
Received August 31, 2017, accepted September 25, 2017, date of publication October 12, 2017,
date of current version November 7, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2760251

A DAQM-Based Load Balancing Scheme for
High Performance Computing Platforms
KAIJUN YANG , MENG LI , GUCHUAN ZHU, (Senior Member, IEEE),
AND YVON SAVARIA, (Fellow, IEEE)
Department of Electrical Engineering, Polytechnique Montréal, Montreal, QC H3C 3A7, Canada.

Corresponding author: Meng Li (lmbuaa@gmail.com)

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada and in part by the
Huawei Technologies Canada Co., Ltd.

ABSTRACT This paper addresses the load balancing problem, which is one of the key issues in high-
performance computing (HPC) platforms. A novel method, called decentralized active queue manage-
ment (DAQM), is proposed to provide a fair task distribution in a heterogeneous computing environment
for HPC platforms. An implementation of the DAQM is presented, which consists of an ON-OFF queue
control and a utility maximization-based coordination scheme. The stability of the queue control scheme
and the convergence of the algorithm for utility maximization have been assessed by rigorous analysis.
To demonstrate the performance of the developed queueing control system, numerical simulations are carried
out and the obtained results confirm the efficiency and viability of the developed scheme.

INDEX TERMS Decentralized active queue management (DAQM), load balancing, high performance
computing.

I. INTRODUCTION
Driven by the ever increasing complexity of applications and
a stringent requirement in terms of Quality of Service (QoS),
high performance computing (HPC) platforms have received
considerable attention over the past decades [1]–[3]. Nowa-
days, HPC systems have been employed to support a great
variety of scientific and commercial applications, such as
data mining, computational biology, weather prediction, and
mobile communication networks [4], [5]. Typically, an HPC
platform is composed of multi-core computing units, e.g.,
GPUs, FPGAs and/or Network on Chips (NoCs), to offer a
certain degree of parallelism and scalability [6]. Therefore,
in order to fully utilize the capacity of HPC systems, an opti-
mized load balancing is required to maximize computational
efficiency.

In general, applications in an HPC platform can be divided
into multiple tasks that can be executed on different nodes
(GPU, FPGA, NoC, etc.). Hence, the goal of load bal-
ancing is to find a task mapping, which results in an
approximately equal load distribution for each node [7]. The
strategies for load balancing can be either static [8], [9] or
dynamic [10], [11]. Generally, static load balancing (SLB)
runs depending on previously obtained knowledge, while
dynamic load balancing (DLB) continuously updates the

information tomake a decision. In scenarios whereworkloads
are unpredictable, DLB is preferred to assure an adequate
system performance, although SLB is simple to implement.

Much work has been dedicated to the development of
algorithms for DLB. Different solutions have been proposed
aiming at an efficient and fair resource allocation, while
achieving adequate QoS levels [12]–[14]. From the control
theoretical point of view, there basically exist two types of
architectures for DLB: centralized closed-loop control and
decentralized hierarchical control. The centralized closed-
loop control requires complete and reliable knowledge of
all application and platform parameters to make decisions.
This architecture can provide good performance in grid com-
puting, but it suffers from poor flexibility and scalability in
addition to difficulties to handle unpredictable workloads.
Another solution is the decentralized hierarchical control, in
which each node runs locally in a closed-loop manner and
contributes to the global performance. However challenges
arise from decentralized control regarding, particularly, task
distribution and load balancing among the processing nodes
as it is in general hard for such a system to achieve stability
and high utilization without global information.

In this paper, we adopt a decentralized architec-
ture and tackle the challenge of balancing load among

22504
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017

https://orcid.org/0000-0003-3318-8049
https://orcid.org/0000-0003-3284-0832

K. Yang et al.: DAQM-Based Load Balancing Scheme

processing nodes. Inspired by the well-studied paradigm of
active queue management (AQM), we introduce the con-
cept of decentralized active queue management (DAQM).
A DQAM-based scheme consists of two layers. At the lower
layer, a local feedback control loop is introduced to leverage
the basic feature of AQM to assure a stable operation at each
processing node. At the upper layer, a coordination controller
is applied to achieve a fair load balancing while maximizing
resource utilization. The theoretical analysis shows that this
method can provide a fair task distribution in a heterogeneous
computing environment for HPC platforms.

The main contributions of this paper are:

• a DAQM-based load balancing strategy, which considers
real-time computing capability of each processing node;

• an implementation of the DAQM, which can achieve a
fair load balancing among processing nodes by mini-
mizing the overall processing delay while maximizing
resource utilization.

The remaining of the paper is organized as follows.
Section II makes a brief review of some related work
on task scheduling for HPC platforms and applications of
AQM. Section III presents a queue management scheme for
HPC platforms, namely DAQM. Section IV illustrates an
implementation of DAQM mechanism. Then, in Section VI,
the developed control mechanism is evaluated by sim-
ulation. Finally, some concluding remarks are provided
in Section VII.

II. RELATED WORK
A. TASK SCHEDULING ON HPC PLATFORMS
With the development of HPC technology, it becomes possi-
ble to support computationally intensive applications with an
aggregation of computing nodes instead of supercomputers.
In such a heterogeneous computing environment, effectively
mapping the tasks to minimize operating costs while respect-
ing QoS constraints represents a real challenge.

One issue for task scheduling in this environment is the
unpredictability of workloads. In recent years, much attention
has been put on workload characterization in order to have a
better understanding of workload features in terms of arrival
rate and duration [15]. Such analysis can be found in [16]
and [17]. In [15], task classification is performed and utilized
in resource provisioning, which allows for important energy
savings while significantly reducing task scheduling delay.

Other works focus on the minimization of the makespan,
which is defined as the maximum completion time of
all tasks [18]–[22]. It is known that task scheduling is
NP-complete in general [23], [24]. Thus, in the literature, sev-
eral heuristic scheduling algorithms, such as Opportunistic
Load Balancing (OLB) [18], [19], [25], Min-Min [20], [22],
and Max-Min [20], [22], have been proposed to achieve
suboptimal solutions. The intuition of OLB is to keep all
computing resources as busy as possible. This may lead
to poor makespan as it does not consider the expected
task execution times. The Min-Min algorithm is based on

the minimum completion time. The strategy behind the
Min-Min algorithm is to select the task with the minimum
completion time from all unscheduled tasks at each step, with
the hope of obtaining a smaller makespan. The Max-Min
algorithm is similar to the Min-Min, while its purpose is to
minimize the penalties caused by tasks with longer execution
times. For practical applications, suitable heuristic algorithms
should be chosen by considering performance, efficiency,
complexity, etc.

In our work, instead of characterizing the heterogeneity of
workloads to perform task allocation, a generic decentralized
active queue model is applied to achieve load balancing.
By monitoring and adjusting the queue lengths instead of the
behaviours of computing nodes, the overall average process-
ing delay can be minimized.

B. ACTIVE QUEUE MANAGEMENT
Queueing theory is a mathematical model-based analysis
framework. In general, its ultimate objective is to model
the behavior of queueing systems from which it can take
appropriate actions [26]. Queueing theory is extensively
applied inmany industrial sectors, in particular in information
and communications technology (ICT) industries for system
dimensioning, performance assessment, traffic engineering,
etc. [27], [28]. By developing proper models such asM/M/1
queue [29], [30], M/D/1 queue [31], M/G/1 queue [32],
M/Ek/1 queue [33], queuing length and waiting time can be
predicted. It has been observed that long latency and delay
variation in queueing networks, e.g, packet networks, can be
induced by excess buffering of packets. In order to address
these issues, several queue management schemes have been
proposed and investigated, among which we can find the
active queue management (AQM) [34].

The main objective of AQM is to maintain the queues at
an adequate level, which represents a compromise between
queueing delay and resource utilization. Benefiting from
AQM, system performance can be improved and QoS can
be guaranteed in an average sense. AQM is extensively used
in TCP networks for congestion control. In this context, the
AQM controller notifies traffic sources of congestion in order
to reduce their transmission rates to avoid congestion and to
reduce both queueing delay and packet loss [35], [36]. For
example, the Early Random Drop and Random Early Detec-
tion (RED) mechanism [34] is a variation of the Random
Drop mechanism aimed at avoiding congestion by predicting
when it will occur rather than reacting to it. Many significant
modifications have been adopted in RED, such as Adaptive
RED, Gentle RED, BLUE, Random Early Marking (REM),
and Double Slope RED (DSRED), in order to improve its
performance. Most of these studies mainly focus on when
and how to drop the arriving packets and to reduce RED
sensitivity to parameter settings. Explored solutions rely on
static thresholds which can be restrictive when they operate
with sources.

Note that although the DAQM introduced in this
work is greatly inspired by the paradigm of AQM,

VOLUME 5, 2017 22505

K. Yang et al.: DAQM-Based Load Balancing Scheme

it behaves differently. Detailed explanations on the basic
properties of DAQM are provided in the next section.

FIGURE 1. Schematics of AQM for task flow management.

III. ARCHITECTURE OF DAQM FOR HPC PLATFORMS
A. BASIC QUEUEING MODELS FOR AQM
A queueing model is composed of three basic components:
arrival process, queue, and service process, as illustrated in
Fig. 1. These three components interact with each other and
the information changes of each part will affect the behaviour
of the others. For the arrival process of tasks, we often make
assumptions that the interarrival times are independent and
have an identical distribution, such as Poisson distribution.
Tasks can get into queues one by one or in batches, which will
vary in different applications. The behaviour of assigned tasks
depends mainly on the nature of the associated operations.
Some tasks may be impatient and leave after a while, such
as the calls in telephone systems. Some tasks may wait in a
line to be processed by the server. The queues are the core of
queueing systems, which can be divided into infinite queues
and finite queues. When the tasks go through the queues, they
should all comply with some queueing rules that determine
how tasks are processed. A queueing rule determines which
tasks can get processed and which tasks can be dropped by
the queue. Queueing rules vary in the applied models, such
as first-come-first-served [37], last-come-first-served [38],
priority service order [39], random service order [40], etc.
The emphasis of the present work is put on the control theory-
based approaches [35], [41].

There are two basic types of queueing systems: queueing
systems with exponential arrivals and queueing systems with
non-exponential arrival distributions. In order to study the
transient performance of systems with queues of process-
ing tasks, some approximate models have been developed,
such as diffusion models [42], fluid flow models [43], and
service time convolution. The flow conservation principle
can be applied in single queue systems to describe the time-
dependent queue dynamics. Let x(t) be the average queue
length and ẋ(t) = dx(t)/dt denote the rate of change of the
average queue length. Then, by conservation law, the rate of
change of the average queue length in the system is equal
to the difference between the average arrival and departure
rates. The fluid dynamic queueing model is extensively used
in network systems analysis and design (see, [42], [44]).

It has been shown that this model matches very well many
real-life situations [45], [46].

The approach of regulating queue lengths based on a fluid
model is motivated by two main reasons: first, it is used
to randomly compute periods of filling and emptying, and
second, it relies on continuous incoming rates, unlike M/M/1
or M/G/1 queues based on discrete arrivals. As the traffic
flow is composed of a huge number of particles, a sufficiently
long discrete incoming traffic flow can be considered as a
continuous process, which suits to the network architectures,
as well as network traffic control. In the AQM model, it is
common to assume that the incoming flow will be very large
over a long time, which means that the queue may overflow.
Thus, in order to make a network work smoothly, controllers
in AQM are used to drop tasks waiting in queues, which may
result in failure of running applications due to dependency.
In our work, dropping tasks is not allowed and hence AQM
is not suitable for our context.

In a queuemodel, both the time between successive arrivals
and the service time are exponentially distributed. This model
can be expressed by ordinary differential equations. The
M/M/1 queue is one of the simplest models [30]. In an
M/M/1 queue, the interarrivals are described by a Poisson
process with mean 1/µa, the service times are exponentially
distributed with a mean value 1/µs, and there is a single
server. Tasks are served in the order of arrival. The queueing
dynamics are given by

ẋ(t) = −
x(t)

1+ x(t)
C(t)+ λ(t), (1)

where λ(t) denotes the incoming traffic rate, and C(t) is the
service rate.
Remark 1: In the present work, the M/M/1 queue model

is used in queueing control design and the validation of
the proposed load balancing scheme. However, other queue
models (for instance M/D/1,M/G/1) can also be applied and
will yield similar results.

B. DECENTRALIZED ACTIVE QUEUE MANAGEMENT
In the schemes based on AQM for network congestion con-
trol, the queues to be controlled are located at the bottleneck
points, such as routers and switches. Moreover, it is com-
monly assumed that packet dropping is allowed and that the
processing speed of the servers is known, or even can be con-
trolled. However, this is not the situation for the considered
workload balancing problems in HPC platforms. Specifically,
this is because:
• The direction of information flows is reversed compared
to the common network traffic control problems. In the
considered computing platform, task flows enter into the
master node and then the tasks are dispatched tomultiple
servers (or processing nodes). Therefore, queue control
at the master node level becomes gradually impractical
for larger and larger systems.

• Each sever can contain multiple processors (or cores)
managed by local schedulers. Indeed, the processing rate
of a node is time-varying and is hard to control.

22506 VOLUME 5, 2017

K. Yang et al.: DAQM-Based Load Balancing Scheme

• Task forwardingmust be performed in a losslessmanner,
which means that discarding tasks is not allowed.

FIGURE 2. Architecture of a system with decentralized active queue
management.

In order to develop suitable solutions for workload control
in computing clusters, we introduce a novel concept, called
decentralized active queue management (DAQM). Fig. 2
shows the schematic diagram of a DAQM system in the
context of workload control in a computing cluster. In the
paradigm of DAQM, each computing node manages a local
queue. As in decentralized control schemes, there is a control
component at the master node, which is used to maintain the
queue length around a desired value. In order to simplify
the implementation of task allocation strategy at the mas-
ter node, a proportional distribution mechanism is applied.
In this way, the task dispatcher at the master node assigns
tasks proportionally according to the desired queue length
of each computing node. The choice of the target queue
length is critical because it reflects a compromise between the
processing delay and the efficiency of resource utilization.

IV. DAQM IMPLEMENTATION
In this section, we present an implementation of the DAQM
for workload balancing in a computing cluster. The proposed
scheme consists in a set of local queue controllers and a
coordination controller at the cluster level for utility max-
imization. In the present work, a simple ON-OFF control
scheme is used to achieve a stable queue length regulation
under certain realistic assumptions, which coordinates the
operation of the local queue controllers to achieve a global
optimality, e.g., fair task distribution by minimizing the over-
all processing delay and maximizing the resource utilization.
Let x∗ be the desired reference of task distribution. The
choice of x∗ is crucial for the implementation of DAQM to
guarantee that every local queue fairly receives tasks based
on the current utility of its corresponding processing node.
In the next section, we determine the value of x∗ by the
method of dual decomposition.

A. UTILITY MAXIMIZATION-BASED COORDINATION
CONTROL: COMPUTATION OF x∗

In the queue control scheme, the choice of the desired queue
lengths has an important influence on systems performance.

A small value of x∗ indicates that a small processing delay
is expected, while the utilization of the server may be low.
Whereas, a high value of x∗ leads to a high utilization
efficiency, but the system may experience important delays.
Moreover, in the environment of cluster computing, the work-
loads have to be fairly distributed over all the computing
nodes to reduce the overall processing delay while maximiz-
ing the utilization of the cluster. To this end, the coordination
control at the cluster level is formulated as a utility maximiza-
tion problem. In this context, we consider the following utility
function:

U (x) =
∑
xi∈Rn

Ui(xi), (2)

where x = {x1, x2, . . . , xn} is an allocation vector and xi is the
reference length of the ith queue. We choose a utility function
of the following form:

Ui(xi) = 1−
(
1−

xi
x imax

)wi
, 0 < xi ≤ x imax, 1 < wi, (3)

where x imax is the maximum queue size associated with pro-
cessing node i. This utility function implies that when xi
becomes very close to x imax, the value of its utility function
tends to 1, corresponding to the highest utilization of the ith
node. Let Xtotal be the maximum number of tasks on aver-
age in a task pool, then the considered utility maximization
problem can be expressed as

maximize{x∈Rn} U (x)

subject to : xi ∈ [0, x imax], ∀i ∈ {1, . . . , n},
n∑
i=1

xi ≤ Xtotal . (4)

To handle the coupling constraints in (4), we resort to
the method of dual decomposition based on Lagrange relax-
ation [47]. Let us introduce the Lagrange function

L(x, µ) = U (x)+ µ
(
Xtotal −

n∑
i=1

xi

)

=

n∑
i

Li(xi, µ)+ µXtotal, (5)

where µ is the Lagrange multiplier and Li = Ui − µxi. The
problem (4) can be reformulated as

maximize
n∑
i

Li(xi, µ)+ µXtotal

subject to xi ∈ [0, x imax], ∀i = 1, . . . , n. (6)

Then, the prime optimum of the original problem is given
by

x∗i (µ) = argmax
xi∈[0,ximax]

(Li(xi, µ)) , (7)

VOLUME 5, 2017 22507

K. Yang et al.: DAQM-Based Load Balancing Scheme

which is unique due to the strict concavity of Ui. Moreover,
considering the utility function Ui given in (3), the optimal
solution for (7) is given by

x∗i (µ) = max

0, x imax

(
1−

µx imax

wi

) 1
wi−1

, (8)

which is the explicit optimal value.
The master dual problem is given by

minimize g(µ) =
n∑
i=1

gi(µ)+ µXtotal

subject to µ ≥ 0, (9)

where gi = Li(x∗i , µ), i ∈ {1, . . . , n}, are the dual func-
tions [47]. In order to obtain the primal solution, we apply
the gradient method to (9), which gives

µ(k + 1) =

[
µ(k)− αk

(
Xtotal −

n∑
i=1

x∗i (µ(k))

)]+
, (10)

where k is the iteration index, αk is a sufficiently small
positive step-size, and [·]+ denotes the projection onto the
non-negative part.

B. LOCAL QUEUE CONTROL
In the present work, we consider first a local queueing con-
trol based on the fluid model given in (1). Furthermore, we
impose the following assumption:
Assumption 2: Assume that λ(t) ∈ [0, λmax] and C(t) ∈

(0,Cmax], where λmax is the maximum allowed input task flow
rate and Cmax is the maximum service rate of the processing
node. Furthermore, for every fixed t0 > 0, it holds

x∗ <
∫
∞

t0
λ(τ)dτ <

∫
∞

t0
C(τ)dτ <∞, (11)

where x∗ is the desired queue length.
This assumption states essentially that the input flow is

bounded, and the server has a limited capacity while it
will never be completely idle. Specifically, the assumption
x∗ <

∫
∞

t0
λ(τ)dτ is a persistent excitation requirement.

Under this condition, the queue length x(t) will reach the
reference x∗ in finite-time if x(t0) < x∗ [46]. This implies that
the server is sufficiently utilized in the long run. The assump-
tion

∫
∞

t0
λ(τ)dτ <

∫
∞

t0
C(τ)dτ is a lossless condition, which

can guarantee the aim that no task will be discarded in a queue
may be achievable. In addition, as limx→∞

x
x+1C = C , if

the queue length become very large, the derivative of queue
length will turn into a negative value, which implies that the
queue length will decrease. Thus, this condition ensures also
that the queue length will never grow to infinity.

Note that if
∫
∞

t0
λ(τ)dτ < x∗ and x(t0) < x∗, then all the

input tasks will pass through the queue. The queue length will
stay around x = λ

C−λ
, where C and λ are, respectively, the

average server rate and the average input task flow rate. This
means that the queueing control has no effect. Meanwhile, it
indicates that the server might not be sufficiently utilized.

FIGURE 3. Schematics of the ON-OFF queueing control system.

For the purpose of lossless queueing control, we developed
a control scheme shown in Fig. 3. The following ON-OFF
scheme is used in this controller:

u =

{
1, x − x∗ ≤ 0,
0, x − x∗ > 0.

(12)

Note that, to achieve a lossless queue length regulation, the
tasks will be routed back to the input buffer when u = 0.
When u = 1, the input buffer will be flushed out and all
the tasks will be forwarded to the queue. The stability of this
control scheme is assessed below.
Theorem 3: Consider a queueing system governed by (1)

satisfying the conditions specified in Assumption 2. The queu-
ing length of such a system with the control given in (12)
converges to the reference queue length x∗ as t →∞ or has
x∗ as its upper bound.

Proof: When x ≥ x∗, letV = 1
2 (x − x

∗)2 be a Lyapunov
candidate function. Noting that in this case u = 0, the time-
derivative of V along the trajectory of the controlled system
is given by

V̇ (t) =
xx∗ − x2

1+ x
C ≤ 0.

By virtue of Barbalat’s lemma [48], we can conclude that
|x − x∗| → 0 as t →∞.
When x < x∗, the controller u = 1. The controlled system

becomes:

ẋ = −
x

1+ x
C + λ. (13)

We apply the Comparison principle [48] to estimate x. Let us
first construct a new system

ẏ = −C + λ, y(t0) = x(t0), (14)

where t0 represents the initial time and y(t0) and x(t0) are the
initial values of y and x, respectively. Let v = x−y. According
to (13) and (14), we can obtain

v̇ = C −
x

1+ x
C ≥ 0, v(t0) = 0. (15)

Therefore, x ≥ x(t0)+
∫ t
t0
λ(τ)dτ −

∫ t
t0
C(τ)dτ . Based on the

condition (11), there exists T such that x(T) = x∗, otherwise
x(t) < x∗, for t > t0. In the latter situation, based on the first
part of the proof, we have |x − x∗| → 0 as t →∞. �

22508 VOLUME 5, 2017

K. Yang et al.: DAQM-Based Load Balancing Scheme

V. CONVERGENCE ANALYSIS AND ALGORITHM
FOR UTILITY MAXIMIZATION
In section (IV-A), an optimal solution to the problem (4),
x∗i , has been obtained. Specifically, x∗i can be computed
through an iterative process that updates the Lagrange mul-
tiplier µ via (10). Furthermore, µ is obtained by solving
the master dual problem (9). In this section, we first prove
that the optimal solution of (9) can be approximated with a
solution in finite iterations by applying the analysis technique
used in [47] and [49]. Then, two types of step size rules are
presented so as to obtain x∗i efficiently and explicitly within
finite recursion steps.

Define

g(k)best = min{g(µ(1)), . . . , g(µ(k))}, (16)

where g(k)best is the best objective value found in k iterations.

Since g(k)best is decreasing and positive, it admits a limit.
Suppose that µ∗ is an optimal point to the problem (9). The
desired objective is to approximate the optimal value g(µ∗)

by g(k)best , i.e, limk 7→∞ g(k)best − g(µ∗) → 0. We begin with
estimating the distance between µ(k + 1) and µ∗,

|µ(k + 1)− µ∗|2

=

∣∣∣∣∣
[
µ(k)− αk (Xtotal −

n∑
i=1

x∗i (µ(k)))

]+
− µ∗

∣∣∣∣∣
2

= |µ(k)− µ∗|2 − 2αk

(
Xtotal −

n∑
i=1

x∗i (µ(k))

)
(µ(k)− µ∗)

+α2k

(
Xtotal −

n∑
i=1

x∗i (µ(k))

)2

≤ |µ(k)− µ∗|2 − 2αk
(
g(µ(k))− g(µ∗)

)
+α2k

(
Xtotal −

n∑
i=1

x∗i (µ(k))

)2

.

Applying the above inequality recursively, we obtain

|µ(k + 1)− µ∗|2≤ |µ(1)− µ∗|2−2
k∑
i=1

αi
(
g(µ(i))− g(µ∗)

)
+

k∑
j=1

α2j

(
Xtotal −

n∑
i=1

x∗i (µ(j))

)2

.

As |µ(k + 1)− µ∗|2 ≥ 0, it yields

2
k∑
i=1

αi
(
g(µ(i))− g(µ∗)

)
≤ |µ(1)− µ∗|2 +

k∑
j=1

α2j

(
Xtotal −

n∑
i=1

x∗i (µ(j))

)2

. (17)

By the inequality (17), we can obtain the estimate
of g(k)best − g(µ

∗):

g(k)best − g(µ
∗)

≤
|µ(1)− µ∗|2 +

∑k
j=1 α

2
j (Xtotal −

∑n
i=1 x

∗
i (µ(j)))

2

2
∑k

i=1 αi

≤
|µ(1)− µ∗|2 +

∑k
j=1 α

2
j (Xtotal +

∑n
i=1 x

i
max)

2

2
∑k

i=1 αi
.

In order to verify that g(k)best can approximate the optimal
value g(µ∗), two step size rules are considered.

A. CONSTANT STEP SIZE
If αk = h is a constant, independent of k , then we obtain

g(k)best − g(µ
∗) ≤

|µ(1)− µ∗|2 + h2k(Xtotal +
∑n

i=1 x
i
max)

2

2hk
.

For a sufficiently large k , g(k)best − g(µ∗) ≤ h(Xtotal +∑n
i=1 x

i
max)

2. We can choose a very small h to approximate
the optimal value g(µ∗).

B. SQUARE SUMMABLE BUT NOT SUMMABLE
If the step size satisfies

∞∑
k=1

α2k <∞,

∞∑
k=1

αk = ∞. (18)

we can obtain the following estimate:

g(k)best − g(µ
∗)

≤
|µ(1)− µ∗|2 +

∑k
i=1 α

2
i (Xtotal +

∑n
i=1 x

i
max)

2

2
∑k

i=1 αi
.

Hence, when k tends to infinity, g(k)best −g(µ
∗) converges to 0.

Based on the above analysis of the two cases, g(k)best can con-
verge to g(µ∗) when k tends to∞. Thus, we can approximate
the optimal problem (4) based on g(k)best . An implementation
of the considered utility maximization problem is given by
Algorithm 1.

Algorithm 1 Utility Maximization

Require: queue capacities (x imax for all i = 1, . . . , n), αk a
sequence of steps;

Ensure: 0 ≤ xi ≤ x imax, µ > 0, µbest = µ;

1: Set k = 0, and µ(1) equals to some nonnegative value
2: for all k = 1 : n do
3: for all i = 1 : n do
4: compute x∗i (µ) ∈ argmaxxi∈[0,ximax]

(Li(xi, µ))
5: end for
6: µ ∈ argmin

∑n
i=1 gi(µ)+ µXtotal

7: µ← [µ− αk (Xtotal −
∑n

i=1 x
∗
i (µ))]

+

8: end for

VOLUME 5, 2017 22509

K. Yang et al.: DAQM-Based Load Balancing Scheme

VI. PERFORMANCE EVALUATION
In this section, the performance of the queueing control sys-
tem developed in Section IV is evaluated through numerical
simulations with Matlab. In Section VI-A, a single queueing
control is validated by using a randomly distributed input and
a sine wave input. In Section VI-B, the DAQM control is
evaluated with a varying input.

FIGURE 4. Uniform random workload: (a) input flow rate; (b) uncontrolled
queue; (c) Controlled queue: C = 20; Server 1: x∗ = 50; Server 2: x∗ = 30.

A. SIMULATION OF SINGLE QUEUEING CONTROL
Consider a queue with a processing capacity of C = 20,
and suppose that the input task flow is randomly distributed
as shown in Fig. 4(a). Note that in the simulation, all
the variables and parameters are in normalized coordinates.
It can be seen from Fig. 4(b) that an uncontrolled queue tends
to overflow very quickly. Therefore, adequate controls are
required to make the system stable. In this simulation, the

reference queue lengths of the two servers are set to x∗ = 50
and x∗ = 30, respectively. As shown in Fig. 4(c), by using
the proposed ON-OFF control mechanism, the queue length
can be stabilized around the desired level or be kept below the
reference queue length in both cases.

FIGURE 5. Sine wave workload: (a) input flow rate; (b) uncontrolled
queue; (c) controlled queue: C = 40; Server 1: x∗ = 20; Server 2: x∗ = 40.

Furthermore, a sine wave input flow rate is used to test the
controlled queue as shown in Fig. 5(a). The simulation result
given in Fig. 5(c) for a setup with C = 40 shows that the
ON-OFF control mechanismworks well. For both references,
x∗ = 20 and x∗ = 40, the queue length can be stabilized
around the desired level.

B. VALIDATION OF THE DAQM CONTROL SCHEME
As presented in the previous sections, the maximum queue
size of a processing node corresponds to the processing

22510 VOLUME 5, 2017

K. Yang et al.: DAQM-Based Load Balancing Scheme

capacity. Given an admissible delay, x imax can be fixed accord-
ing to its processing capacity, e.g., the processing speed and
the bus width (32-bit or 64-bit). Considering a HPC platform
consisting of multiple processing nodes, a design preference
can be introduced to allocate the resources and maximize
the system utilization. In general, nodes with higher process-
ing rates can be assigned larger queue length references to
achieve a better resource utilization.

FIGURE 6. Queuing control with variable reference queue length:
(a) Xtotal subject to x1

max = 20, x2
max = 60, x3

max = 45; (b) controlled
queue lengths.

Suppose that there are three computing nodes in one clus-
ter. We then consider a scenario in which the total input varies
with time, leading to the reconfiguration of the reference
queue length of each node. Fig. 6 shows a simulation result, in
which the reference queue lengths of three nodes are reported.
In this simulation, it is assumed that the processing capacity
of each node is constant. In addition, the node with a larger
maximumqueue size is assignedwithmore tasks tomaximize
resource utilization.

For a given configuration, the reference queue length for
each processing node can be obtained through iterations as
shown in Fig. 7(a). Finally, the iterative solutionwill converge
and simultaneously the Lagrange multiplier tends to zero
as shown in Fig. 7(b). In this case, after 2000 iterations,
the reference queue length for each processing node can be
obtained.

FIGURE 7. Computation results of the reference queue length:
(a) reference queue length with the configuration of x1

max = 30,
x2

max = 60, x3
max = 50, and Xtotal = 100; (b) convergence of the

Lagrange multiplier.

FIGURE 8. Workload flow input and the flow dispatched to each
processing node.

It can be seen from Fig. 6(a) that resource allocation is
reconfigured according to the updated average input in total.
Accordingly, the flow dispatched to each node is adjusted.
As shown in Fig. 6(b), the queue length of each node is
stabilized around or blew the reference queue length. Finally,
the input workload and the input flow of each node are given
in Fig. 8. The simulation results show that the workloads are
fairly distributed over the three nodes and the queue lengths
are all kept at an adequate level.

VOLUME 5, 2017 22511

K. Yang et al.: DAQM-Based Load Balancing Scheme

It can be observed from the above simulations that the
queue length can be stabilized around the desired level when
the task input or the desired reference varies. The control
scheme can quickly adapt the change of configurations. Since
the processing capacity does not change significantly in a
short time, it is assumed to be constant in the simulation.
In this case, any significant processing capacity change can be
treated as a system reconfiguration. Therefore, the simulation
results still hold. Furthermore, by taking advantage of the
decentralized architecture, the system can be scaled easily by
adding or removing processing nodes.

VII. CONCLUSION
This work presented a DAQM-based control scheme, con-
sisting in local queueing control and coordination control
for workload balancing in the context of HPC platforms.
An implementation of a DAQM-based control system was
developed. It was shown that it can achieve a fair load bal-
ancing by controlling the queue lengths and dynamically
adjusting the reference queue length for each node. Finally,
the performance of the control scheme has been evaluated by
numerical simulations, and the obtained results confirm the
validity and feasibility of the proposed strategy.

In the present work, the same queueing-based control
mechanism is used in all processing nodes. However, in a
more generic setting, each processing node may have its own
control model [50]. In our future work, the coordination of
different control models will be conducted.

REFERENCES
[1] A. J. Wallcraft, H. E. Hurlburt, E. J. Metzger, R. C. Rhodes, J. F. Shriver,

and O. M. Smedstad, ‘‘Real-time ocean modeling systems,’’ Comput. Sci.
Eng., vol. 4, no. 2, pp. 50–57, Mar. 2002.

[2] A. Chinea, S. Grivet-Talocia, S. B. Olivadese, and L. Gobbato, ‘‘High-
performance passive macromodeling algorithms for parallel computing
platforms,’’ IEEE Trans. Compon., Packag. Manuf. Technol., vol. 3, no. 7,
pp. 1188–1203, Jul. 2013.

[3] X. Meng and V. Chaudhary, ‘‘A high-performance heterogeneous com-
puting platform for biological sequence analysis,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 21, no. 9, pp. 1267–1280, Sep. 2010.

[4] K. Li, X. Tang, and K. Li, ‘‘Energy-efficient stochastic task scheduling on
heterogeneous computing systems,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 25, no. 11, pp. 2867–2876, Nov. 2014.

[5] F. D. Igual, M. Ali, A. Friedmann, E. Stotzer, T. Wentz, and
R. A. Van De Geijn, ‘‘Unleashing the high-performance and low-power
of multi-core DSPs for general-purpose HPC,’’ in Proc. Int. Conf. High
Perform. Comput., Netw., Storage Anal. (SC), Nov. 2012, pp. 1–11.

[6] F. A. Escobar, X. Chang, and C. Valderrama, ‘‘Suitability analysis of
FPGAs for heterogeneous platforms in HPC,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 27, no. 2, pp. 600–612, Feb. 2016.

[7] J. Watts and S. Taylor, ‘‘A practical approach to dynamic load balanc-
ing,’’ IEEE Trans. Parallel Distrib. Syst., vol. 9, no. 3, pp. 235–248,
Mar. 1998.

[8] Y. Alexeev, A. Mahajan, S. Leyffer, G. Fletcher, and D. G. Fedorov,
‘‘Heuristic static load-balancing algorithm applied to the fragment molec-
ular orbital method,’’ in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal. (SC), Nov. 2012, pp. 1–13.

[9] T. K. Ghosh, R. Goswami, S. Bera, and S. Barman, ‘‘Load balanced static
grid scheduling using Max-Min heuristic,’’ in Proc. 2nd IEEE Int. Conf.
Parallel Distrib. Grid Comput. (PDGC), Dec. 2012, pp. 419–423.

[10] V. Cardellini, M. Colajanni, and P. S. Yu, ‘‘Dynamic load balancing on
Web-server systems,’’ IEEE Internet Comput., vol. 3, no. 3, pp. 28–39,
May 1999.

[11] K. Son, S. Chong, and G. Veciana, ‘‘Dynamic association for load bal-
ancing and interference avoidance in multi-cell networks,’’ IEEE Trans.
Wireless Commun., vol. 8, no. 7, pp. 3566–3576, Jul. 2009.

[12] A. Y. Zomaya and Y.-H. Teh, ‘‘Observations on using genetic algorithms
for dynamic load-balancing,’’ IEEE Trans. Parallel Distrib. Syst., vol. 12,
no. 9, pp. 899–911, Sep. 2001.

[13] Z. Zeng and B. Veeravalli, ‘‘Design and performance evaluation of
queue-and-rate-adjustment dynamic load balancing policies for distributed
networks,’’ IEEE Trans. Comput., vol. 55, no. 11, pp. 1410–1422,
Nov. 2006.

[14] D. Kim, M. Kim, K. Kim, M. Sung, and W. W. Ro, ‘‘Dynamic load bal-
ancing of parallel SURF with vertical partitioning,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 26, no. 12, pp. 3358–3370, Dec. 2015.

[15] Q. Zhang, M. F. Zhani, R. Boutaba, and J. L. Hellerstein, ‘‘Dynamic
heterogeneity-aware resource provisioning in the cloud,’’ IEEE Trans.
Cloud Comput., vol. 2, no. 1, pp. 14–28, Jan./Mar. 2014.

[16] Y. Chen, A. S. Ganapathi, R. Griffith, and R. H. Katz, ‘‘Analysis and
lessons from a publicly available Google cluster trace,’’ Dept. Elect.
Eng. Comput. Sci., Univ. California, Berkeley, Berkeley, CA, USA,
Tech. Rep. UCB/EECS-2010-95, 2010, vol. 94.

[17] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
‘‘Heterogeneity and dynamicity of clouds at scale: Google trace analysis,’’
in Proc. 3rd ACM Symp. Cloud Comput., 2012, p. 7.

[18] M. Maheswaran, S. Ali, H. J. Siegal, D. Hensgen, and R. F. Freund,
‘‘Dynamic matching and scheduling of a class of independent tasks onto
heterogeneous computing systems,’’ in Proc. IEEE 8th Heterogeneous
Comput. Workshop (HCW), Apr. 1999, pp. 30–44.

[19] T. D. Braun et al., ‘‘A comparison of eleven static heuristics for mapping
a class of independent tasks onto heterogeneous distributed computing
systems,’’ J. Parallel Distrib. Comput., vol. 61, no. 6, pp. 810–837,
2001.

[20] F. Dong and S. G. Akl, ‘‘Scheduling algorithms for grid computing: State
of the art and open problems,’’ School Comput., Queens Univ., Kingston,
Ontario, Canada, Tech. Rep. 2006-504, 2006.

[21] Q. Kang, H. He, and H. Song, ‘‘Task assignment in heterogeneous comput-
ing systems using an effective iterated greedy algorithm,’’ J. Syst. Softw.,
vol. 84, no. 6, pp. 985–992, 2011.

[22] K. M. Tarplee, R. Friese, A. A. Maciejewski, and H. J. Siegel, ‘‘Scalable
linear programming based resource allocation for makespan minimiza-
tion in heterogeneous computing systems,’’ J. Parallel Distrib. Comput.,
vol. 84, pp. 76–86, Oct. 2015.

[23] D. Fernandez-Baca, ‘‘Allocatingmodules to processors in a distributed sys-
tem,’’ IEEE Trans. Softw. Eng., vol. 15, no. 11, pp. 1427–1436, Nov. 1989.

[24] T. D. Braun et al., ‘‘A comparison study of static mapping heuristics for
a class of meta-tasks on heterogeneous computing systems,’’ in Proc. 8th
Heterogeneous Comput. Workshop (HCW), 1999, pp. 15–29.

[25] R. Armstrong, D. Hensgen, and T. Kidd, ‘‘The relative performance of
various mapping algorithms is independent of sizable variances in run-time
predictions,’’ inProc. IEEE 7thHeterogeneous Comput. Workshop (HCW),
Mar. 1998, pp. 79–87.

[26] U. N. Bhat, An Introduction to Queueing Theory: Modeling and Analysis
in Applications. Cambridge, MA, USA: Birkhäuser, 2015.

[27] A. Erramilli, O. Narayan, andW.Willinger, ‘‘Experimental queueing anal-
ysis with long-range dependent packet traffic,’’ IEEE/ACM Trans. Netw.,
vol. 4, no. 2, pp. 209–223, Apr. 1996.

[28] G. Giambene, Queuing Theory and Telecommunications. New York, NY,
USA: Springer, 2005.

[29] N. T. Bailey, ‘‘A continuous time treatment of a simple queue using
generating functions,’’ J. Roy. Statist. Soc. B (Methodol.), vol. 16, no. 2,
pp. 288–291, 1954.

[30] F. Guillemin and J. Boyer, ‘‘Analysis of the M /M /1 queue with processor
sharing via spectral theory,’’ Queueing Syst., vol. 39, no. 4, pp. 377–397,
2001.

[31] O. Brun and J.-M. Garcia, ‘‘Analytical solution of finite capacity M/D/1
queues,’’ J. Appl. Probab., vol. 37, no. 4, pp. 1092–1098, 2000.

[32] O. Kella, ‘‘The threshold policy in theM /G/1 queuewith server vacations,’’
Naval Res. Logistics, vol. 36, no. 1, pp. 111–123, 1989.

[33] P. A. Kivestu, ‘‘Alternative methods of investigating the time depen-
dent M/G/k queue,’’ Ph.D. dissertation, Dept. Aeronautics Astron.,
Massachusetts Inst. Technol., Cambridge, MA, USA, 1976.

[34] S. Floyd and V. Jacobson, ‘‘Random early detection gateways for con-
gestion avoidance,’’ IEEE/ACM Trans. Netw., vol. 1, no. 4, pp. 397–413,
Aug. 1993.

22512 VOLUME 5, 2017

K. Yang et al.: DAQM-Based Load Balancing Scheme

[35] C. V. Hollot, V. Misra, D. Towsley, and W.-B. Gong, ‘‘On designing
improved controllers for AQM routers supporting TCP flows,’’ in Proc.
20th Annu. Joint Conf. IEEE Comput. Commun. Soc. (INFOCOM), vol. 3.
Apr. 2001, pp. 1726–1734.

[36] T. Bu and D. Towsley, ‘‘Fixed point approximations for TCP behavior in
an AQM network,’’ ACM SIGMETRICS Perform. Eval. Rev., vol. 29, no. 1,
pp. 216–225, 2001.

[37] D. J. Daley, ‘‘Certain optimality properties of the first-come first-
served discipline for G/G/s queues,’’ Stochastic Process. Appl., vol. 25,
pp. 301–308, Jan. 1987.

[38] D. M. C. Wishart, ‘‘Queuing systems in which the discipline is ‘last-come,
first-served,’’’ Oper. Res., vol. 8, no. 5, pp. 591–599, 1960.

[39] J. R. Jackson, ‘‘Queues with dynamic priority discipline,’’ Manage. Sci.,
vol. 8, no. 1, pp. 18–34, 1961.

[40] L. Flatto et al., ‘‘The waiting time distribution for the random order service
M/M/1 queue,’’ Ann. Appl. Probab., vol. 7, no. 2, pp. 382–409, 1997.

[41] R. Adams, ‘‘Active queue management: A survey,’’ IEEE Commun. Sur-
veys Tuts., vol. 15, no. 3, pp. 1425–1476, 3rd Quart., 2013.

[42] A. Duda, ‘‘Transient diffusion approximation for some queuening sys-
tems,’’ in Proc. ACM SIGMETRICS Conf. Meas. Modeling Comput. Syst.,
1983, pp. 118–128.

[43] S. Sharma and D. Tipper, ‘‘Approximate models for the study of non-
stationary queues and their applications to communication networks,’’ in
Proc. Tech. Program, Conf. Rec., IEEE Int. Conf. Commun. (ICC), vol. 1.
Geneva, Switzerland, May 1993, pp. 352–358.

[44] Y. Tipsuwan and M.-Y. Chow, ‘‘Control methodologies in networked
control systems,’’ Control Eng. Pract., vol. 11, no. 10, pp. 1099–1111,
2003.

[45] A. Pitsillides, P. Ioannou, and L. Rossides, ‘‘Congestion control for
differentiated-services using non-linear control theory,’’ in Proc. 6th IEEE
Symp. Comput. Commun., Jul. 2001, pp. 726–733.

[46] Y. Fan, Z.-P. Jiang, and H. Zhang, ‘‘Network flow control under capacity
constraints: A case study,’’ Syst. Control Lett., vol. 55, no. 8, pp. 681–688,
2006.

[47] D. P. Palomar and M. Chiang, ‘‘Alternative distributed algorithms for
network utility maximization: Framework and applications,’’ IEEE Trans.
Autom. Control, vol. 52, no. 12, pp. 2254–2269, Dec. 2007.

[48] H. K. Khalil and J. Grizzle, Nonlinear Systems, vol. 3. Upper Saddle River,
NJ, USA: Prentice-Hall, 1996.

[49] S. Boyd and A. Mutapcic, ‘‘Subgradient methods,’’ Stanford Univ.,
Stanford, CA, USA, Lect. Notes EE364b, 2006.

[50] Y. Jiang, ‘‘A survey of task allocation and load balancing in distributed
systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 2, pp. 585–599,
Feb. 2016.

KAIJUN YANG received the B.S. degree in agricultural economic manage-
ment and the master’s degree in fundamental mathematics from Lanzhou
University, Lanzhou, China, in 2009 and 2013. He is currently pursuing
the Ph.D. degree in electrical engineering with the École Polytechnique de
Montréal, Montréal, Canada. His research interests pertain to control of
partial differential equations, network flow control, and model predictive
control.

MENG LI received the B.E. and M.S. degrees in
electronic engineering from the Beijing University
of Aeronautics and Astronautics, Beijing, China,
in 2004 and 2007, respectively, the Ph.D. degree
in electrical engineering fromÉcole Polytechnique
Montreal, Montréal, QC, Canada, in 2016. Since
2016, he has been a Post-doctoral Fellow with
the Department of Electrical Engineering, Poly-
technique Montréal, Montréal, QC, Canada. His
research interests include fault tolerance, paral-

lel computing, task scheduling, communication networks, and real-time
systems.

GUCHUAN ZHU (M’07–SM’12) received the
M.S. degree in electrical engineering from the
Beijing Institute of Aeronautics and Astronautics,
Beijing, China, in 1982, the Ph.D. degree in math-
ematics and control from the École des Mines de
Paris, Paris, France, in 1992, and the Graduate
Diploma degree in computer science from Con-
cordia University, Montreal, QC, Canada, in 1999.
He joined École Polytechnique de Montréal,
Montréal, in 2004, where he is currently a Pro-

fessor with the Department of Electrical Engineering. His current research
interests include control of distributed parameter systems, nonlinear and
robust control, and optimization with their applications to microsystems,
aerospace systems, communication networks, and smart grid.

YVON SAVARIA (S’77–M’86–SM’97–F’08)
received the B.Ing. and M.Sc.A degrees in
electrical engineering from École Polytechnique
Montreal in 1980 and 1982, respectively, the Ph.D.
degree in electrical engineering from McGill Uni-
versity, in 1985. Since 1985, he has been with
Polytechnique Montréal, where he is currently
a Professor with the Department of electrical
engineering.

He has carried research in several areas related
to microelectronic circuits and microsystems, such as testing, verification,
validation, clocking methods, defect and fault tolerance, effects of radiation
on electronics, high-speed interconnects and circuit design techniques, CAD
methods, reconfigurable computing and applications of microelectronics to
telecommunications, aerospace, image processing, video processing, radar
signal processing, and digital signal processing acceleration. He holds 16
patents and has published 136 journal papers and 428 conference papers,
and he was the thesis advisor of 160 graduate students who completed
their studies. He is currently involved with several projects that relate to
aircraft embedded systems, radiation effects on electronics, asynchronous
circuits design and test, green IT, wireless sensor network, virtual network,
computational efficiency, and application specific architecture design.

Dr. Savaria received the 2001 a Tier 1 Canada Research Chair on
design and architectures of advanced microelectronic systems that he held
until 2015. He also received a Synergy Award of the Natural Sciences
and Engineering Research Council of Canada in 2006. He is a mem-
ber of the Regroupement Stratégique en Microélectronique du Québec,
of the Ordre des Ingénieurs du Québec, and was a member of CMC
Microsystems board since 1999 and a Chairman of that board from 2008
to 2010. He was the program Co-Chairman of ASAP’2006 and the General
Co-Chair of ASAP’2007. He has been a Consultant or was sponsored for
carrying research by Bombardier, CNRC, Design Workshop, DREO, Erics-
son, Genesis, Gennum, Huawei, Hyperchip, ISR, Kaloom, LTRIM,Miranda,
MiroTech, Nortel, Octasic, PMC-Sierra, Technocap, Thales, Tundra,
and VXP.

VOLUME 5, 2017 22513

