of researchers tried to address this problem frommany
points of view, such as partial differential equations [1], [2],
transform domain methods [3]–[8], morphological
analysis [9]–[11], spatial adaptive filters [12]–[15] and so on.

Among the large number of methods for denoising, the
local and non-local self-similarities of natural images are

used widely. One of the earlier methods of this kind is the
SUSAN filter [13], which was proposed by S. M. Smith and
J. M. Brady. The authors proposed denoising by weighted
averaging pixels similar in intensity within a local neigh-
borhood. Subsequently, Tomasi and Manduchi [14] proposed
bilateral filter (BF) which determines similarities between
pixels according to the spacial distance and intensity distance.
Indeed, BF is a generalization of SUSAN filter. Based on
the fact that natural images often contain large amount of
repetitive structures, Buades et al. [16] proposed a non-local
means (NLM), which searches the similar pixels in non-
local neighborhoods. However, the accuracy of identifying
similar pixels in these methods is decreasing as the noise
level is increasing. In [15], Takeda et al. proposed a signal-
dependent steering kernel regression (SKR) framework for
image denoising, which is proved to be much more robust
under high noise levels.

Sparse representation of images, known as another suc-
cessful method for denoising, has aroused growing interest
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of researchers in recent years [17]–[21]. And it has been
recognized that dictionary plays an important role in the
sparse representation model. Dictionaries that use prespec-
ified transform matrix such as wavelets, curvelets [5], con-
tourlets [6], [7], bandelets [8] are relatively simple and have
been applied in various applications successfully. However,
this kind of dictionary is lack of generality and adaptability.
Learning dictionary can adapt its content through learning
from either a given set of image examples or the image
itself. In many excellent dictionary learning algorithms,
K-SVD [18] is known to be a classical and widely used one.
However, it trains only a dictionary with fixed atom size
for the whole image, which is limited in describing images
accurately.

Considering the excellent performance of the above
mentioned two kinds of methods, many researchers com-
bined corresponding models of image self-similarities with
sparse representation. Mairal et al. [19] proposed simulta-
neous sparse coding as a framework, which is achieved by
jointly decomposing groups of similar signals on subsets
of the learned dictionary. Chatterjee and Milanfar [22] pro-
posed a novel image denoising method through clustering
the image into regions of similar geometric structure and
learning dictionaries by principle component analysis (PCA).
In [23], they further improved denoising performances by
using similar patches to estimate the different filter param-
eters of their proposed patch-based Wiener filter. In [24],
a PCA-based scheme was proposed for image denoising by
using a moving window to calculate the local statistics, from
which the local PCA transformation matrix was estimated.
However, this scheme applies PCAdirectly to the noisy image
without data selection and many noise residual and visual
artifacts will appear in the denoised outputs. Zhang et al. [20]
overcame the shortcomings of literature [24] by using local
pixel grouping (LPG) algorithm which can ensure only the
sample blocks with similar contents are used for PCA trans-
form estimation. In literature [21], the authors presented
a sparse representation based image restoration algorithm
by exploiting the image non-local self-similarity to obtain
good estimates of the sparse coding coefficients. However,
the atom sizes of the dictionaries used in all the above
mentioned references are fixed. An earlier attempt towards
adaptive block size selection can be found in [25], where
each pixel is estimated pointwise using Local Polynomial
Approximation (LPA). Sahoo and Lu [26] proposed an adap-
tive window selection procedure for local sparse approxi-
mation, according to which image patches are clustered into
different groups. Due to the different block sizes in different
groups, the size of the dictionary for each group is differ-
ent too. Sahoo [27] provided detailed description of some
parameters and further improved their algorithm in [26].
In addition, [27] adopted a sequential generalization
of K-means (SGK) [28] to learn dictionaries instead
of K-SVD, which is used in [26]. The performance of SGK
denoising is similar or comparable to the K-SVD denoising,
which is shown in [29].

In this paper we propose an effective sparse representation
based denoising method, in which the grouped dictionaries
with adaptive atom sizes (GDwAAS) are employed. In the
proposed GDwAAS, a new feature detector is designed by
making use of both photometrical and geometrical similar-
ities in images. The former is captured by steering kernel
regression (SKR) coefficients and the latter by pixel values
of image patches. According to the proposed feature detector,
image patches are grouped into several clusters. With such a
procedure, only similar patches are used for the following dic-
tionary learning, which can improve the accuracy of dictio-
nary. In order to further improve the adaptivity of dictionary,
the patch groups are classified into three different genres, then
the atom size of each dictionary is selected according to the
genre the group belongs to and the noise level.

Although the GDwAAS and the algorithm in [26] and [27]
both use adaptive dictionary atom sizes for different
clusters, the former is different from [26] and [27].
References [26] and [27] firstly select the optimal block size
for each patch at each location of the image according to the
rule ofMinimumMean Square Error (MMSE), and then clus-
ter the image patches according to their block sizes. Whereas,
our algorithm firstly group image patches with the same
block size into different clusters according to the proposed
feature detector, and then select atom size adaptively for each
group according to the category the group belongs to and the
noise level. Our proposed algorithm not only uses the self-
similarities in images but also the features of image patches of
different types (texture, edge and flat), which are both helpful
to improve the accuracy of the dictionaries and the denoising
performance.

The contributions of this paper are summarized as follows:
First, we designed a new feature detector by making use

of both photometrical and geometrical similarities in images.
With this feature detector, searching for similar blocks are
more accurate than the commonly used Euclidean distance.

Second, we proposed to use different dictionaries with
different atom sizes adaptively according to the category the
group belongs to and the noise level. Experiments have shown
that image blocks belonging to different types (flat, edge and
texture) can achieve the best denoising results with different
patch sizes.

The rest of the paper is structured as follows. Section II
briefly introduces the sparse representation model and
the procedure of SKR. Section III presents the proposed
GDwAAS denoising algorithm in detail. Section IV analyzes
parameters selection, presents the experimental results, and
compares the proposed method with some related algorithms.
Section V concludes the paper.

II. RELATED WORKS
A. SPARSE REPRESENTATION
In the theory of sparse representation, a signal x ∈ Rn can
be mathematically represented as x = Da, where D ∈
Rd

2
×K (d2 < K ) is an over-complete dictionary with its

columns d1, d2 · · · dK as dictionary atoms, d × d is the
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size of the dictionary atoms, K is the number of atoms in D,
and most entries of the representation coefficients a are zero.
This theory has been widely studied and applied in various
applications in image processing, such as compression [30],
separation [31], inpainting [32], demosaicking [21] and so
on. One of the most basic and successful applications can be
attributed to M. Elad and M. Aharon, who proposed a classic
image denoising model based on sparse representation [17]
with their previous proposed dictionary learning algo-
rithm [18]. This model can be described as the following
expression:{

D̂, âij, X̂
}
= arg min

D,aij ,X
λ||X − Y ||22 +

∑
i,j

µij||aij ||0

+

∑
i,j

||Daij − RijX ||22 (2)

In this model,X is the latent clean image, Y is the observed
noised image according to (1), and X̂ is the estimation of X .
||aij ||0 is a pseudo norm that counts the number of non-zero
entries in aij , Rij is the matrix extracting patch xij from X ,
i.e., xij = RijX denotes an image patch of size

√
n ×
√
n in

the ith row and jth column. Here we can see that the size of
the dictionary atoms is the same as the image patch size, that
is d =

√
n.

On the right side of (2), the first term is the log-likelihood
global force that demands the proximity between X and Y .
λ is a parameter that controls this fidelity term. When the
stand deviation σ of noisy is small, Y is close to X , and λ
should be larger. In contrast, with the increasing of σ , Y is
getting away fromX , and λ should be smaller. The second and
the third terms are used to makes sure that in the constructed
image, every patch in every location has a sparse representa-
tion with bounded error. µij is used to get a balance between
the sparse approximation error of xij and the sparsity of aij .
In order to solve (2), the block-coordinate minimization

algorithm is used and three main steps are included.
Firstly, sparse coding. We start with an initialization

X = Y and assume the dictionary D is known and fixed,
the sparse decomposition of the sparse decomposition of
xij can be obtained by solving an l0-minimization problem,
formulated as:

âij = argmin
a
µij||a||0 + ||Da− xij ||22 (3)

The most used and effective methods are the matching
pursuit (MP) and the orthogonal matching pursuit (OMP)
algorithms.

Secondly, update dictionary. The over-complete dictionary
has a great effect on the denoising performance, which can be
predefined or learned. However, researches show that the dic-
tionaries learned from images can improve much the sparse
representation performance since they can better characterize
the image structures [18], [19], [32]. K-SVD [18] is one of
the best dictionary learning algorithms, which is used in [17].
The data used to train dictionary can be image patches taken
from good quality images, or the corrupted image itself.

In this paper we use the latter. Authors can see [18] for the
details of K-SVD.

By alternately solving problem in the first two steps several
times, we will eventually get the training dictionary D̂ and
all of the final sparse coefficients âij of the image over the
dictionary D̂.

Finally, the denoised image is obtained through the follow-
ing expression:

X̂ = (λI +
∑
ij

RTijRij)
−1(λY +

∑
ij

RTijDâij) (4)

where I is an identity matrix and X̂ is the denoised image.

B. STEERING KERNEL REGRESSION (SKR)
Kernel regression is a well-studied non-parametric method
in statistics and signal processing. It can be used to address
image processing problems like denoising, interpolation and
deblurring [33]–[36]. Classical kernel regression estimation
is a linear combination of local data. Although this method
has good properties and is easy to understand due to linearity,
it brings some limitations. Adaptive kernel regression meth-
ods introduce non-linearity by considering both the spatial
distance and the radiometric distances. Bilateral Kernel [36]
is one of adaptive kernels, which uses space kernel and
gray kernel respectively, however, it ignores the relationship
between the spatial position and the pixel value. Steering
Kernel [15] overcomes the shortcoming of Bilateral Kernel by
using estimation of local gradient. In SKR, a robust estimate
of the gradient is taken into consideration in analyzing the
radiometric similarity of two pixels in a neighborhood. This
information is then used to determine the shape and size
of a canonical kernel, resulting in elongated, elliptical con-
tours spread along the directions of the local edge structure.
With these locally adapted kernels, the image restoration and
reconstruction are effected most strongly along the edges,
resulting in strong preservation of edges and details in the
final output. In particular, choosing a Gaussian kernel, the
steering kernel in this particular case can be expressed as:

wi,j =

√
det(C j)

2πh2
exp{−

(pi − pj)
TC j(pi − pj)

2h2
} (5)

where wi,j describes the correlation between the ith and
jth pixels. pi and pj denote the location of the ith and the
jth pixels, respectively. h is a global smoothing parameter
which controls the support of the steering kernel. The matrix
C j denotes the symmetric gradient covariance matrix formed
from the estimated vertical and horizontal gradients of the
jth pixel, and C j can effectively spread the kernel function
along the underlying local edges. It can be expressed mathe-
matically as follow:

C j = γjUθ j3jUT
θ j

(6)

Uθ j =
[

cos θj sin θj
− sin θj cos θj

]
(7)

3j =

[
σj
0

0
σ−1j

]
(8)
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whereUθ j represents the rotation matrix that aligns the Gaus-
sian to the direction of the underlying local edge, and it can be
described in (7).3j denotes the elongation operator, which is
described in (8). γj is a scaling parameter.

In order to demonstrate the robustness of the SKR coef-
ficients in expressing image structures, an experiment is
done in the house image. According to (5), we calculate the
weightswi,j for each selected pixel in its neighborhood (9×9)
with the ith pixel at center and draw its contour. The result is
shown in Fig. 1, which intuitively illustrates the behaviors
of steering kernels at various image structures of house.
In Fig. 1, the superiority of SKR in representing the under-
lying structures of images is shown especially in the edge
regions. In addition, similar underlying structure can be seen
in several locations with different intensities. What is more,
despite the presence of noise, the structure of steering kernel
weights in the same location remains almost unchanged in the
original and noisy images.

FIGURE 1. Steering kernel weights formed from (a) the original House
image; (b) noisy image corrupted by AWGN of standard deviation 15.

III. GDwAAS DENOISING ALGORITHM
Although the classic image denoising model based on sparse
representation is effective, it is limited in accurately describ-
ing the image due to the single dictionary with fixed atom
size. In order to overcome this shortcoming and improve the
denoising performance, we proposed a GDwAAS denois-
ing algorithm, in which there are multiple dictionaries with
adaptive atom sizes. This is achieved through works in
two aspects. On one hand, exploiting the non-local self-
similarities, image patches that are similar both geometri-
cally and photometrically are clustered into the same group.
In our works, the geometrical information is described by the
SKR coefficients, whereas the photometrical information is
described by the pixel value. Based on the grouping results,
a data-adaptive dictionary can be learned for each group.
On the other hand, groups are classified into three different
categories: flat category, texture category and edge category.
According to the group type and the noise level, the atom size
of each dictionary can be designed adaptively.

The GDwAAS denoising algorithm includes three steps:
grouping, adaptive atom size selection of dictionaries and

denoising. Firstly we identify regions of similar structure in
the given image by a new feature detector and group them
together. Secondly we classify these patch groups in step 1
into three categories and select appropriate atom sizes for
each group. Finally we process image denoising using sparse
representation model with learned dictionaries whose atom
sizes have been selected in the step 2. The overall block
diagram of the GDwAAS algorithm is shown in Fig. 2.

FIGURE 2. Overall block diagram of the GDwAAS algorithm.

A. GROUPING
Suppose the clean image is X ∈ RM×N , M is the width and
N is the height. According to the image degradation model
in (1), the observed noisy image is Y = X + V . Select a
√
n ×
√
n patch with the pixel yi at center and realign it to a

vector denoted by yi = [y1, y2 · · · , yn]T . In order to be pair
for each pixel, we extend the boundaries of image Y . Hence
there are totally M × Nvectors, each of which is used for
describing the local information of the centered pixel. Then
the image Y can be denoted as Y = [y1, y2, · · · , yM×N ].
Let xi and xj to be the associated noiseless vectors of yi and
yj respectively. We can calculate the distance between yi
and yj by

di,j = ||yi − yj ||2 =
∑n

k=1
(yi(k)− yj(k))2

≈

∑n

k=1
(xi(k)− xj(k))2 + 2σ 2 (9)

In (9), we used the fact that noise is white and uncorrelated
with signal. if

di,j < T + 2σ 2 (10)

where T is a preset threshold, then the ith and the jth patches
are thought to be photometrically similar.

If directly use (9) and (10) to search similar patches, two
parameters T and σ need to be estimated. In practice, we can
use classification method without any parameters to find the
similar patches. Among the large number of classification
algorithms, K-Means proves to be one of the simplest and
most effective unsupervised methods. So K-Means is adopted
for grouping in this paper.

(9) is actually the Euclidean distance between yi and yj .
The smaller the di,jis, the more similar yi is to yj . However,
Euclidean distance is not always a good choice for block
similarity measure. For example, in Fig. 3, (a) is the reference
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FIGURE 3. Patches used to verify the effectiveness of different methods
for measuring similarity between two patches. (a) is the reference patch,
(b) and (c) are the candidate patches.

patch and (b) and (c) are the candidate patches. From Table 1,
we might conclude that (b) is closer to (a) than (c) according
to photometrical similarity. However, by visual comparison,
(a) and (c) have the same edge structure, grouping them into
the same cluster is beneficial to preserve structure better.

TABLE 1. Photometrical similarity(PS), geometric similarity(GS) and the
proposed feature similarity(FS) between images in Fig. 3.

In order to solve the deficiency of Euclidean distance in
judging similarity, in this paper we make use of geometric
similarity(GS) in images. We select the weight coefficients
of SKR as a geometric feature to do grouping. For one thing,
SKR as introduced in section II, has the ability to align
the Gaussian kernel to the underlying edge orientation and
strength. For the other, the steering kernel is robust to the
presence of noise. Therefore, it can be used as a feature
to recognize the underlying geometric structure. For each
pixel yi, we calculate the steering kernel weight coefficients
wi,j in a patch of size

√
n×
√
nwith yi at center, then vectorize

it into wi = [wi,1,wi,2 · · ·wi,n]T which is used as the feature
to identify GS. The GS of the patches in Fig. 3 are shown in
the third column of Table 1. We can see that the GS between
(a) and (b) is much higher than (a) and (c). Fig. 4 is the group-
ing results of original House image and its degraded images
in the presence of AWGN with a standard deviation of 15,
using geometric features extracted by SKR coefficients. Note
that the five clusters of the noisy house image are largely
in keeping with those obtained from their noise-free images
respectively.

Taking into account the respective advantages of photomet-
rical and geometrical similarity in clustering, in this paper we
combine the two features into one joint feature, denoted as:

f i = [tyTi , (1− t)w
T
i ]
T (11)

where t is a factor to adjust the weights between yTi and
wTi according to different images. Finally the new feature
f i is used to do patch grouping by K-Means in this paper.
For convenience, we denote the similarity measured by the
proposed feature f i as feature similarity (FS). The FS of the
patches in Fig. 3 are shown in the fourth column of Table 1.

 

 

FIGURE 4. Performance of grouping using the steering kernel weights as
features on the House image. (a) original House image; (b) noisy House
image corrupted by AWGN of standard deviation 15.

Hence, the whole noisy image can be thought to be composed
of a union of such clusters:

Y =
G⋃
g=1

{yi|i ∈ �g} (12)

where G is the number of clusters. Examples of the proposed
grouping algorithm are displayed in Fig. 5.

FIGURE 5. Performance of grouping using the proposed feature on the
noisy House, Parrot and Barbara images corrupted by AWGN of standard
deviation 25 respectively. (a) House image; (b) Parrot image; (c) Barbara
image.

B. ADAPTIVE ATOM SIZE SELECTION OF DICTIONARY
Once the image is classified into different groups, each of
which has the similar features as we discussed above, we
should learn a dictionary that can well describe the patches
for each group. That is to say, the dictionary of each group
should have the ability of preserving the underlying struc-
tures, details and connections of the patches in this group.
The problem here can be described mathematically as:

Dg = argmin
Dg
||Yg − DgAg||22 (13)
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where Yg = [y1, y2 · · · ym] is the matrix of patches in
the gth group and m is the total number of patches in the
gth group. The matrix Dg denotes the learning dictionary of
the gth group. Ag = [a1, a2 · · · am] represents the sparse
coding coefficients.

In this part we propose an adaptive atom size selection
method of dictionary, in order to further improve the adapt-
ability of the dictionary and the denoising performance.
As we know, nature images consist of flat, edge and texture
regions in most instances. For example, the background areas
with the pixel values changing slowly in the House image
are regarded as flat region, the outline of the house with the
pixel values changing sharply are edge region and the brick
wall of the house with the pixel values changing periodically
are texture region. Instinctively, if we can distinguish them
and deal with each of them using dictionaries with different
atom sizes, the dictionary will be more appropriate and the
denoising performance will be improved. So there are two
problems to be solved. The first problem is how to distinguish
the different regions in images? The second problem is how to
select proper atom sizes for regions of different types. Next,
we will address these two issues in turn.

To address the first problem, two elements are needed.
One is the data that to be distinguished and the other is the
distinguish criterion.

In our work the centroid of each group, which is the mean
vector of that group, is use to do the discrimination. Denote
the centroid of group Yg as ygc, then,

ygc = (y1 + y2 + · · · + ym)/m (14)

where m is the total number of patches in the group Yg.
There are three reasons for our choice. The first reason is

that all patches in the same group are similar. Thus, the cen-
troid can well describe the whole information of that group.
The second reason is that the noise discussed in this paper is
zero-mean. So the centroid is robust although in the presence
of noises due to the average operation in (14). The last reason
is that it can be obtained easily in the process of grouping in
the first step of our proposed GDwAAS algorithm.

For the distinguish criterion, we use one of mathemati-
cal statistics-coefficient of variation (CV), which is a stan-
dardized measure of dispersion of a probability distribution
or frequency distribution. In the field of image processing,
CV can be used for measuring the homogeneity of a region
in an image. The homogeneity of a region is defined as the
ratio of the standard deviation to the mean of the region.
Mathematically,

cv(i) =

√
var(P)
ave2(P)

=

√√√√∑
j∈P

(yj − ave(P))2/|P|

ave2(P)
(15)

where P is a square region with the ith pixel yi at center in an
image and |P| is the total number of pixels in P. yj is the pixel
value at position j in P. ave(P) =

∑
j∈P

yj/|P| represents the

mean pixel value in P and var(P) denotes the mean variance
of all pixels in P.

From the definition of CV in (15), we can see that the
larger the CV value is, the smaller the homogeneity is. On the
contrary, the smaller the CV value is, the greater the homo-
geneity is. In other words, in flat region cv(i) is small, whereas
in the texture and edge regions cv(i) is large. Furthermore,
experiments show that texture regions have larger cv(i) values
than edge regions in general.

Here we can answer the problem how to distinguish the
different regions in images. Firstly, we calculate the centroid
ygc using (14) for each group Yg(g = 1, 2, · · ·G), which is
derived from the first step of our algorithm. Secondly, ygc is
reshaped to a

√
n×
√
n patch, and then the CV of this patch

is calculated according to (15). We denote it as cvg. Finally,
the cvg(g = 1, 2, · · ·G) are classified into three classes. The
groups with large cvg belong to texture category, whereas the
groups with small cvg belong to flat category, and the others
are edge category.

Following, the problem is how to decide the atom size for
each group? Intuitively, for flat regions, bigger atom size of
dictionary are preferred in order to remove noisy. And for
texture and edge regions, smaller atom sizes of dictionaries
are preferred due to their ability to describe details in images.
However, with the increase of noise, it is hard to distinguish
between signal and noise in small sized atoms even in visual
perspective. Hence bigger atom sizes are suitable for denois-
ing in the case of high noise. Nevertheless, the atom sizes are
not the bigger the better for two reasons. For one thing, bigger
atom sizes will increase computational complexity greatly.
For the other, too big atom sizes will result in insufficient
image patches to train over-complete dictionary. Thus, there
exists a trade off. In this paper we verify our conjecture
through some experiments. As we know that House image
is rich in edge and flat regions, and Barbara is rich in texture,
so in this paper we use House and Barbara to do the following
experiments.

To evaluate the quality of the denoised images objectively,
two evaluation criteria are used in this paper. One is the peak-
signal-to-noise ratio (PSNR), which is the most commonly
and widely used objective evaluation standard of image qual-
ity. Given two images X and Y , both of sizeM×N , the PSNR
between X and Y is defined by:

PSNR(X ,Y ) = 10 log10(255
2/MSE) (16)

where

MSE(X ,Y ) =
1
MN

M∑
i=1

N∑
j=1

(xij − yij)2 (17)

From (16) and (17), it shows that the smaller the mean
square error (MSE) of X and Y is, the higher the PSNR value
is. At the other end of the scale, a small value of the PSNR
implies high numerical differences between images.

The other is the structural similarity (SSIM) [37], which is
considered to be correlated with the quality perception of the
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TABLE 2. The K-SVD based denoising results of image House corrupted
by AWGN of different level(σ = 15,30,50) using different atom sizes.
The left is PSNR value and the right is SSIM value.

TABLE 3. The K-SVD based denoising results of image Barbara corrupted
by AWGN of different level(σ = 15,30,50) using different atom sizes.
The left is PSNR value and the right is SSIM value.

human visual system (HVS). It is commonly used to measure
the similarity between two images.

The SSIM between windows x and y of size W × W is
defined as

SSIM (x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ

2
y + c1)(σ 2

x + σ
2
y + c2)

(18)

where µx is the average of x, µy is the average of y, σ 2
x is the

variance of x, σ 2
y is the variance of y, σxy is the covariance of

x and y, The positive constants c1 and c2 are used to avoid a
null denominator.

For the given two images X and Y , the mean of
SSIM (MSSIM) indices to evaluate the overall image quality
is given by

MSSIM (X ,Y ) =
1

tol_num

tol_num∑
i=1

SSIM (xi, yi) (19)

where tol_num is the total number of windows in
image X or Y . The values of the MSSIM index are in [-1,1].
A value of 0 means no correlation between images, and 1
means that X = Y .
Experiment 1: corrupted images under different noise lev-

els (σ = 15, 30, 50) are denoised by K-SVD based denoising
method, using different atom sizes (5,7,9,11,13,15,17,19).
The denoising results of House and Barbara are shown in
Table 2 and Table 3 respectively. From Table 2, we can
observe that for σ = 15 and 30, the denoising results reach
their best when the atom size is 9 and 11 respectively. For the
high level noise (σ = 50), the best PSNR and SSIM results

FIGURE 6. Comparison of K-SVD based denoising results of image House
corrupted by AWGN of standard deviation 50 using different atom sizes.
(a)clean, (b)-(i) are the denoising results using atom size of
5,7,9,11,13,15,17 and 19 respectively.

are at atom size 9 and 11 respectively. The denoising results
of House (σ = 50) using different atom sizes are shown in
Fig.6, in which we can obviously see that although in Table 1
the PSNR value achieves its best at atom size 9, the denosing
results in Fig. 6 (d) are visually worse than Fig.6(f). We can
also observe that in the small atom size, edge is relatively
clear and contrast is large, but there is still residual noise as
shown in Fig. 6(b) and Fig. 6(c). With the increase of atom
size, flat areas in House become more and more smooth,
however, the edge is blurring, and the contrast is decreased.
From Table 3, it can be seen that for σ = 15, 30 and 50,
the denoising results reach their best when the atom size is
9, 9 and 7 respectively. This does not seem to agree with our
previous conjecture. However it is because that the Barbara
image is rich in texture region, so even under high noisy
level, objective indicators are still maximum on small atom
size. Meanwhile, we can visually see in Fig.7 that denoising
image with small size retain more details than big atom size.
For example, Fig.7(b) and Fig.7(i). The former is noisy but
retains more details and the latter is smooth but loses too
many details.
Experiment 2: In order to further explain our idea, we

extract image patches of size 8 × 8 from the clean House
image, and classify these patches into three groups according
to the patch variance var : texture patch (var ≥ 0.02), edge
patch (0.002 ≤ var < 0.02) and flat patch (var ≤ 0.002).
Then, extract the corresponding patches from the eight
denoised images respectively, calculate the PSNR and SSIM
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FIGURE 7. Comparison of K-SVD based denoising results of image
Barbara corrupted by AWGN of standard deviation 50 using different
atom sizes. (a)clean, (b)-(i) are the denoising results using atom size of
5,7,9,11,13,15,17 and 19 respectively.

FIGURE 8. Distribution of the best PSNR value of each patch in the three
different types (texture, edge and flat) in House corrupted by AWGN of
standard deviation 30 (top) and 50 (bottom) respectively.

and select the atom size that can performs the best result
for each patch. The results are drawn as a bar graph which
is shown in Fig.8. From this bar graph, it can be seen that
most texture patches reach their best denoisng results under
small atom size, and most flat patches prefer big atom size
to get their best performance. The average PSNR and SSIM
are calculated for each group under different atom sizes and
shown in Fig. 9, from which we can get the same conclusion:
for texture and edge patches, small atom size can preserve
more details, and for flat patches, big atom size are suitable
for smoothness.
Experiment 3: we select some edge regions, flat regions

and texture regions from House and Barbara to do the
same work as experiment 2. The selected regions are shown

FIGURE 9. Average PSNR(top) and SSIM(bottom) of different group (from
left to right: texture, edge and flat) in House corrupted by AWGN of
standard deviation 30 by using different patch sizes (5,7,9,11,13,15,17,19).

FIGURE 10. The sample regions in House and Barbara. (a)-(c) are flat
region, edge region 1 and edge region 2 in House respectively. (d)-(f) are
texture region 1, texture region 2 and edge region in Barbara respectively.

FIGURE 11. Comparison of PSNR using different patch sizes on image
House corrupted by AWGN of standard deviation 30.

in Fig.10. The results are shown in Fig.11-14. In Fig.11, for
the whole House corrupted by AWGN of standard deviation
of 30, it reaches its best PSNR and SSIMvaluewhen the patch
size is 11. For the flat region which is shown in Fig.10(a),
the bigger the patch size is, the higher the PSNR value
is, but the SSIM values almost no longer increase starting
from patch size 15 which can be seen in Fig. 12. And from
Fig. 15, we can visually see that the bigger the patch size
is, the smoother the denoised image is. What’s more, the
denosied images using small patch sizes, such as 5,7,9,11,
are not only noisy but also bring artificial traces like clouds
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FIGURE 12. Comparison of SSIM using different patch sizes on image
House corrupted by AWGN of standard deviation 30.

FIGURE 13. Comparison of PSNR using different patch sizes on image
Barbara corrupted by AWGN of standard deviation 30.

which can seriously affect visual effects. For the edge regions
which are shown in Fig. 10(b) and Fig. 10(c), the best results
are at patch size 9, which is smaller than the whole image.
In Fig. 13-14, although at the same noise level as House,
Barbara reaches its best PSNR and SSIMvalue at patch size 9.
It may be because Barbara is rich in texture. For the strong
texture region, for example Fig.10(d) (var(d) = 0.032), it
reaches the best denoising results at patch size 7. And we can
visually see in Fig.16 that the contrast of the denoising images
become lower as the patch size increases. For the feeble
texture region, for example Fig.10(e) (var(e) = 0.0046), it
reaches the best denoising results at the largest patch size.
This is because the corrupted feeble texture regions are more
like flat regions. From Fig.17, we can clearly see faint details
are almost entirely lost when the patch size is small, and under
the large patch size, although there is also a part of detail loss,
the basic texture can be preserved, which greatly improve the
quality of denoising image.

FIGURE 14. Comparison of SSIM using different patch sizes on image
Barbara corrupted by AWGN of standard deviation 30.

FIGURE 15. Comparison of flat region in House corrupted by AWGN of
standard deviation 30 using atom size of 5,7,9,11,13,15,17,19.The first
one is the clean reference.

FIGURE 16. Comparison of strong texture region in Barbara corrupted by
AWGN of standard deviation 30 using atom size of 5,7,9,11,13,15,17,19.
The first one is the clean reference.

FIGURE 17. Comparison of feeble texture region in Barbara corrupted by
AWGN of standard deviation 30 using atom size of 5,7,9,11,13,15,17,19
from the third one respectively. The first and second one are the clean
and noisy references respectively.

Through the experiments and discussion above, we can see
that in the same image,it is propitious to preserve details for
texture and edge patches by using a dictionary with small
atom size, and for the smooth patches it is better to use a
dictionary with large atom size for better removing noises.
In this paper, the atom sizes of dictionaries for different
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FIGURE 18. Comparison of denoising methods on House image.
(a) Original image, (b) noisy image corrupted by AWGN of standard
deviation 25, (c) ISKR, (d) KLLD, (e) K-SVD, (f) [27], (g) GDwAAS. The
second and third columns are partial enlarged details of the
first column respectively.

groups are decided as follow:

d =

{
s+ 2, flat
s, edge
s− 2, texture

(20)

FIGURE 19. Comparison of denoising methods on Barbara image.
(a) Original image, (b) noisy image corrupted by AWGN of standard
deviation 25, (c) ISKR, (d) KLLD, (e) K-SVD, (f) [27], (g) GDwAAS. The
second and third columns are partial enlarged details of
the first column respectively.

where s is an empirical variable which varies with the σ of
noise. In our paper, s = 9, σ < 25, s = 11, 25 ≤ σ < 40 and
s = 13, σ ≥ 40.
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FIGURE 20. Comparison of denoising methods on Parrot image.
(a) Original image, (b) noisy image corrupted by AWGN of standard
deviation 25, (c) ISKR, (d) KLLD, (e) K-SVD, (f) [27], (g) GDwAAS. The
second and third columns are partial enlarged details of
the first column respectively.

C. DENOISING
In the above two steps, the image patches are clustered into
several groups and the atom size of dictionary for each group

FIGURE 21. Comparison of denoising methods on Barbara image.
(a) Original image, (b) noisy image corrupted by AWGN of standard
deviation 50, (c) ISKR, (d) KLLD, (e) K-SVD, (f) [27], (g) GDwAAS. The
second and third columns are partial enlarged details of the
first column respectively.

is selected adaptively. In (13), we can see that the atom size
of the dictionary Dg should be the same as the patch size
in Yg. As discussed above, the atom size of a dictionary
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TABLE 4. Denoising performance of some related methods (ISKR [15],
KLLD [22], K-SVD [17] and the algorithm in [27]) under AWGN of
different levels, compared with GDwAAS. The results
noted are PSNR.

is decided according to (20), so in order to perform the
following denoising, here the image patches in a group should
be rebuilt according to the atom size of the dictionary for
this group. In other word, n is changed with d and n = d2.
After this operator, we now perform image denoising under
sparse representation framework. For each group, through
performing sparse coding and dictionary update alternately
several times, the adaptive learning dictionaries and sparse
coding coefficients can be obtained. Finally we can get the
denoised image patch vectors by

x̂gi = Dgagi, g = 1, 2, · · ·G; i = 1, 2, · · ·m (21)

where x̂gi is the vector of the ith denoised image patch in the
gth group,Dg denotes the learning dictionary of the gth group,
and agi is the sparse representation coefficients of xgi overDg.
In this paper, we use overlapped patch-based model to

perform denoising. So when the vectors are reshaped and
replaced back to their original positions, the denoised pixels
are overlapped too. In order to get the correct denoising

TABLE 5. Denoising performance of some related methods (ISKR [15],
KLLD [22], K-SVD [17] and the algorithm in [27]) under AWGN of
different levels, compared with GDwAAS. The results
noted are SSIM.

results, the expression in (4) is used to calculate the final
results.

IV. RESULTS
We verify performance of the proposed denoising method
through experiments on various images (House, Barbara,
Lena, Parrot) at different noise levels (σ = 15, 20, 25, 30,
40, 50). The results obtained by GDwAAS are compared to
some related methods including the ISKR [15], KLLD [22],
K-SVD [17] and the algorithm in [27].

A. PARAMETER ANALYSIS AND SELECTION
In our experiments, there are several parameters to be tuned.
We introduce them in turn according to the steps where
these parameters appear in the proposed algorithm framework
shown in Fig. 2 in this paper.

In the step 1, one important parameter is the number of
clusters G in the grouping step. In general, too few clusters
can lead to structurally dissimilar patches being clustered
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FIGURE 22. Comparison of denoising methods on House image.
(a) Original image, (b) noisy image corrupted by AWGN of standard
deviation 50, (c) ISKR, (d) KLLD, (e) K-SVD, (f) [27], (g) GDwAAS. The
second and third columns are partial enlarged details of the
first column respectively.

together and cannot reach the purpose of classification in
our algorithm. However, too many clusters bring about too
few patches in each group, making the dictionary learning

impossible or less believable. In addition, similar patches
are clustered into different groups constrainedly if G is too
large, leading to over grouping. In fact, the optimal number
of clusters varies from image to image as it depends on the
structural complexity of the image. In this paper, we choose
this parameter to be 5 for images having simple structures,
such as the House image, and 10 for images having complex
structures, such as the Barbara image. The second important
parameter is the smoothing parameter h for the kernel forma-
tion process. It is worth noting that the ability of extracting
geometric structure varies according to h. Too big or too
small values are both not conducive to obtain the underlying
structure. In our experiment we choose it as the same as
literature [22]. Another important one is the patch size

√
n.

In our experiments
√
n is set to be 9 in the first step of our

algorithm empirically and in the third step n is changedwith d
and n = d2. The last, but not the least one is the weight factor
t used for controlling the weights between the geometric
feature and photometric feature. In our experiment it is set
to be 0.2.

In the step 2, the atom size d of the dictionary, is set
according to (20).

In the step 3, there are also several parameters to be set to
get better denoising performance. The first one is the num-
ber of K-SVD iterations for the dictionary learning. In our
experiments the iterations vary according to the dictionary
atom sizes. The same as [27], in this paper the iterations are
calculated by 10×

⌈
d2/64

⌉
. The second one is the parameter

which is used to control the sparse representation error ||Da−
xij ||22 in solving (3). Generally, ||Da − xij ||22 ≤ nC2σ 2, and
C = 1.15 [17]. In the proposed algorithm,multiple dictionary
atom sizes are designed. So we select C = sqrt(1+ 2.68/d)
[27]. The last is the λ in (2) and (4). In this paper we set it the
same as the reference [17] and [27].

B. EXPERIMENTAL RESULTS
The results obtained with the House, Barbara, and Parrot
images corrupted by AWGN of standard deviation 25 are
shown in Figs.18-20, respectively. In order to make a clear
observation, the partial enlarged details are shown in the
second and third columns of Figs.18-20 respectively. We can
subjectively and visually see that GDwAAS is better than the
others. ISKR do well in capturing the edges and details, but
the protection is so excessive that some distortions and arti-
facts are introduced. In Fig.19(c), the texture of curtain and
tablecloth is clear but distorted seriously. KLLD overcomes
the over-protection of ISKR, but the edges and details are
lost. For example, in Fig.19(d) the texture of tablecloth is
not clear. What is worse, KLLD generates lots of artifacts in
the denoisied images especially in the smooth regions, which
can be seen in the background areas of house in Fig.18(d).
K-SVD is an excellent algorithm in image processing, but it
trains one dictionary for the whole image, so the dictionary
is lack of robustness and accuracy. In Fig.19(e), the texture
of the curtain in the top right of Barbara image is seriously
lost and in Fig.18(e), the background is not so smooth as the
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FIGURE 23. Comparison of denoising performance on average among
ISKR, KLLD, K-SVD, the algorithm in [27] and GDwAAS. (a) PSNR,
(b) SSIM.

original one. The method in [27] performs well than ISKR,
KLLD and K-SVD, however it is inferior to GDwAAS.
In Fig.19(f), the details of the curtain in the top right are a
little lost compared with the result in Fig.19(g). In Fig.20(f),
the details of the cracks in the parrot’s mouth are unclear.
The proposed GDwAAS performs better than the others. For
example, in the House image, the edges are well protected and
the background is smoother; in the Barbara image, the texture
of the curtain and tablecloth is more close to the original

image and in the Parrot image, the details of the feather on the
head is more abundant and the cracks on the Parrot’s mouth
are more clear than the others.

In the case of high noise level, the superior performance of
our algorithm is more obvious compared with the others. The
results obtained for the Barbara and House images corrupted
by AWGN of standard deviation 50 are shown in Figs. 21-22,
respectively. We can see that the denoising performance of
ISKR and KLLD drop sharply when the noisy level is high.
For ISKR, there was little difference before and after denois-
ing. And for KLLD, artifacts and distortion are more serious.
K-SVD shows serious loss of details and unsmooth effects
on flat regions, e.g., in Fig. 22(e) the eave of the House is lost
seriously and the background of the House is cloudlike and
no longer smooth. The method in [27] performs better than
K-SVD, however it is still inferior to our proposed GDwAAS.
Compared with the results of [27] in Fig. 22(f), the edges of
House are more clear, the contrast is more obvious and the
background is more smooth in Fig. 22(g). In Fig.21(c)-(f), the
stripes on the Barbara’s hood are almost invisible, or seriously
distorted for the other four algorithms, whereas the proposed
GDwAAS preserves the details better in Fig. 21(g) .

Objective comparison results of these methods are shown
in Table 4 and Table 5 respectively. From Table 4, we can see
that the GDwAAS can improve 0.03-0.47 dB the PSNR val-
ues for different images under different noise level (σ is from
15 to 50), comparedwith themethod in [27], which is recently
published and performs better than the classic K-SVD. From
Table 5, the SSIM values of GDwAAS are maximal in most
instances. Compared with [27], the maximum of increased
SSIM value is 0.015.

For more intuitive observation of the comparison results,
two line charts of comparison between the five methods
are shown in Fig. 23, which are drawn by the average data
of the four images used in this paper. It can be seen from
Fig. 23(a) that the sequence of denoising proficiency (mea-
sured by PSNR) is ISKR, KLLD, K-SVD, the method in [27]
and GDwAAS from low to high. However ISKR is better
than KLLD when the standard deviation of noise is between
20 and 30. When the standard deviation of noise is higher
than 30, ISKR performs worst. From Fig. 23(b), it is clear
that the proposed GDwAAS performs better whether in high
or low noisy level. Overall, in both charts, although ISKR,
KLLD, K-SVD and the method in [27] have competed when
noisy level varies, the proposed GDwAAS algorithm show
more proficiency in image denoising.

V. CONCLUSIONS
In this paper we have proposed an effective image denoising
method via sparse representation over grouped dictionaries
with adaptive atom sizes. In our work, we first cluster the
image into several groups using a feature detector combining
geometrical and photometrical features together. The geomet-
rical feature is characterized by SKR coefficients and the pho-
tometrical feature is calculated by pixel values. In this step,
the approach makes image patches to be classified according
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to its underlying structure, which leads to well protection
of fine details and structures. Then, groups are classified
to three genres, and then the atom size of dictionary is
designed for each group respectively. In this step, the grouped
dictionaries are further improved from the aspect of their
atom sizes. Finally the image is denoised under the sparse
representation model. Over all, through efforts in the above
three steps, the performance of image denoising is improved.
Experimental results presented in this paper demonstrate that
the proposed GDwAAS outperforms some related denoising
methods. Besides, we can observe that with the increase of
noisy level, the qualities of the denoised images are dropped
for all methods. Especially for the serious corrupted images
(σ ≥ 50), although our algorithm is far superior to the other
algorithms mentioned in this paper, there is still a problem of
serious loss of details. Thus, researches of dictionary transfer
learning [38]–[40], which can use dictionaries from clear
image to denoise corrupted images in other domain, will be
an important direction in our future work.
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