
Received September 2, 2017, accepted October 10, 2017, date of publication October 12, 2017,
date of current version December 5, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2762291

Advancing Software-Defined Networks: A Survey
JACOB H. COX , JR.1, JOAQUIN CHUNG2, SEAN DONOVAN2, JARED IVEY2,
RUSSELL J. CLARK3, (Member, IEEE), GEORGE RILEY2,
AND HENRY L. OWEN, III2, (Senior Member, IEEE)
1Soar Technology, Inc., Ann Arbor, MI 48105, USA
2Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
3College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA

Corresponding author: Jacob H. Cox, Jr. (jhcox70@gatech.edu)

ABSTRACT Having gained momentum from its promise of centralized control over distributed network
architectures at bargain costs, software-defined Networking (SDN) is an ever-increasing topic of research.
SDN offers a simplified means to dynamically control multiple simple switches via a single controller
program, which contrasts with current network infrastructures where individual network operators manage
network devices individually. Already, SDN has realized some extraordinary use cases outside of academia
with companies, such as Google, AT&T, Microsoft, and many others. However, SDN still presents many
research and operational challenges for government, industry, and campus networks. Because of these
challenges, many SDN solutions have developed in an ad hoc manner that are not easily adopted by other
organizations. Hence, this paper seeks to identify some of the many challenges where new and current
researchers can still contribute to the advancement of SDN and further hasten its broadening adoption by
network operators.

INDEX TERMS Software-defined networking (SDN), network virtualization (NV), network functions
virtualization (NFV), standards, SDN interfaces and APIs, data plane, middleboxes, SDN security,
hybrid networks, software-defined exchange (SDX), software-defined infrastructure (SDI), software-defined
wireless networks (SDWN), Internet of Things (IoT), information-centric networking (ICN), cloud,
software-defined RAN, 5G.

I. INTRODUCTION
While this paper seeks to cast a wide net over the
existing research opportunities for researchers to further
advance software-defined networking (SDN) with current
and emerging technologies, a caveat remains essential. SDN
is a very broad topic, and as this paper demonstrates, it
spans many fields. Survey papers covering SDN are equally
expansive, in breadth, in depth, and in quantity. Hence, no
single paper could possibly provide the scope and depth
required to adequately articulate all the ongoing research
in this field. Instead, this paper focuses on surveying the
proliferation of SDN along with its various applications,
while also offering insights as to where new researchers can
still contribute and further advance SDN’s expansion.

Of course, we do not imply that SDN is being neglected–in
fact, it is a highly researched field within both academia and
industry, and it has already been adapted by several major
IT corporations. For example, according to various reports
and research articles [1]–[3], the OpenDayLight (ODL) [1]
controller alone has already seen over 100 deployments with
companies such as Orange, China Mobile, AT&T, T-Mobile,

Comcast, KT Corporation, Telefonica, TeliaSonera, China
Telecom, Deutsche Telekom, and Globe Telecom. There are
also many drivers pushing network operators to consider
SDN. For instance, it is also widely agreed that traditional
networks are too complicated to manage, too expensive, and
subject to vender-lock-in and ossification [4]. As a result,
more organizations are considering SDN as a solution to these
problems.

Currently, SDN is best defined as a networking paradigm
that decouples the control plane from the data plane, allowing
for centralized control of the network along with a global
network view where network applications run atop a network
operating system (NOS). Additionally, since SDN only deals
with packets at the header level, it is primarily utilized
with layers 2-4 of the OSI model and other orthogonal
protocols, like MPLS. The results of SDN are that it has
a logically centralized network intelligence and state and
an underlying infrastructure that is abstracted from network
applications [5]. Furthermore, these abstractions, sitting
atop SDN controllers or network operating systems, make
for a powerful concept. Much like a computer operating

VOLUME 5, 2017 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ 25487

https://orcid.org/0000-0002-9786-3552

J. H. Cox et al.: Advancing SDNs: A Survey

system can enable high level programming languages by
abstracting away the 0s and 1s of binary code, SDN
abstracts away the complexities of managing individual
network devices. Moreover, proponents of SDN claim several
benefits for such configurations, which include 1) centralized
control over multi-vendor environments, 2) automation that
reduces complexity for users, 3) higher innovation rates,
4) increased security and network reliability, 5) more granular
network control, 6) improved user experience, 7) reduced
management costs, 8) simplified network deployments, and
9) programmable network services [5].

Already, SDN has been established as a viable
network architecture for data centers and backbone
networks [6]–[8]. Consider, for example, how Google’s B4
project demonstrates SDN’s capability to offer a viable
NOS with real world applications for traffic engineering
and quality of service (QoS) [7]. Other advocates for SDN
point to how organizations, such as AT&T, Microsoft, and
Verizon, have moved towards SDN to reduce costs, improve
utilization, and expedite the delivery of new, client-oriented,
services [8]–[10]. Also, as industry is showing greater interest
in SDN architectures, so too are government agencies within
the United States [11], [12].

However, despite these advantages and use cases, SDN still
has limitations that cause concern for network operators who
are considering its implementation. As a result, this paper
identifies some of the constraints and unsolved problems
still facing SDN deployments. For instance, service providers
operate networks that are frequently stressed with high traffic
volumes, rich media content, and security considerations
that SDN does not yet fully address. Another is that SDN
still lacks a set of intuitive features that network operators
can readily incorporate into their existing infrastructures,
which will likely still comprise a mix of legacy hardware
devices. Further still are issues with fault-tolerance, universal
standards and certification, integration with existing network
infrastructure, and much more.

Hence, while the history of SDN [6], [13] and its current
state [14], [15] have been thoroughly explored, our work
seeks to extrapolate potential research directions, based on
needs defined by academia, industry, and governmental
organizations, which will help advance SDN as a viable
alternative to traditional networks for network operators in
coming years. Moreover, unlike many SDN-based survey
papers already in existence, we seek to identify open research
topics as a means of advancing SDN for stake holders
who are either already deploying an SDN or considering
the deployment of one. This effort comprises the major
contribution of our work.

Our specific contributions can be summarized as follows.
• Snapshot of SDN Deployment: Based on current
market reports and our own inquiries, we provide a
current snapshot for the state of SDN deployments in
industry, government, and campus networks.

• SDN Benefits, Challenges, and Opportunities: We
consolidate information from multiple surveys and

white papers, as well as our own research, to provide a
list of benefits, challenges, and opportunities as seen by
organizations and network operators who are currently
deploying or considering deployment of SDN.

• Research Opportunities. We identify research
contributions still needed to remove barriers for
organizations and their network operators considering
the integration of SDN into their current architectures.

• Simulation Environments. We offer a detailed
discussion, including strengths and weaknesses of
available simulation platforms that researchers and
network operators may consider for testing their
solutions or supporting change management objectives.

• Hybrid SDN Solutions Traditional networks will not
disappear for years (or decades) to come. As a result,
we discuss where researchers can find opportunities to
assist network operators with partial SDN deployments
within their traditional network infrastructure.

• Next Generation Technologies. We evaluate next
generation technologies (e.g., IoT, ICN, Cloud, and
5G) and identify potential areas to advance these
technologies through SDN.

The rest of this paper is outlined as follows. In §II,
we discuss the background, current state, recent trends,
and research opportunities pertaining to SDN. Additionally,
we identify several factors that are key to much broader
deployments of SDNs. Having identified key network
operator requirements, we next pursue a series of sections
highlighting where SDN can be strengthened to further
advance its use. Accordingly, we discuss standards,
certification, and training in §III. Then, we discuss the
challenges and research opportunities affecting the control
plane of SDN architectures in §IV. Next, we look at the
SDN data plane and identify some of the issues that are
created with generic, white box, switches in §V, along
with the need for additional data plane functionality for
which SDN did not originally consider. The discussion then
leads into middlebox deployments and utilization in §VI.
Afterwards, we discuss how virtualization technologies serve
as key enablers for advancing the SDN paradigm, including
Network Virtualization, Network Functions Virtualization,
and other recent developments in §VII. We then discuss the
importance of security, both for the SDN infrastructure and
traditional network threats, highlighting areas where SDN
is suited to assist network operators and where researchers
can better enhance it, in §VIII. The need for tools to
measure performance and validate new SDN applications
are discussed in §IX. Likewise, modeling and simulation
platforms for developing frameworks and validating use cases
are discussed in §X. Next, hybrid networks are discussed
in §XI and software-defined infrastructures/exchanges are
explored in §XII. Finally, we discuss the roll of SDN
and virtualization in emerging technologies (e.g., IoT,
ICN, SDRAN, SDWN, and 5G) in §XIII before a final
discussion of our presented topics in §XIV and concluding
in §XV.

25488 VOLUME 5, 2017

J. H. Cox et al.: Advancing SDNs: A Survey

TABLE 1. SDN 2015 adoption plans by campus, industry and government.

TABLE 2. University engagement with SDN among leading us national
universities.

II. STATE OF SDN
SDN has received a considerable amount of attention from
academia, industry, and government in recent years. This
interest has even resulted in various levels of involvement
and/or deployment by a variety of organizations as indicated
in Table 1 and Table 2. Even so, the concept of a
programmable network, having a decoupled control plane,
has existed for many years–a thorough history of which
can be found in [2], [13], and [15]. Still, SDN has only
recently gained the momentum needed to establish itself
as a significant factor within next-generation networking
initiatives, which are predicted to exceed $105B per annum
by 2020 [16]. Partly, this momentum is due to SDN’s
flexibility, abstractions, and global network views; however,
SDN is also aided by the symbiotic inclusion of virtualization
technologies, as we will later discuss in §VII.

1) Dynamic capacity to meet application needs
2) Bringing new services to market faster
3) OPEX reduction
4) CAPEX reduction

Regrettably, one notably absent benefit from the above list
is network security. In fact, less than 4% of SDN initiatives
undertaken by surveyed enterprises were conducted by
security leads, while 73% were led by engineering, DevOps,
applications, or operations leads. However, other studies
indicate that respondents do see security as a benefit of
SDN. For instance, another study [3], which surveyed 201
technology vendors and end-users, found that respondents
most appreciated the following benefits and capabilities of
SDN.

1) Management flexibility
2) OPEX reduction
3) CAPEX reduction
4) Programmability
5) Monitoring and Visualization
6) Security

Academia has also embraced SDN. In our own research,
we canvassed the top 104 national schools within the United

States as determined by a national ranking organization.1

During our canvass, we considered a university to be actively
engaged in SDN research if since 2014 it generated one
publication relating to SDN, taught SDN as a portion of
a course, or participated in an SDN related project. Our
canvass, completed in April 2017, determined that roughly
81% of these universities are actively advancing SDN as a
legitimate networking paradigm. Additionally, it identified
what percentage of these schools have deployed an SDN
on their campus–partial or otherwise. That value being
40%. However, this value is somewhat conservative, since
universities that did not respond to our queries or indicated
uncertainty about an SDN deployment (13 in all) were
grouped with universities that indicated no SDN deployment.
We provide these results in Table 2.

However, campus adopters of SDN also reported some
concerns [21], which we list in descending order below.

1) Cost (41%)
2) Integration with existing systems (38%)
3) Security (36%)
4) Lack of employee skill sets (30%)
While slower to embrace SDN, the United States

government has also made recent strides in SDN, with
statements regarding recent deployments indicating benefits
of reduced equipment costs and improved network
performance [20]. Meanwhile, military officials see SDN as
an operational multiplier within its future networks. In March
2016, a report was released by the Army’s Chief Information
Officer [22] indicating that future science, technology, IT,
and network investment strategies should include SDN. This
same report promotes SDN as a way to create more dynamic,
manageable, and adaptable networks that are also more agile,
cost effective, and capable of being rapidly configured and
redeployed as needed. Other SDN benefits for government
networks captured in a Juniper survey [21] are listed below.

1) Improved network performance and efficiency (26%)
2) Simplified network operations (19%)
3) Cost saving on operations (13%)
4) Increased agility via automation and orchestration

(13%)
5) Improved services (12%)
6) Enable greater security (9%)

Likewise, government organizations prioritize the below list
as criteria for adopting SDN solutions [21].

1) High availability and resiliency (30%)
2) Analytics and reporting (23%)
3) Automation and rapid provisioning (19%)
4) Open source options (12%)
5) Scale (10%)
Still, government adopters of SDN have also cited several

challenges [21]. Such challenges include the following.

1The ’National Universities Rankings’ pole from 2016 serves as
our sample group for this work http://colleges.usnews.
rankingsandreviews.com/best-colleges/rankings/
national-universities

VOLUME 5, 2017 25489

J. H. Cox et al.: Advancing SDNs: A Survey

1) Cost (51%)
2) Integration with existing systems (34%)
3) Lack of employee skill sets (32%)
4) Security (29%)
Accordingly, government IT decision makers still require

that SDN be complementary to traditional networks, since
predictions beyond five years indicate that prevalent network
infrastructures will be a hybrid of both technologies.
Hence network operators must be prepared to embrace
hybrid networks. Nonetheless, SDN’s promise to more
closely integrate network fabrics and external cybersecurity
platforms potentially offers greater network visibility
along with the enforcement of domain-specific real-time
policies–even when integrated with traditional network
infrastructures. SDN is also rife with many other research
opportunities–some of which may even lead to revisions
of the SDN architecture, standards, and operation as
researchers begin to achieve an optimal set of capabilities and
expectations [11].

As it stands, SDN’s decoupling of the control plane
from the data plane means that network operators can work
with a centralized control program instead of numerous,
multi-vendor, network devices to implement their desired
policies. Furthermore, with the control plane (i.e., the
proprietary operating system for the device) removed, many
proponents for SDN believe that the cost of producing SDN
hardware will be much cheaper than building traditional
network devices [3]. In this environment, vendors must
now compete to provide hardware solutions in one arena
and software applications in another. As a result, there is
now greater opportunity for new manufactures or software
developers to compete in either market (i.e., white box
hardware solutions or network software applications).

An additional benefit we see in SDN deployments is the
ability to replace, reorganize, or better chain together various
middlebox devices within networks (e.g. load balancers,
low-level firewalls, intrusion detection prevention systems
(IDPS), and other third-party solutions). In some cases,
the SDN paradigm can incorporate security features into
its network operating system. In other cases, developments
in network functions virtualization (NFV) are allowing
network operators to create virtual instances of hardware
devices and use SDN to ensure traffic is appropriately (and
dynamically) routed through these devices. By removing
middlebox hardware, network operators can obtain greater
control of their network and dynamically respond to the
network’s needs in ways previously considered too time
consuming or cost prohibitive.

Perhaps, SDN’s greatest benefit to network operators is
the ability to work at a much higher level of abstraction
than ever before. Through this abstraction, operators can
focus on network applications, such as traffic engineering,
security, policy enforcement, etc. Still, these capabilities
are not yet easily realized. For instance, when Google
developed their software-defined WAN (SD-WAN), which
carries over 90% of Google’s data, significant engineering

was required from building new switches to developing
customized software [7]. They also took advantage of several
characteristics unique to their network. For instance, Google
owned their infrastructure [7] from point-to-point and had
complete control of when data was pushed over the network.
While the result was a powerful enhancement of Google’s
back-end WAN, offering 99% utilization [7], it was very
much an ad hoc solution, and not necessarily applicable to
other network architectures.

Other areas where SDN is falling short involves standards,
switch architecture, full middlebox elimination (e.g., stateful
and NextGen firewalls, intrusion detection prevention
systems (IDPS), MPLS, Encryption, etc.), standardized
interfaces (particularly the northbound interface and the
east-west bound interface), security, use cases for integration
with legacy systems, clear and intuitive programming
languages and APIs, and integration techniques for network
applications are just a few. What role SDN will play in
conjunction with virtualization technologies, like network
function virtualization (NFV), to enhance wireless networks,
Internet of Things (IoT), and fifth generation (5G)
technologies is not fully understood yet either. Likewise,
quality of service (QoS), reliability, scalability, service
management, and extensibility are all underdeveloped areas
of research in SDN, while programmability and performance
issues must be resolved if 100 Gb/s and greater speeds are to
be handled by SDN [14].

A. RECENT TRENDS
While evaluating the state of SDN, it is also important to
consider the trends that are driving network operators to
consider it. These trends include greater user mobility, an
explosion of devices generating unprecedented amounts of
traffic, growth of cloud services along with a convergence
of compute, storage, and network architecture, and more
prevalent virtualization technologies [2]. Accompanying
these trends are significant challenges, such as huge
capital investments, shrinking gaps between investment
and revenues, growing numbers of proprietary and unique
hardware appliances on operator networks, shorter hardware
lifecycles, lack of flexibility and agility, and unacceptable
time to market margins for new services [2]. Furthermore,
current trends for picking controllers seems to lie with the
momentum behind the controller. For instance, lacking clear
standards, network operators are turning to technology they
believe will have long-term support and a wide margin of
public contributions and use cases [3].

B. SUMMARY OF CHALLENGES AND RESEARCH
OPPORTUNITIES
SDN offers the unique ability to maintain a global view of
its network down to port connections, matching on multiple
header fields. While doing so, SDN controllers are able
to query switch statistics, detect flow patterns of concern,
and react dynamically to perceived threats, which also
offers numerous possibilities for SDN environments. Because

25490 VOLUME 5, 2017

J. H. Cox et al.: Advancing SDNs: A Survey

TABLE 3. Network operator requirements for SDN.

of this, many initiatives are coupled with SDN research.
However, SDNmust still progress in numerous research areas
as we will next discuss before such initiatives will be fully
deployable. Of course, SDN research initiatives are also being
driven by political, strategic, and cost related decisions that
will ultimately drive these areas to change at a fast pace.
Hence, we merely attempt to introduce these various research
areas and suggest ways that new researchers can currently
begin contributing to this growing body of literature and
further advance the SDN paradigm.

Researchers must also maintain awareness that network
operators make their living by providing services–SDN is
merely a platform to provide those services. Thus, operators
do not necessarily want an SDN [2]. Rather, what they
want is to solve current problems and add value for their
clients. So, as long as SDN can allow network operators to
either offer or enhance these services, SDN will gain wider
adoption [2]. From our observations on the state of SDN,
we have identified several areas (or requirements) where
SDN can be improved to address network operator concerns.
Specifically, we present them in Table 3, where we also
identify the corresponding sections where these requirements
are addressed.

III. FEDERATION OF STANDARDS
Introducing a new networking paradigm, such as SDN,
requires standardization if it is to be universally adopted.
These standards are required for its engineering, integration,
operation, and maintenance (E&I, O&M). Likewise, policies
must be developed for how SDN domains interact with each
other, other legacy domains, and virtualized components.
Many telecom executives have said that standards are critical

to promoting SDN architectures [9]. Yet, these standardsmust
also consider researchers and network operators to lessen the
ad hoc nature of SDN deployments. With such measures,
consistent routing, security, and daily network activities can
be better ensured.

With regard to the virtualization of core network
components, the European Telecommunications Standards
Institute (ETSI) Network Function Virtualization (NFV)
Industry Specification Group [23] are researching best
practices for the efficient and scalable placement of core
network components [14]. Accordingly, ETSI has steadily
put forward draft standards that have been quickly adopted
by various vendors [16]. However, while ETSI has offered
VNF and network service descriptors as template definitions
of functions and services, it has yet to define a data model
for realizing these descriptors [24]. As a result, a lack of
clear interfaces for chaining different functions into a singular
service remains an open research challenge as we will discuss
in §VII-B.

Interfaces, mechanisms and protocols for separating the
control plane from the forwarding plane are another aspect
of SDN that the Internet Engineering Task Force (IETF)
is attempting to resolve within the context of IP routers.
Additionally, the Open Platform for NFV Project (OPNFV)
was introduced in 2014 to ease industry mobilization around
new NFV products and services [16]. For instance, there is
still a need to standardize APIs that address interconnect
policies, traffic flow management, authentication, and
authorization between other prioritized network elements
for the successful adoption and advancement of SDN and
NFV technologies [2]. As pointed out in other literature [2],
[25], [26], the PCRF (Policy and Charging Rules Function),
which is part of the Evolved Packet Core (EPC) supporting
service data flow detection, could serve as a potential means
for how controllers reach consensus for setting up and
managing flows. However, while PCRF operates as a policy
enforcement entity at the service/application level (including
LTE networks), the SDN controller operates at the L2-L4
level. As of yet, no standardized interface exists between the
SDN controller and PCRF, and this represents a significant
challenge for developers if PCRF is indeed to be used for
augmenting SDN controller decisions.

How SDNs will handle such policies is yet another field
needing standardization. Some researchers have developed
policy engines for Software-defined Exchanges [27] and
Security features [28]; however, the SDN community is far
from achieving a universal standard that will allow multiple
network operators from multiple domains to systematically
dictate their policies in a way that an overarching SDN
controller can interpret and render while resolving potential
policy conflicts.

Regarding certification, the current nature of SDN means
that traditional network operators will require retraining and
or certification to effectively engineer and integrate SDN
architectures, as well as to operate and maintain them.
To a certain extent, this new paradigm requires that they

VOLUME 5, 2017 25491

J. H. Cox et al.: Advancing SDNs: A Survey

be software engineers first, and network operators second.2

Already, the ONF has established a skills certification
exam, ONF-Certified SDN Engineer (OCSE-111) to certify
that network operators possess required skills for operating
SDNs [29]. Currently, this exam focuses on seven domains
as listed below:

1) SDN Concepts
2) OpenFlow
3) SDN Architecture and Ecosystem
4) SDN Implementations and Migrations
5) Troubleshooting and Testing
6) SDN Security
7) SDN Futures

Additional research by independent sources is likely
needed to validate whether this certification represents an
adequate range of SDN topics for aspiring SDN operators.
Nevertheless, this certification represents a starting point
for organizations seeking to validate and/or certify the
skills of network operators responsible for handling their
organization’s SDN infrastructure.

IV. CONTROL PLANE
Programmability is the fundamental paradigm shift offered
by SDN [30]. It allows for an entire network of individual
network devices (once programmed individually) to be
programmed or orchestrated as one single entity. In other
words, the SDN controller, along with its interfaces,
constitutes the control plane, which serves as a logically
centralized intelligence having a global view of the network
and the ability to dynamically reconfigure it. Said differently,
network management has everything to do with the control
plane, and this is an extremely powerful abstraction. As a
result, this plane (a.k.a. tier or layer) is often referred to as
the network operating system (NOS), as it allows the SDN to
abstract its physical network state as a global network view
to a controller instance running in the application layer [2].

Already, previous publications have attempted to identify
key attributes to look for in an SDN controller. For instance,
Metzler et al. [31] identify ten things to look for in a
controller. These include

1) OpenFlow Support
2) Network Virtualization
3) Network Functionality
4) Scalability
5) Performance
6) Network Programmability
7) Reliability [or Fault-Tolerance]
8) Security of the Network
9) Centralized Management and Visualization

10) Controller Vendor
However, as we will explain in §IV-C and §XII, there
is at least one additional aspect of an SDN controller
worth considering (i.e., the east-west bound interface).

2This observation hinges on the development of new APIs for network
operators as we will discuss in §IV.

Likewise, interoperability of controllers must be considered,
since significant problems can result if even occasional
incompatibility occurs.

Within the control plane are three interfaces or APIs. Those
are 1) the southbound interface, 2) the northbound interface,
and 3) the east-west bound interface. Technically, these
three interfaces represent standards in and of themselves,
yet, each of them are at various states of acceptance,
development and integration. We depict these interfaces in
Fig. 1 with two controllers, both serving as a NOS for
their subnetwork. The northbound interface allows control
programs (a.k.a. applications) to provide instructions to the
controller. Through the southbound interface, the controller
sends instructions and receives information from the data
plane. The east-west bound interface allows for controllers
to share a common network view and to coordinate policy
and protocol enforcement. Most of these interfaces currently
reside in the open domain (being freely available under
open source license), which has proven a significant boon in
the development and expansion of SDN. It has also helped
network operators to promote vendor-neutral solutions for
their organizations.

FIGURE 1. SDN interfaces.

However, a significant limitation to SDN is that no
clear programming language has been identified for its
northbound API, and while its southbound API has a de
facto standard in OpenFlow, other southbound APIs are
competing for attention. Likewise, the east-west bound
interface for SDN is ill defined or missing altogether from
many controllers. Moreover, SDN’s APIs are still in need of
more intuitive abstractions that will allow network operators
and engineers to manage how applications interact with the
network and better enable network programmability [32].
Just consider Google’s B4 project [7], which provides
an excellent overview of the challenges of creating an
SDN-based back-end network for connecting its data centers.
SDN programming, at least at the moment, is still very low
level and complicated to write.

25492 VOLUME 5, 2017

J. H. Cox et al.: Advancing SDNs: A Survey

Similarly, SDN lacks uniformity across networks. While a
Cisco (or Juniper, Brocade, etc.) programmer can move from
one organization to the next already having the prerequisite
command line interface skills needed to operate on the new
network, that is not the case for SDN networks. This is a
significant limitation for organizations having high turn-over
rates, and it requires significant retraining of new network
operators. This limitation makes adaptation of standardized
SDN programming languages a critical goal for SDN’s
continued advancement.

A. SOUTHBOUND INTERFACE OR API
The southbound API provides the interface between
controllers and switches using protocols like Open-
Flow [49], [50], ForCES [51] and POF [52] to update
flow table entries in switches. Put another way, southbound
protocols define the control communications that occur
between the controller and data plane devices, which include
physical and virtual switches and routers [2]. Yet, while
southbound APIs, like OpenFlow, make it possible to
program networks, they do not necessarily make it easy [53].
Partly, this is because OpenFlow is closely tied to its
underlying hardware. As such, policies are incorporated
through bit patterns, and this can make southbound APIs
more difficult to intuit. For this reason, the southbound API
is used as an interface to enable high-level programs to
dynamically interact with the network’s physical (or virtual)
devices.

It is also important for the southbound interface to
accommodate greater flexibility in the control plane so
that new control methods can be quickly adopted [54].
Since, southbound APIs can be more difficult to reason
about, a stable and common platform is required, and
OpenFlow [49] is the most widely used of the southbound
APIs in both academia and industry. For this reason, we
consider primarily OpenFlow-enabled switches throughout
this paper.

In general, the southbound API allows us to match certain
fields in packet headers and apply actions accordingly.
For instance, OpenFlow v1.3 [55] can match source and
destination fields for TCP or UDP ports, IP and MAC
addresses, switch ingress and egress ports, MPLS labels, and
differentiated services field code points for QoS [55]. With
each match, OpenFlow v1.33 can set the output port, drop the
packet, set the queue or push/pop MPLS labels [55].

For the most part, just as hiding assembly code from
application developers allows them to focus on their code’s
functionality, it makes sense that the southbound interface
should be hidden from network operators, so they can
better focus on the utilization of SDN’s applications on
their networks. Hence, it becomes more important that the
network operator understand the northbound interface and
the applications interacting with it. Still, while OpenFlow is
considered the de facto standard, other southbound protocols,

3The most recent version of OpenFlow as of this paper is 1.5.

like OVSDB, BGP,4 XMPP, and NETCONF have gained
sufficient enough popularity that network operators must
ensure that the controllers they select will properly interact
with the data plane. According to [3], there has recently
been much debate over the compatibility and scalability
of various controller frameworks having varied support for
southbound protocols that include OpenFlow, BGP, PCEP,
SNMP, NETCONF, OVSDB, etc. [2]. In Table 4, we list
a number of popular controllers and indicate whether they
support OpenFlow (and what version). We also indicate,
where applicable, what percentage (%) of SDN deployments
utilize these controllers. Note also that multiple controller
types may be deployed by various respondents. As a result,
adding these percentages provides a value greater than 100%.

1) OPENFLOW
As the de facto standard for the southbound interface, it
is still worth noting that some researchers still do not
consider OpenFlow to be a complete standard [2], [56].
Its shortfalls include: 1) the lack of a mechanism for fully
managing devices (i.e., for controlling port/trunk interfaces
and queuing); 2) poor network status communication
(i.e., loads, traffic, and operational state for nodes and
trunk); 3) absence of a specific method for establishing
communication channels between the controller and switch;
and 4) making bare metal switches operational from a
newly installed state [2], [56]. Nonetheless, OpenFlow
still offers several intellectual contributions, which include:
1) generalizing network devices and functions, 2) the concept
of a network operating system, and 3) distributed state
management techniques [2], [13].

2) ARGUMENT FOR TWO SEPARATE STANDARDS
While not a new argument, previous work has argued
that two versions of OpenFlow should be considered: one
for edge networks and one for core networks [4]. The
authors argue that current OpenFlow versions are too tightly
coupled with the host-network interface, meaning that each
switch must consider original packet header information for
all forwarding decisions. So, OpenFlow may unnecessarily
couple host requirements to network core behavior [4].
Hence, current OpenFlow protocols must struggle with
finding balance between practicality (support for matching
standard headers) and generality (support for matching all
headers). As a result, OpenFlow switches must match on
hundreds of bits, whereas core forwarding protocols, like
multi-protocol label switching (MPLS), matches on only
tens of bits. Hence, OpenFlow does not meet the mark for
simplified hardware.

With OpenFlow seeking to balance this practicality with
generality, one can argue that it is not general enough
for the edge or simple enough for the core. Hence,

4Border Gateway Protocol (BGP) is a well-known core Internet
protocol that is also being adapted for use as a hybrid SDN protocol. See
https://wiki.onosproject.org/display/ONOS/SDN-IP+
Architecture

VOLUME 5, 2017 25493

J. H. Cox et al.: Advancing SDNs: A Survey

TABLE 4. Controllers.

Casado et al. [4] make a strong argument for two separate
OpenFlow protocols, allowing the edge and the core
fabric to be logically controlled by separate controllers.
In one case, the edge can offer semantically rich services,
including network security, isolation, mobility, access
control, etc. In the other, the fabric can focus on high-speed
packet forwarding with a minimized set of forwarding
primitives [4]. In both cases, the control planes can evolve
separately.

One reason we choose to revive this argument is that
next generation technologies (e.g., IoT, ICN, 5G, and others)
will continually push the network’s edge to adapt to new
and unforeseen requirements. Hence, flexibility is a key
enabler for these technologies. Allowing OpenFlow to adapt
to edge requirements separate from its core can then serve
to further assist efforts to advance the SDN paradigm in
support of emerging technologies (see §XIII). Furthermore,
the existence of edge and core protocolsmay also create better
opportunities for the creation of hybrid SDN networks, as we
will discuss in §XI.

B. NORTHBOUND INTERFACE OR API
The northbound interface links control programs (a.k.a.
applications) to the controller (or network operating system).
Through this API, applications can orchestrate (or program)
the data plane to perform complex tasks like traffic
engineering, topology discovery, quality of service (QoS),
load balancing, security policy enforcement, firewalls, delay
and jitter management, and much more [53]. Yet, despite its
ability to provide the above features, no clear northbound

interface standard yet exists [57]–[59]. What’s more,
capabilities and features can drastically differ based on the
network operator’s choice of controller [57]. Hence, intuitive
abstractions for network operators to create their own
policies, protocols, and applications are still lagging [60],
which has led other researchers [61] to further explore the
challenges of developing SDN software.

As alluded to above, many northbound APIs exist
with varying strengths and weaknesses. However, their
capabilities, intuitiveness, documentation, etc. vary broadly
across available controllers, which may be a single
centralized controller or a distributed controller that is
logically centralized. On one hand, NOX [37], Floodlight [44],
Maestro [62], Beacon [43], SNAC [38], OpenDayLight [1],
and Trema [45] are all network operating systems having
a single controller. On the other hand, Onix [63],
HyperFlow [36], ONOS [64] and DIFANE [35] are examples
of a distributed controller. Additional information about
these controllers and their available features are presented in
Table 4.

Another challenging aspect of the northbound interface is
that while available APIs attempt to offer abstractions, they
still fail at being intuitive [65]. For instance, most northbound
APIs require a deeper knowledge of the programming
constructs that comprise them. For researchers, this can
be challenging. For network operators, who have limited
resources and multiple network responsibilities, the time and
effort required to implement SDN protocols and policies
on their networks may prove too much of a barrier [65].
In other words, network operators may lack a sufficient

25494 VOLUME 5, 2017

J. H. Cox et al.: Advancing SDNs: A Survey

understanding of the northbound API and be too busy with
immediate network issues to risk the time needed to modify
SDN applications and/or potentially introduce new errors
to their network. For this reason, we argue that abstraction
without intuition is useless. If standardized and intuitive
northbound APIs can be developed, then this can further ease
the transition of SDNs into existing infrastructures.

Unfortunately, many if not most northbound APIs are
poorly documented (or still in development), making
it difficult to standardize their use across network
infrastructures. Additionally, there is no current means to
certify network operators with any of these interfaces. As
a result, the northbound API, in its current state, fails to
offer network operators a means to create applications in a
systematic and intuitive format that is easily interpreted by
other coworkers or future successors [60]. Hence, having
developers include common APIs like the REST API in
conjunction with their own set of controller APIs would go a
long way towards providing a standard interface for multiple
controllers.

For network operators, the above issues are a huge
problem, since the current APIs only provide for ad hoc or
custom solutions that do not necessarily translate to other
network architectures or services. A natural approach has
been to add high-level domain specific languages such as
Pyretic [40], NetKAT [66], NetCore [67], Ryuretic [42],
NetEgg [60], [65], etc. to allow network operators to
program their own policies, protocols, and applications.
These programming languages raise the level of abstraction
beyond the controllers’ APIs and reduce code sizes by orders
of magnitude [60]. Nevertheless, while network operators
are experts at configuring switch and router solutions, they
may not be prepared to program them using domain specific,
object oriented, languages [60]. For network engineers and
researchers looking to implement specialized services or
custom solutions for network architectures, the northbound
interface provides an option, but at a cost of time and
labor hours. Consequently, the northbound interface is
primarily benefiting researchers, software engineers, and
corporations with deep research budgets. Until an intuitive
and standardized northbound interface is established, SDN
will continue to struggle with gaining momentum in current
infrastructures maintained by network operators who lack
sufficient programming backgrounds.

Still, other researchers have already recognized the
need for a hypervisor to incorporate ‘‘best of breed’’
controller solutions so that network operators may run any
combination of controller applications in order to meet
needs specific to their networks [68]. CoVisor basically
allows multiple and disparate controllers to manage shared
traffic collaboratively. Additionally, beyond allowing an
operator to interact with disparate controllers, like Java-based
Floodlight [44] and Python-based Ryu [41], it further
allows network operators to compose data policies in three
different ways: parallel, sequential, and overriding. Parallel
actions allow multiple controllers to simultaneously and

independently act on identical packets while sequential
policies allow one controller to process packets prior to the
next controller [68]. In essence, sequential operation can be
seen as a packet having to pass through a firewall application
before reaching a load balancing/routing application. The
third action, override, gives one controller priority to act
or defer on arriving packets [68]. The implication for
platforms such as CoVisor is that, provided its interface
can be standardized, it would allow network operators to
work with one interface and orchestrate multiple controllers
as CoVisor’s hypervisor captures and processes industry
standard OpenFlow messages–while also modifying them to
match operator-specified policies using their best features. In
this vain, Yuan et al. [60] developed a controller agnostic,
programming framework, called NetEgg, that works with
timing diagrams and topology examples developed by
network operators to produce implementations from the
provided examples. Future development as of this paper is
still ongoing.

The Northbound Interface (NBI) Working group of the
ONF [69] has started working towards an intent-based
networking interface for the SDN controller. Under the
intent-based networking paradigm, the network operator
will describe what is needed, as opposed to how to do
it. For instance, an intent could be ‘‘Latency lower than
150 ms for voice traffic’’; while the prescription could
be‘‘assign all IP phones to the Voice VLAN, mark all
traffic from/to the IP Phones as high priority, and put the
traffic in the priority queue’’. Some examples of intent-based
networking proposals are the ONOS intent framework [64]
and NetAssay [70], an intentional network monitoring
framework. Recently, the ONF introduced their open source
northbound interface (the Boulder project) for intent-based
networking. Boulder chooses an initial information model
and the architecture base to form an intent-based interface to
an SDN controller (e.g., OpenDayLight or ONOS) [71].

As programming languages are developed, it is critical
that developers realize that abstractions without intuition
will be worthless to the network operator. Equally
important to network operator intuition is the consideration
of the over-head such abstractions create and possible
performance degradation [30]. However, other work such as
LegoSDN [72], which is intended to introduce fault-tolerance
to SDN architectures, may also point to a future where
applications run in sandboxed VMs communicating with
the controller through remote procedure calls. The result
could provide better abstractions and greater flexibility for
application development.

Applications are generally discussed in terms of a
top-level tier (see Fig. 1) where the control and data planes
make up the subsequent tiers [2]. We also acknowledge
that applications communicate with the controller via its
northbound interface or API. Generally speaking, a controller
by itself is only as useful as the applications that are
available to it [3]. Perhaps the greatest hindrance to a wider
SDN deployment is the lack of applications available to

VOLUME 5, 2017 25495

J. H. Cox et al.: Advancing SDNs: A Survey

network operators. While there are immediate advantages
offered by SDN to network operators (e.g. IPv6, traffic
engineering, network virtualization, load balancing, security,
access control, network monitoring and analysis, network
service discovery, etc.), most of these features must be
programmed into the network operating system. Yet, many
of these functions could be provided to network operators
as functions that are either turned on or off. One can
imagine a selection list where IPv6 is simply enabled in
a graphical user interface or purchased through an app
store (e.g. HP [73]), which ultimately instructs the network
operating system to complete the setup. Hence, we observe
that network tools (e.g., network monitoring, management,
and analysis tools) or applications are still required to enable
network operators to visualize the deployment of SDN
networks [32].

SDN controllers will almost certainly run numerous
apps providing different functionality. That is to say
that the control logic for various apps will run as
separate processes on the controller hardware inside each
domain [2]. Examples range from current network protocols
and services to tailored apps capable of exploiting network
visibility [32]. For instance, Hock et al. [74] have developed
an SDN graphical user interface (GUI), called POCO-PLC,
which allows network operators to investigate loads and
latencies on controllers at different placements during and
SDN deployment. The POCO-toolset, which is available
online [75], also provides real-time comparisons across
multiple controllers.

Network monitoring is yet another service desired by
network operators. SDN should allow them to submit network
queries based on the user, application, and device that is
initiating and receiving services, along with its associated
network or domain, and possibly the path its traffic takes [70].
Such an application can assist network operators with
monitoring application usage and properties of network paths
utilized per user or device and aid with billing services or
troubleshooting [70]. NetAssay [70] represents a first attempt
at providing intentional networkmonitoring of domain names
and autonomous systems for network operators, yet it is far
from complete. For instance, dynamic network conditions
impose significant research challenges since autonomous
systems frequently announce new prefixes and domain
names, incorporate new IP address, and continually join and
drop users from the network [70]. Dealingwith these dynamic
events and maintaining a consistent mapping of monitored
services has yet to be solved.

How network information is conveyed to the network
operator is equally important. Applications for graphical user
interfaces that interact with SDN controllers to build network
diagrams and render performance, availability, and utilization
depictions as well as network and security alerts are crucial
to operation and maintenance support.

Beyond these applications is the need to allow them
to share state without sharing fate. For instance, as we
will discuss in §IX-B, the fates of applications and the

controller(s) are frequently tied together. As a result, if one
fails, so do they all.

C. EAST-WEST BOUND INTERFACE OR API
How controllers interact with one another to share
information within an SDN is handled via their east-west
interface. This interface can also be utilized for to
server-to-server or server-to-controller communication.
Essentially, we can think of this interface as a conduit passing
through various network domains to communicate with their
subsequent control planes [30]. In doing so, controllers
can pass network state information and influence routing
decisions. Furthermore, this interface can be used to enhance
intra-domain and inter-domain communication, and improve
scalability and interoperability of SDN deployments [54].
From the network operator’s perspective, this interface
should be essentially seamless to setup, but still capable of
supporting protocols like BGP [30].

This communication channel is extremely important
for large networks (e.g., enterprise, Internet exchanges,
Software-defined exchanges, and other multi-domain
networks). For example, when large networks are partitioned
into multiple, smaller networks, it is likely that network
operators will consider including a dedicated network
operating system (NOS) for each network. However, a
global network view is still required to successfully route
packets through the network. This global construct requires
that an east-west bound interface exist and provide full
mesh connectivity so that heterogeneous network operating
systems can exchange network views or coordinate packet
routes [76]. In this global design, each individual network
is referred to as a subnetwork, and each subnetwork runs its
own NOS or controller (See Figure 1). Yet, the subnetwork
NOS only has a global view of its subnetwork, which includes
topology, reachability, network protocols, network state,
entities, etc. Since network operators require a global view
of their entire network, it is imperative that local controllers
be able to communicate with each other and share network
views through an east-west bound interface.

An east-west bound interface is also important for
researchers seeking to automate network decisions in
order to limit network operator involvement with the
network. For instance, network operators may wish to
incorporate a Trusted Agent [77] to facilitate security policy
transitions within a network by updating or removing
policy enforcements. Without an east-west bound interface,
the communication protocols between a Trusted Agent
and the SDN controller is limited. Additionally, while
east-west bound interfaces do exist for some controllers
(e.g., Onix [63], HyperFlow [36], DIFANE [35], etc.),
their communications are generally private and unreadable
between heterogeneous controllers [76]. This represents
another challenge for advancing SDN, and translation
modules must be considered for SDN controllers to properly
interact with legacy equipment if hybrid (see §XI) networks
are to be fully realized [30].

25496 VOLUME 5, 2017

J. H. Cox et al.: Advancing SDNs: A Survey

D. DISTRIBUTED CONTROL PLANE
For the purposes of scalability, availability, and robustness,
general consensus calls for the control plane to be physically
distributed while offering logical centralization [78]. Such
measures ensure that another controller is available to assume
network control in case of a controller failure. Yet, distributed
control plane design is arguably still one of the key challenges
in software-defined networking [33], [63], [78], [79].

Issues that arise in a physically distributed control
plane include delay of control communications, spoofed
control messages, inconsistent updates, and network routing
changes–to name just a few–while packets are still in transit.
For instance, when incorporating redundancy models, poor
filtering of late commands, caused by network delays, may
introduce incorrect updates to the data plane. Additionally,
the multicasting of every event to all other controllers
can create a performance hindering overhead. Malicious
controllers can also impact the control plane’s network view
by not acting as expected [78]. One method for defeating
malicious controllers includes the use of cryptographic
signatures to indicate whether other controllers agree with a
proposed update. Still, even this method is vulnerable when
information for the controller is delayed (or prevented) or
when elements of the network are subjected to replay attacks.

A more recent work by Schiff and Schmid [78], relies on
tracking the network’s state within the network element (i.e.
OpenFlow switch) of a data plane. When controllers join the
network, they receive history and state information from the
switch and validate it via an XOR hash. Their work, however,
requires modifications to the OpenFlow protocol, and they
argue that wide agreement already exists for latency critical
functions, such as fast failover, be implemented in-band.
Additionally, they observe a trend towards putting more
state in the data plane (e.g., OpenFlow 2.0/P4 [80]). These
challenges represent future research as discussed in §V.
Other work such as Fleet, [81], deals with the malicious
administrator problem by assuming a redundantly managed
network by multiple administrators or SDN controllers.
However, Fleet still cannot handle incomplete and delayed
information.

As of this work, the distributed control plane architecture,
while needed to support scalability, availability, and
robustness, is still vulnerable to attacks focusing on the
information handled by its controllers. Likewise, the joining
and leaving of controllers is also still not fully supported
in distributed architectures. More research is yet required to
adequately address these problems.

V. DATA PLANE
The data plane or forwarding plane is generally responsible
for ensuring the proper transit of traffic from one ingress
interface (i.e., an input port) to an appropriate egress interface
(i.e., an output port). Primarily, this transit follows the
match:action rules contained in network device forwarding
tables or forwarding information base (FIB). This data

FIGURE 2. OpenFlow-enabled switch.

might also be stored in ternary content-addressable memory
(TCAM) along with associated metadata, such as packet,
flow, and port counters [2].

One assumption of the early SDN research community
was that network routers would be simple and homogeneous,
working with IPv4 forwarding and Ethernet MAC
switching [82]. It was also assumed that simple Ternary
Content Addressable Memory (TCAM) forwarding would
be used. As a result, early OpenFlow [50] switches were
designed with simple lookup tables (i.e., Flow Tables) to
perform header matching and then execute various actions
as specified in the flow table (match:action). An example of
an OpenFlow-enabled switch is shown in Figure 2. In this
diagram, the header fields of arriving packets are matched
against header fields located in the TCAM or flow table.
The action column indicates what to do with the packet if a
match is found. If no match is found, then the switch forwards
the packet to the OpenFlow controller using its southbound
interface, as previously described in §IV, to obtain new flow
rules. It suffices to understand that the southbound interface
refers to the protocol used by data plane elements (e.g.,
switches) to communicate with their controller.

In truth, network operators deploy routers that support
multiple kinds of forwarding protocols, like MPLS, carrier
Ethernet, IPv4 & IPv6, etc. This realization has made
protocol-independent processing a leading goal of SDN [80],
[83], and some SDN researchers now seek to enable the
processing of packets independent of implemented control
protocols. As stated above, early researchers also assumed
simple TCAM forwarding, yet TCAMs are expensive,
power-intensive, and not very scalable.With such limitations,
white boxes (i.e., SDN switches) still have issues with
integration, interoperability, and performance. For instance,
security applications, like NetSight [84], require firmware
and hardware modifications to handle compression. Also,
SDN applications are not portable from one vendor platform
to another without added modification. Thus, OpenFlow is

VOLUME 5, 2017 25497

J. H. Cox et al.: Advancing SDNs: A Survey

still hardware dependent [53], and SDN platforms are still not
truly vendor-agnostic. Such limitations must be addressed if
network operators are to see SDN as a vendor neutral solution
for their networks.

One project aimed at addressing cross-platform portability
is the Indigo project, which is an open source initiative
within the Floodlight project [44]. Its goal is to offer software
that supports thin switching with stable and interoperable
implementation for the OpenFlow [50] protocol. At least
one company has embraced this initiative by developing
thin switching platforms for bare metal switches and virtual
switches [85]. The current platform supports OpenFlow v1.3
and programs the rules and policies into forwarding tables for
both ASIC-based physical switches and Open vSwitch virtual
switches [85].

To help free the SDN control plane from its current
hardware constraints (and limitations of OpenFlow),
other research now seeks to capitalize on opportunities
within the data plane by developing switches containing
programmable hardware [53]. These programmable data
planes seek to merge the flexibility of software with the
performance of hardware. Current research [86] proposes
a Reconfigurable Match Table (RMT) architecture, which
offers a programmable data plane and protocol-independent
processing (including protocol-oblivious forwarding). As
it happens, the desired modules required to implement a
majority of the features that interest network programmers
are fairly limited [53]. This realization has led researchers to
believe that a flexible data plane can be achieved through a
fixed set of modules [53]. In turn, these modules serve as
building blocks, which allow researchers to build fast and
programmable data planes.

Of course, such designs require that match tables
on switches (e.g., Ternary Content Addressable Memory
(TCAM) and Static Random-Access Memory (SRAM)),
be flexible [53]. Unfortunately, TCAMs are already
expensive and power-hungry, and additional flexibility
may make them more so. To overcome TCAM’s capacity
limitations, some researchers propose adding a network
processor within the data plane of hardware switches or
utilizing a software agent on hardware switches to assist with
scalability issues [87].

In contrast to current capabilities, network operators
may also desire to perform more complex operations
within the data plane (e.g., encryption, deep packet
inspection, and real-time transcoding) [53]. Consequently,
these requirements mandate that more sophisticated packet
processing modules be placed in the data plane–if
middleboxes are to be excluded. Realizing this challenge,
researchers have advocated for the placement of Field
Programmable Gate Arrays (FPGA) or RMTs in white
box switches [80]. By doing so, a high-level language,
like P4 [88], can be used to compile code to FPGAs
located on data plane switches and reconfigure network
hardware as needed [53]. This concept achieves protocol
and target independence and allows for network engineers

to reconfigure how their switches process packets after
deployment. For languages like P4, other assembly languages
(e.g., NetASM) have emerged to directly affect underlying
device capabilities and allow network operators to specify
their hardware layout on multiple and varied targets with a
precise, or fine-grained, level of control [89].

Other research [83], however, has observed that software
switches, like Open vSwitch [90], are playing an important
role in data centers. Likewise, they observe that nearly every
packet in route to or from a virtual machine (VM) passes
through a software switch. Moreover, Open vSwitch is a
multilayer, production quality, virtual switch that is designed
to enable large-scale network automation while supporting
standard management interfaces (or APIs) and protocols such
as NetFlow, CLI, sFlow, IPFIX, RSPAN, LACP, and 802.lag.

Whether these new chipsets include additional hardware
(e.g., CPU/GPP, NPU/NFP, PLD/FPGA/ASSP, FlexPipe,
etc.), it is now evident that a new set of assembly languages
are needed to compile the various network programming
languages (i.e., Flowlog, NetKat, OpenState, OpenFlow, P4)
to hardware [14]. As a result, one goal for SDN may be to
develop networks from general purpose hardware with the
realization that the end model will likely be a programmable
hybrid of current architectures [14]. This also means that
network operators must be made aware of these capabilities
and provided abstractions to modify these boxes in a way
that adheres to the SDN paradigm of network programming.
Otherwise, some network functions must be included as
middleboxes within the data plane as well, which may be
more likely.

VI. MIDDLEBOXES
Network Functions (NF) or middleboxes comprise 40%-60%
of devices utilized in large-scale networks [91]. Generally
speaking, middleboxes represent stateful systems that are
purpose-built to support narrowly defined and highly
specialized network functions. As a result of these
devices, network operators must think beyond the routing
infrastructure to also considermiddleboxes, which implement
an entire gambit of functions (e.g., firewalls, deep packet
inspection, load balancing, IDS, IPS, WAN optimization,
proxies, gateways, transponders, encryption devices, VPN,
policy enforcement, and other devices.).

Unfortunately, the fixed placement of these devices
frequently contributes to network ossification. That is to
say that network function hardware makes it difficult to
dynamically alter network routes without circumventing
the functions provided by this hardware. Middleboxes also
represent significant capital and operational expenditure,
which includes purchase, management, and replacement
costs. Consequently, it is the inclusion of these devices that
makes the networking landscape far more complex than SDN
researchers originally considered [82].

At this point, it is still difficult to determine which network
functions are better handled by SDN architectures. For
instance, the networking community has yet to categorize

25498 VOLUME 5, 2017

J. H. Cox et al.: Advancing SDNs: A Survey

which network functions are best handled by SDN,
NFV, hardware, or other technology. Therefore, a greater
understanding of SDN and network function capabilities
is needed to determine which functions can or should
be assumed by SDN (e.g., load balancing and traffic
engineering) and which should remain on middlebox
platforms (e.g., encryption and deep packet inspection).
Doing so will allow network operators to better assess
their own networks and determine the overall financial
and operational benefits of using SDN architectures and
its applications. Additionally, various network function
implementations must now be considered by network
operators. Those include middleboxes that are implemented
both in hardware and virtually and now software-defined
network functions.

Consequently, a safe and programmable framework for
network function orchestration that can unify a vast
set of network functions could greatly assist network
operators [13]. In this regard, SDN not only offers to
alter the way we do routing, but also how we implement
network functions. In some cases [7], [8], [30], [92], network
engineers have utilized the capabilities of SDN to implement
load balancing, traffic engineering, and low-level firewalls.
However, the simplicity of white boxes, as discussed in
§V, also means that they are incapable of implementing
features like encryption, web caching, and deep packet
inspection.

Network function hardware or middleboxes represent a
growing number of proprietary hardware devices, all of which
sit between forwarding elements while making decisions
about packets passing through them. In fact, Sherry et al. [93]
find that the number of middleboxes on a network, regardless
of the network’s size, are roughly equivalent to the network’s
number of routers and switches. Additionally, as new services
are required, so must new middleboxes be obtained, which
also requires the allocation of additional space and power.

Unfortunately, facilities such as data centers, cyber centers,
network operating centers (NOCs), Internet exchanges, and
Internet service providers all have finite space and power
constraints that make it difficult to readily accept new
boxes [94]. Additionally, middleboxes often offer poor
versatility and flexibility, and they frequently lack a general
programming interface [93], [95]. For instance, to address
the versatility issues of middleboxes, network operators may
have to chain multiple boxes together to achieve desired
outcomes. This requirement, however, can impose a cost of
latency, throughput, and path restrictions. Other concerns
for network operators involve replacement costs for devices,
which are highly specialized, proprietary, and expensive,
and shrinking life-cycles caused by device manufactures
attempting to keep pace with technological innovations. Of
equal concern is the availability of skills needed to engineer,
integrate, design, and operate these devices [94]. Taken as a
whole, middleboxes, while useful, are extremely disruptive
to network operators seeking flexible and dynamic network
capabilities.

Consequently, when a network solution needs to be
integrated with more mature, feature-rich, third-party
solutions, simplifying service chain deployments is an
important factor [3]. Hence, in some cases [96], [97],
researchers have deployed SDN to dynamically re-route
traffic so that it passes through required network solutions
or middleboxes. By doing so, network operators can steer
traffic to appropriate middleboxes and avoid the placement
of additional middleboxes along other routes in order to
avoid the complications of steering traffic via manual CLI.
As a result, they hold that middleboxes should be adapted as
‘‘cleanly as possible’’ into the SDN environment [98].

Still, another limitation of SDN, as observed by
Fayazbakhsh et al. [98], is that SDN’s ability to enforce
and verify network-wide policies do not extend to networks
with middleboxes, since middlebox usage violates two key
SDN tenants [37], [98], [99]. The first is Origin Binding
where packets are strongly tied to their origins. The second is
Paths Follow Policy in which case policies are to determine
the paths taken by packets. However, they point out that no
road-map currently exists for SDN switches to replace the
stateful processing offered by some middleboxes. They also
note that significant deployed infrastructure already exists in
many enterprises andwill not likely go away in the immediate
future [98].

As a solution for dealing with middlebox hardware, they
introduce FlowTags [98] so that middleboxes insert export
tags to provide packets with the necessary causal context
needed to restore Origin Binding and Path Follows Policy
tenets. However, the FlowTags solution does come at a
cost of adding extension software to middleboxes. Other
researchers are calling for an overhaul of SDN that places
some intelligence back in the data plane’s edge devices in
order to keep high-speed, forwarding devices in the core
[4], [82]. How this might morph with the incorporation of
virtualization technologies is discussed in §VII. Likewise,
initiatives supported by ETSI NFV are causing middleboxes
to further evolve. Yet, these scenarios still force the network
operator to deal with proprietary systems, which require
manual configurations, on their networks. Fortunately, as
we will discuss in §VII, there exists other platforms (e.g.,
network functions virtualization) that make it possible to
implement more complicated network function solutions.
However, until the proprietary functions of all middleboxes
can be fully virtualized, methods for integrating middlebox
hardware into SDNs are needed.

VII. VIRTUALIZATION
As SDN has developed, so has its integration with Network
Virtualization (NV), Network Functions Virtualization
(NFV) and cloud technologies. Additionally, because of the
sheer scale of today’s data center, virtualization has become
much more economic, drawing investment and skills towards
generic server technology [100]. Accordingly, as of 2013,
nine million generic servers are bought annually in contrast
to the mere 180K edge routers [100]. Hence, predictions

VOLUME 5, 2017 25499

J. H. Cox et al.: Advancing SDNs: A Survey

FIGURE 3. Relationship between SDN, NFV, and NV.

indicate that network equipment facilities will start to look
more and more like data centers, where virtualized network
functions are managed in commonwith other ITmanagement
processes.

We will discuss how SDN and virtualization are
contributing to emerging technologies in §XIII. However,
for the remainder of this section, we will discuss these three
virtualization technologies in greater detail along with how
SDN is being advanced with these platforms. Consequently,
Fig. 3 provides a Venn diagram of how these technologies
overlap with one another.

A. NETWORK VIRTUALIZATION
Where SDN separates the control plane from the data plane,
virtual networks (VNs) divide logical and physical networks.
Accordingly, with Network Virtualization (NV), the physical
network continues to forward traffic using standard routing
protocols as expected; however, the virtual networkmaintains
various overlays, access control lists, network services, and
configuration policies to create logical network separations
or slices. The concept of network virtualization is not new
either as it has been previously realized in the form of
VLANs and VPNs–both of which are highly successful
examples of building separate virtual networks atop a
physical infrastructure [2]. However, network virtualization
goes beyond VPNs in that it also enables independent
programmability of virtual networks [101].

Hence, NV utilizes current network infrastructure to
provide multi-tenancy, typically in data center networks,
along with traffic and address isolation. Additionally, it is

used to realize stretched/extended networks (mobile VMs
and dynamic reallocation of resources) [2]. Already, NV
is the most common use case for SDN controllers [3].
Many of which appear in data centers, which primarily
use two approaches for NV deployment [3]. The first is to
directly program the fabric to provide a hop-by-hop virtualiz-
ation [2], [3]. The second is to develop a network overlay.
In the latter, the NV platform directly programs the virtual
switch and physical switches to create and coordinate virtual
networks. In the former, the virtual switch is replaced with a
hypervisor (e.g., KVM) or run on a VM as a terminating point
for the virtual network.

Another motivation for network virtualization involves
the deployment of new services. One such service includes
dynamic workload placement that creates isolated virtual
networks for each of the tenants in a multi-tenant data
center [53]. A second includes centrally managed security
policies that provide dynamic security enforcement for
each virtual network [53]. Other motivations for network
virtualization include disaster recovery and manageability.
Moreover, research in NV is still growing to offer a wider
breadth of solutions and beneficial innovations.

In one survey [3], when asked about the greatest benefits
of network virtualization (NV), the respondents’ top answers
included the following:

1) Flexibility
2) OPEX Reduction
3) Scalability
4) CAPEX reduction

25500 VOLUME 5, 2017

J. H. Cox et al.: Advancing SDNs: A Survey

Likewise, as indicated in [3], stakeholders of NV most often
seek to deploy it for cloud management platform integration,
improved performance, better scalability, and richer L2/L3
feature sets. Other work [2] also lists improved disaster
recovery times and overcoming limitations of VLAN as key
reasons for using SDN in conjunction with NV. In many
cases, networking virtual machines (VMs) are connected
together via layer 2 platforms (e.g., Open vSwitch [90]) and
configured remotely using JSON or OpenFlow commands
[53], [102], [103]. These virtual networks allow for rapid, at
scale, innovation that is free of vendor-centric solutions [53].

Within the context of network virtualization, multi-tenant
networks transit an abstracted virtual network that sits atop a
physical network, sharing multiple racks and services (e.g.,
controls, acceleration, security, etc.) within a data center [3].
Via direct programming or overlays, the SDN controller
helps to set up appropriate virtual networks by monitoring
the network topology and configuring the network ports
accordingly. The controller also creates the service chains
needed to insert the L4-7 services. Consequently, NV
also allows researchers to conduct experiments and share
resources on production networks while still being isolated
from production traffic, which provides added support for
enforcing network change management programs.

Beyond sharing resources, virtualization also allows for
isolation between VMs, a means to aggregate resources
to accommodate greater requirements, the ability to
dynamically respond to user mobility with reallocated
resources, and simpler management through uniform
interfaces [104]. When considered with SDN, possible
applications include graphic engineering, security, policy, or
network virtualization [2]. Likewise, SDN in NV potentially
allows for deep programmability of network infrastructures in
order to quickly modify network behavior and provide better
policy controls via rich applications [2].

Other areas where NV and SDN are merging include
Virtual Edge and SD-WAN, dynamic interconnects, virtual
core and aggregation, and data center optimization to name
a few [3]. For Virtual Edge and SD-WAN, the controller
configures data flows on either the cloud or customer-premise
network infrastructure. These actions include configuring
appropriate ACLs or QoS settings for subscribers with WAN
access to branch networks and services. With dynamic
interconnects, the controller sets connections as needed.
Virtual core and aggregation utilizes the controller to provide
virtualized network segments to support multiple vEPC and
maintains network fabric connections across each of the
infrastructure services. And, for data center optimization, the
controller uses real-time network analytics to maintain the
network’s topology and modify paths or ensure service level
agreement or optimization goals are enforced.

Some existing and open SDN-based NV solutions already
exist for network operators. These include FlowVisor [105],
FlowN [106], and AutoSlice [107]. Each of these
architectures are discussed in [2]. Likewise, a plethora of
vendors are also now seeking to compete in the NV market.

From one survey [3], we list the lead NV vendors having 6%
or more of the market by order or their market share below.

1) VMware NSX (38%)
2) Cisco Systems ACI/Nexus/VTS (21%)
3) Juniper Networks Contrail (21%)
4) Brocade (9%)
5) Nuage Networks (9%)
6) Ciena (6%)
7) Ericson (6%)
8) Huawei (6%)
9) NEC Programmable Flow (6%)
However, there are still many open research questions for

NV. For instance, some NV solutions encounter performance
issues with control plane over saturation or when the data
plane unnecessarily replicates broadcast, unknown unicast, or
multicast traffic across the physical fabric [3]. As a result, it
still uncertain whether NV solutions can scale to support tens
of thousands of servers or not. Additionally, most monitoring
and analysis implementations are relatively basic, focusing
on data capture and still need more mature capabilities
to improve analysis [3]. Furthermore, the monitoring and
troubleshooting of large numbers of virtual networks is still a
challenge expected to last yet many more years.

Finally, vendors and enterprise participants already have
some idea for the directions they hope to take NV/SDN.
By order of interest, these include 1) creating virtual
networks for cloud applications, 2) WANs for enterprises
(SD-WAN), 3) Virtual networks for enterprise campuses,
4) improving flexibility and agility for internal operations,
5) CPE solutions for residential and commercial subscribers
(vCPE), and 6) mobile core applications [3]. Another issue
resides with network operators increasingly being burdened
by the challenge to increasingly accommodate new services
and greater bandwidth requirements [108], [109]. For this
set of problems, researchers also seek to employ network
functions virtualization (NFV), which we will discuss in
§VII-B.

B. NETWORK FUNCTIONS VIRTUALIZATION (NFV)
Network Functions Virtualization (NFV) seeks to utilize
virtualization technology to emulate functions that
traditionally run on a specialized hardware (or network
devices) on high-volume, commodity, servers, switches, and
storage devices [110]. By doing so, network operators can
replace proprietary middleboxes and network devices with
virtual network functions, which can be moved to various
network locations and instantiated as required without the
need for new equipment installations. Doing so reduces
CAPEX by consolidating servers and replacing high-end,
purpose-built, devices with commodity hardware to reduce
equipment costs. Likewise, OPEX is reduced by minimizing
the number of specialized middlebox managers and reducing
power requirements [111]. Moreover, OPEX costs can be
further reduced through software-based orchestration while
still providing network operators with greater opportunities
for innovation [109], [112]. Better yet, NFV solves many of

VOLUME 5, 2017 25501

J. H. Cox et al.: Advancing SDNs: A Survey

the challenges facing network operators as discussed in §II-A.
These network devices include routers, gateways,

firewalls, QoS monitors, video transcoders, service level
agreement (SLA) monitors, WAN accelerators, etc. [111],
[113]. A greater variety of network functions considered
for NFV can be found in [2] and [114]. Through NFV,
these devices can be instantiated, orchestrated (programmed),
moved, run, or shutdown on a variety of server platforms, as
needed, without additional installation requirements or new
equipment. NFV is already highly utilized in data centers,
and it has been key to the success of cloud computing
solutions [3]. Even now, network users shop, work, learn,
socialize and enjoy leisure activities in virtual environments.
Likewise, engineers and scientist have virtualized memory,
LANs (VLANs), private networks, computers, and much
more. Even so, these virtual devices and activities require
large amounts of compute, network, and storage. Since
it is not feasible to dedicate individual hardware for just
one service, NFV allows for virtualized elements to share
resources among many devices that might otherwise be
underutilized. HenceNFV also supports multi-versioning and
multi-tenancy of network functions [2].

By coupling NFV with SDN, network operators can also
offer control plane services, like content-centric networking,
on-demand virtual networks, and binding of cloud networks
via SDN while NFV provides data plane services such as
parental control, NAT, WAN acceleration, and web caching
[109], [112]. In fact, according to the SDN Market Report
produced by SDxCentral [16], this combination of SDN
and NFV marks the first significant inflection point in both
networking technologies and overall business landscape in
the last 20 years.

While NFV predates SDN and does not require it, SDN
makes it much easier to orchestrate a multi-tenant data
center because it is simpler to implement an SDN switch
than a physical switch [53]. SDN also makes it possible
to run a separate controller for each virtual network to
enhance controllability. As a result, SDN shows great promise
for cloud orchestration and networking. It even shows
great potential for implementing security and middlebox
functionality [115] in new and novel ways within clouds.
As it happens, cloud providers are currently the largest
consumers of SDN-NFV-based networking technologies, and
this is expected to continue through 2020 [16]. Likewise, [16],
states that the use cases provided by the confluence of cloud
adoption and IT convergence will continue to drive demand
for SDN-NFV technologies.

Proponents for NFV also point to SDN as a means
of enhancing performance, facilitating operation and
maintenance procedures, and simplifying compatibility
issues within current deployments [110]. Essentially, SDN
allows virtualized devices to be orchestrated as a single
system. Network operators currently have to purchase a
plethora of middleboxes to perform security, load balancing,
and traffic engineering functions, yet NFV offers a distributed
compute pool where middlebox functionality can be

dynamically installed and orchestrated via SDN. Thus,
NFV is able to establish a unifying control framework for
deploying middlebox functions throughout the network.

Consider the difficulty of utilizing external network
management software within virtual or cloud environments.
It may be necessary to accommodate VMs belonging to
multiple clients, requiring separate virtual LANs (VLANs),
in one physical machine [104]. Similarly, organizations
consisting of multiple data centers require a means to
move VMs from one site to the next while maintaining IP
configurations. Using external networkmanagement tools for
such feats is no easy task. For instance, migrating multiple
virtual machines through traditional methods can take some
data centers weeks (or even months) to complete [116].

Already, many use cases have been identified for
SDN-NFV architectures. They include Network Access
Control, Network Virtualization, Virtual Customer Edge,
Dynamic Interconnects, Virtual Core and Aggregation, Data
Optimization, and other unspecified contributions [16]. For
which, revenue values are expected to triple from $18B
in 2015 to approximately $65B in 2018 (next year) [16].
The sub use cases for the above use cases are given in
Table 5; however, the reader is referred to [117] for use case
definitions.

TABLE 5. Table of SDN-NFV use cases adapted from [16].

Another enabler for NFV is containerization, which allows
for container isolation to prevent multiple tenants from
influencing each other’s applications within an operating
system. Containers (e.g., Linux containers) also offer an
alternative to various hypervisor approaches, since they
utilize less overhead by interacting with the same Linux
kernel as the host system to achieve greater performance.
Additionally, by using container runtime image management

25502 VOLUME 5, 2017

J. H. Cox et al.: Advancing SDNs: A Survey

solutions, like Docker and Exo-Clone [118], [119], these
containers can access directories that are not part of the
container to exchange data between containers or store data
beyond the container’s shutdown.

Still, multiple issues for container based NFVs still exist.
For instance, even when memory limitations are imposed
on containers, the Linux free command might indicate that
memory exists within the container, when it actually refers
to the entire host system [120]. Similarly, attempting to
retrieve CPU utilization and availability generally gives
notice for all CPUs available to the host, regardless of cpuset
applied to the container [120]. Live migration is yet another
problem of containers. This prevents network operators from
moving a running container to a different host system,
and it poses an interesting challenge for future research.
Currently, it is more convenient to simply restart a container
on different host machines, which is still faster than restarting
a virtual machine [120]. Restarting containers also requires
the updating of the network infrastructures routes to ensure
applications are correctly routed to the correct container. This
also poses interesting opportunities for NFV-SDN research.
Further, containers also suffer from potential fork bombs,
where a process forks via a fork system call to create a child
process with all the memory of its parent process [120]. The
result is a potential DoS of the host kernel. Finally, unikernels
and rump kernels can also re-use the existing management
tools of virtual machines and serves an interesting subject for
future work [120].

Clearly, NFV is not without its challenges and additional
research is still needed to enable network operators to
better deploy SDN-NFV systems. Research topics include
portability and interoperability, integration, performance,
legacy platform compatibility, management and orchestration,
automation, stability, and security and resiliency [110].
In fact, early NFV deployments were beset with performance
issues [16]. Now, with most virtual infrastructures
emphasizing isolation boundaries between virtual machines,
they still fail to provide the advanced resource management
needed to fairly allocate compute, I/O, and storage
resources [16]. Consequently, co-located VMs (acting
as a ‘‘noisy neighbor’’) can consume too much of the
available resources. The result of this issue is that network
operators cannot comfortably migrate from their predictable
proprietary hardware to NFV solutions [16].

Mijumbi et al. [24] also recently identified six open
challenges and research opportunities for advancing SDN and
NFV.While we provide a brief description below, we refer the
reader to [213] and [221] for further details.

1) RESOURCE MANAGEMENT
Since servers, including finite amounts of memory, compute,
and storage capacity, may be distributed across multiple
domains, inter-domain link capacity is also finite. Hence,
dynamism, scalability, and automation must be applied to
management of these resources to achieve economies of
scale. Three challenges are specifically identified within

this context. Those are a) NFV PoP locations, b) function
placement, and c) dynamic resource management.

2) DISTRIBUTED MANAGEMENT
Current management and operation (MANO) approaches,
defined by ETSI, focus on centralized solutions. The result
is scalability limitations, which is especially troublesome
for multi-domain services due to communication overhead
and process delays. As a result, research opportunities
include the development of efficient monitoring mechanisms
that better react to dynamic demands and changing
service requirements, while also providing information
required for dynamic change configurations to distributed
entities. Likewise, lightweight communication protocols for
optimizing resource usage and service performance represent
great research opportunities.

3) MANAGEMENT OF SDN
While SDNandNFV are highly complementary, individually,
their dynamism and variability serve to curtail the human
operators’ visibility and control. Consequently, management
approaches must be developed beyond simply managing
the virtualized compute resources and functions. Instead,
management solutions that combine SDN and NFV serve as
key research areas. However, we believe that OpenBox [121]
and Slick [122] represent great strides in this arena. Other
research opportunities in this field include the management,
location, number, and conflict resolution in cases where the
control plane is physically distributed.

4) MANAGEMENT ACROSS THE BOARD
Another challenge of NFV is its support for fault,
configuration, accounting, performance, security (FCAPS)
functions [24]. For instance, accounting management for
tracking network utilization and billing is still completely
overlooked in nearly all systems, while security and
performance management appear in a limited context [24].
Generally speaking, an entire service life-cycle management
system is still missing. And, this lack of management runs
contradictory to the realization of multi-vendor, coexistence
on open NFV platforms. It also misses out on one of NFV’s
unique selling points of automation for the set up and
tear down of service chains, such as billing, configuration,
optimization, performance, and response to faults. Thus,
research providing support for FCAPS management is still
needed to enhance the use of NFV in a telco.

5) PROGRAMMABILITY AND INTELLIGENCE
For NFV and SDN, intelligent and automatic mechanisms
for transforming high-level policy are needed to apply
operational parameters and validate the integrity of
configurations. The goal here is to allow NFV to be
successfully deployed and maintained over heterogeneous
physical resources while still providing complex resources.
Ultimately, this will require the development of a rich set of
programmable interfaces to extend SDN functionality beyond

VOLUME 5, 2017 25503

J. H. Cox et al.: Advancing SDNs: A Survey

the simple control of switch devices. Again, we point to
OpenBox [121] and Slick [122] as recent developments in this
field, but the interfaces for these frameworks has yet to reach
the level of programmability as described above. Likewise,
other abstractions are needed so network functions can be
instantiated across multiple vendor technologies and allow
for their dynamic (re-)programming and placement. Finally,
another research challenge hinges on enabling intelligence
in MANO NFV systems that are capable of (re-)configuring
operations to react to events at runtime.

6) INTERFACING AND INTEROPERABILITY
If NFV is to break the bond between telecommunications
service provider (TSPs) and equipment vendors, then one
key requirement it must achieve is interoperability across
different vendors and different functions. In work surveyed
by [24], all NFV MANO related projects observed some
level of interoperability problems, with each using a custom
model and/or representation for services and functions. This
observation means that chaining functions from different
operators into a single service is impossible without clearly
defined interfaces, which is primarily because ETSI does
not yet describe a data model to realize descriptors. As for
those that do exist (e.g., the Alliance for Telecommunications
Industry Solutions (ATIS) [123]), they only consider generic
descriptors and lack any technical requirements for enabling
use cases.

These challenges will likely drive the technical focus
of SDN-NFV frameworks in future research. Additionally,
putting these systems in the hands of network operators
to develop additional use cases for SDN-NFV systems
is paramount to their adoption. One might imagine a
fully portable network capable of being rapidly deployed
worldwide with minimum network equipment as a use case.
Furthermore, while on-demand scaling and provisioning
can be improved for NFV, other problems–like centralized
management for each NF–still exist.

C. SOFTWARE-DEFINED NETWORK FUNCTIONS
VIRTUALIZATION (SDNFV)
One of the issues with traditional middlebox and NFV
devices (when utilized as monolithic middleboxes) is that
they still suffer from management and multi-tenancy issues.
In both cases, they are treated as monolithic devices having
proprietary software already installed, which serves as a
hindrance to on demand scaling and provisioning. Granted
that cost of ownership and management and on-demand
scaling and provisioning are often improved by using NFV
over traditional middleboxes, NFV alone still does not
provide centralized management. As a result, network traffic
often traverses a service chain (or a sequence of NFs) to
achieve desired results. This chaining, where multiple NFs
share similar processing steps, contributes to greater delays
and decreases throughput [121].

In answer to this problem, OpenBox [121] recently
proposed a framework and a protocol that makes network

functions software-defined, having their own logically
centralized controller. Whereas both hardware and virtual
network function solutions were each treated as an individual
piece of hardware, the OpenBox solution allows for network
functions to be combined as a single entity, which alleviates
some of the redundant processing steps that occur with
service chaining. The OpenBox [121] approach to merging
network functions demonstrates throughput performance
improvement of up to 90% with latency improvements
of 35%-50%.

Another work having nice overlaps with OpenBox [121] is
Slick (SDN + Click) [122]. While Slick focuses on placement
of network functions and steering traffic to them, OpenBox
focuses on combining network functions in a way that
avoids repeated filtering. Slick also appears to be farther
along in its implementation than OpenBox. Still, Slick’s
approach might offer greater performance if it incorporated
OpenBox’s approach to combining functions–especially in
locations where Slick has co-located elements. Additionally,
OpenBox’s future work seems to indicate that they hope to
eventually address smart allocation (placement) and traffic
engineering (steering), which is something the creators of
Slick already address.

However, while the OpenBox protocol offers 40 types
of abstract processing blocks (i.e., network function
applications) and Slick offers 15 distinct network functions,
introducing new processing blocks is not a simple process.
In both cases, onemust first write a Click [124], [125] module
in C++ and then implement a translation module in Python.
Hence, these frameworks could benefit from a high-level
programming language offering comparable abstractions to
what Pyretic [40] provides for POX [39] and Ryuretic [42]
provides for RYU [41].

D. CLOUD
Of the virtualization technologies, the cloud is possibly the
most abstracted of the group as it comprises aspects of NV
and NFV, and more recently, SDN. Cloud environments
seek to leverage best practices for leveraging software-based
solutions, micro-services, virtualized commodity platforms,
elastic scaling, scalable services, and service composition
to allow more rapid innovation for network operators [109].
Likewise, many of today’s cloud environments are typically
orchestrated by systems like OpenStack, CloudStack,
vRealize and Microsoft SCVMM [3]. Of course, rapid
development and refactoring is still occurring with
many orchestration stacks, resulting in less stability with
networking APIs. As a result, alternate means for integration
management are still being considered.

Already, the trend of including SDN controllers and
switches with cloud orchestration tools has seen rapid
growth [2]. One such solution, met for telco companies,
is CORD [109]. In this work, researchers observe that at
least one major telco has 4700 central office (CO) locations,
with each containing up to 300 unique network devices.
As a result, these devices represent a significant barrier to

25504 VOLUME 5, 2017

J. H. Cox et al.: Advancing SDNs: A Survey

innovation both in terms of capital expenditure (CAPEX)
and operational expenditure (OPEX). Consequentially,
Peterson et al. offer CORD [109] as a telco architecture that
combines SDN, NFV, and elastic cloud services to build
cost-effective and more agile access networks.

Never the less, an open challenge and frequent concern
for cloud environments is security. The programmability
that SDN and NFV bring to cloud architectures also invites
new attack vectors with potentially farther reaching impact
than in non-virtualized environments [24]. According to the
ETSI NFV report [100], clouds face generic virtualization
threats (e.g., interrupt isolation, memory leakage, etc.),
physical system and network function threats (i.e., flooding
attacks, routing security, etc.), and new threats created by the
combination of virtualization technologies with networking.
Some of these threats have recently been outlined by the ETSI
NFV security group, and we list these key issues below.

1) Availability of Management Support Infrastructure
2) Secured Boot
3) Secure crash
4) Isolation of Multiple Administrators
5) Performance isolation
6) User/Tenant Authorization, Authentication,&Accounting
7) Authenticated Time Service
8) Cloned Images Containing Private Keys
9) Back-Doors via Virtualized Test & Monitoring

Functions
10) Topology Validation & Enforcement
However, as Mijumbi et al. [24] observe, the ETSI NFV
report [100] does not offer recommendations for addressing
them. Currently, only CloudBand [126] offers a security
solution having anomaly prediction, detection, and isolation,
while also offering security as a service. Other cloud
architectures, highlighted by [24], such as Zoom [127] and
Planet Orchestrate [128], merely claim security support based
on best practices and product integration [24]. Hence, real
security support is insufficient in all NFV products, in spite
of legitimate new threats. Thus, these topics represent great
opportunities for cloud research to further advance SDN and
NFV use cases for network operators. Likewise, detecting
and blocking possible intrusion in cloud environments
and maintaining isolation to protect one TSP’s data and
configuration information from other TSPs in multi-vendor
environments represent important security challenges.

VIII. SECURITY
Like its predecessor, work in SDN has moved forward
with little regard to security. As a result, this area of
research presents vast opportunities for researchers. It also
leaves much to be desired by network operators. SDN
security essentially falls into two categories. First is the
security of the SDN architecture itself. One can imagine a
‘‘stuxnet-like’’ [129] virus designed specifically to hijack,
shutdown, or corrupt SDN controllers, and the impact such
a virus could have on a network. Second is security within
networks–detecting and preventing malicious attacks on

end users. Some researchers have argued that commercial
adoption of SDN is still deterred by its ability to offer
security and dependability [130]. However, SDN is not alone
with its security challenges. Traditional networks, have their
own issues, and recent reports indicate that the control
plane of traditional networks is no longer as safe as once
thought [131].

A. CONTROLLER SECURITY
By separating the control plane from the data plane, new
security challenges arise for SDN architectures. Already
numerous attack vectors have already been identified [14],
[130]. These include issues with the SDN controller’s APIs,
memory, and various other factors as we will now discuss.

For instance, several security issues exist with
OpenFlow-based networks [132]–[134], which are suscept-
ible to a variety of security and dependability problems that
include tampering, repudiation, information disclosure [132],
spoofing [132], privilege escalation [132], and denial of
service [14], [132], [135]. Since many controllers utilize
OpenFlow, they too have comparable security and resiliency
issues. For instance, controllers such as Beacon [43],
Floodlight [44], Maestro [62], OpenDayLight [1], and
POX [39] are all susceptible to fake topology, spoofing,
tampering, repudiation, information disclosure, DoS, TCAM
exhaustion, and privilege escalation [15], [28].

Alas, while it is still unclear what software might take
advantage of this, another issue with the SDN controller’s
northbound interface is that most APIs frequently leave
the controller exposed to other applications or management
software [2]. Another issue is that a simple value change in
memory can drastically affect the reliability and operation
of these controllers [15], [133]. Reliability is further
discussed in §IX-B, yet these issues remain open challenges
in SDNs. Other issues with the SDN control plane are
identified in a survey by Kreutz et al. [15], which includes
the following six vectors, three of which are unique to
SDN architectures. Those threats include 1) DDoS attacks,
2) attack inflation, 3) exploitation of logically centralized
controllers, 4) compromised controllers which compromise
the entire network, 5) malicious controller applications,
and 6) negative impacts on recovery speeds and fault
diagnosis [15]. Kreutz et al. [15] also point to weaknesses
in access control, isolation, protection, and security as
contributing to the above-mentioned SDN threats.

Some countermeasures include access control, flow
aggregation, attack detection, event filtering, firewall and
IDPS, forensics support, packet dropping, shorter timeouts,
and rate limiting–most of which are not yet supported
by SDN architectures [15]. Other work [28] has proposed
the incorporation of a shim layer (or virtual middlebox)
between the control and data plane to protect controllers
from such attacks. Security extensions for SDN controllers
have been proposed as well [136]. More research for
controller security, protection, and isolation mechanisms
is needed to address network operator security concerns

VOLUME 5, 2017 25505

J. H. Cox et al.: Advancing SDNs: A Survey

with SDN. Such mechanisms must also be sandboxed from
other applications and from the controller. Furthermore,
methods to establish trust between controllers are needed,
both to ensure proper forwarding and to detect malicious
elements before a misconfiguration can occur and damage
the network [15], [28], [136]. Malware scanners for SDN
applications are one possibility, so too are certificate based
authentication, authorization, and accounting systems [137].
Both are relevant since few controllers even utilize secure
TCP connections.

To further help mitigate problems with malicious
controllers, Schiff and Schmid [78] analyzed distributed
control planes that are resilient to malicious controllers,
which are represented as a malicious network administrator,
a compromised controller software, or an unintentional
misconfiguration. The authors argue that a control plane that
is resilient to malicious controllers requires a basic notion
of memory and awareness of history. Thus, they introduce
a model in which most benign controllers are responsible
for accurately updating data plane switches despite the
presence of malicious controllers by using a light-weight
in-band communication mechanism to achieve consensus.
Their model, however, assumes that data plane switches are
trusted and each switchmaintains a summary of the controller
state and history. As we will soon discuss, this may not
be a valid assumption. After verifying that a majority of
controllers agree on the change, the switches implement the
requested update.

To alleviate trust issues between the SDN controller
and its applications, Betge-Brezetz et al. [138] rely on
several redundant controllers that may also be running in
separate executing environments. However, instead of a
consensus protocol, the authors introduced an intermediary
layer (a trusted-oriented controller proxy (ToCP)) between
the control plane and the data plane. The ToCP is responsible
for collecting and analyzing configuration requests from all
redundant controllers and evaluating if they are consistent and
trustworthy before allowing their placement in the data plane.
However, their results show that ToCP imposes a performance
cost due to service degradation and additional computing
requirements.

Compromised switches are yet another issue beyond that
of the SDN controller. One architecture that has addressed
this issue is FlowMon [139]. This architecture detects
compromised switches through real-time analysis of network
traffic statistics collected by OpenFlow in an SDN controller.
Their main objective is to detect packet droppers (i.e.,
switches that purposely drop packets) and packet swappers
(i.e., switches that forward packets to a port for which they
are not intended). To do so, the authors add two additional
functional blocks to an SDN controller. One being amalicious
switch detection and prevention (MSDP) block, and the
other a policy block. While the MSDP continually and
transparently analyzes communication between the controller
and switches, the policy block contains a set of rules that are
triggered anytime a malicious switch is detected. The authors

also propose algorithms for detecting packet droppers, using
information collected from port statistics from switches, and
packet swappers, by investigating the reports of unknown
flows and comparing their expected output interfaces to their
observed ones. Results indicate that both algorithms are able
to detect malicious switches in a mixed environment.

B. TRADITIONAL NETWORK SECURITY
Meanwhile, cyber-attacks are of great concern across all
networks as they push the boundaries of both traditional
networks and SDNs. New applications are needed to
detect and prevent these attacks. Such threats include
advance persistent threats (APTs), data exfiltration, malware
propagation, denial of service, and many others. In response,
organizations, such as the Open Network Foundation (ONF),
have taken an active role in addressing this issue by founding
the ONF security working group. Equally important is
determining which level (or tier) of an SDN to deploy
these security applications in order to avoid performance
degradation and unmanageable false-positive alarms.

Our own research focuses on leveraging the capabilities
of software-defined networking (SDN) to exploit the
state and header information available to edge devices
on government, industry, and campus networks in order
to mitigate or eliminate existing attack vectors [42],
[77], [140]–[142]. Network Flow Guard DHCP (NFGD)
introduces an extensible module for detecting and preventing
Rogue DHCP servers [140] and Network Flow Guard ARP
(NFGA) introduces a similar module for detecting and
preventing ARP poisoning [141]. The latest security solution
introduces a Trusted Agent to assist the SDN controller
with identifying rogue access points (RAPs) via passive
and active detection measures [142]. While NFG offers an
excellent addition to network security and potentially reduces
the number of middleboxes required on a network, it is
still only intended as an initial barrier or first defense in a
defense-in-depth strategy. As such, it has little application for
security within the network infrastructure. Other SDN-based
security features are discussed below.

1) NETWORK ACCESS CONTROL
Another aspect of network security tailors to network access
control (NAC), which is used to set appropriate privileges for
users or devices accessing the network. As a result, access
control limits can be applied to clients and appropriate service
chains and quality of service guarantees can be applied for
each client. The SDN controller facilitates these actions by
configuring appropriate match:action rules for underlying
switches based on access control lists and quality of service
agreements. In some cases (see Sec. VI), the controller even
sets up the service chains to support L4-7 services.

After observing that many ACLs were either static or
require repeated network operator involvement to update,
Cox et al. [77] developed an SDN solution to automate the
revocation of security policy enforcements through the use of
a Trusted Agent. Their method allows an automated system,

25506 VOLUME 5, 2017

J. H. Cox et al.: Advancing SDNs: A Survey

the Trusted Agent, to modify the SDN controller ACL in lieu
of the network operator. This work has also been expanded to
include active testing measures to enhance security on local
networks.

2) CRYPTOGRAPHIC DEVICES
According to topmilitary officials, one arena where SDNwill
receive government support is with cryptographic devices.
The Army’s Chief Information Officer recently released a
report calling for the Army to drive research and development
efforts towards extending SDN to such devices [22] in order
to support regional and redundant control options.

3) RANDOM HOST MUTATION
The use of SDN to provide random host mutation or a
transparent moving target defense (MTD) recently gained
significant attention at the 2016 Military Communications
conference. MTD transparently mutates IP addresses in ways
that are both highly unpredictable and frequently changing
while still maintaining configuration integrity and minimal
operational overhead [143]. Doing so serves to minimize the
time that a host computer spends at one location (i.e., IP
address) being exposed to attackers. Other research [144] has
also already determined that there exists an optimal IP address
change rate for thwarting attacks as well as an optimal attack
crafting time.

While the goal of this work is to thwart scanning using
a random and unpredictable mutation of host IP addresses,
other applications of this work could potentially thwart DDoS
attacks. Still, other research is needed to fully leverage this
work in tactical networks. For instance, in military networks
and other resource constrained networks, the controller
communication will need to occur in-band.

4) SECURITY APPLICATIONS
In this paper, we have hardly touched upon the sheer volume
of SDN security work that has already been produced.
Yet, we expect the number of applications offering security
solutions to grow significantly as SDN obtains greater
traction in production networks. Additionally, this will also
offer opportunities for researchers to transition their solutions
to marketable offerings through app stores (e.g., HP [145]).
As a result, methods for vetting and transitioning security
solutions from research to commercially viable network
applications are needed. Likewise, ensuring such apps are
able to work together, share state, and not crash the SDN
stack are all worthy research efforts within this field. Hence,
developing tools for testing applications and ensuring their
reliability and fault-tolerance will further serve to advance
SDN’s adoption.

IX. TOOLS, FAULT-TOLERANCE AND OTHER SDN
ANALYSIS CONSIDERATIONS
While a variety of tools are emerging to assist network
operators and researchers with evaluating SDNs, concerns
over reliability and fault tolerance continue to hinder SDN’s

adoption [72]. In the following sections, tools are given a
cursory overview, while greater attention is given to fault
tolerance, performance, and scalability.

A. TOOLS
As tools are covered in other literature, and in much greater
depth, we provide a cursory overview of these tools via
Table 6. We offer this list to point researchers to tools
that are available to enhance their own research, promoting
the advancement of SDN. Undoubtedly, this list is far
from complete as new tools are frequently being developed.
However, we feel that listing these tools by classification and
referring the reader to the resources for better understanding
them provides for a more complete survey. Hence, these tools
are available to assist network operators and researchers with
debugging, verifying, and testing network flows, however,
since other work [2], [146] has already discussed these tools
in greater depth, we refer readers to these resources for a
better understanding of their application.

TABLE 6. Tool list by common headings [2], [146].

B. FAULT TOLERANCE
In research conducted in [72], the authors observe that the
complexities within SDN applications (apps), coupled with
buggy switches, lead to a number of bugs, which include
timing bugs and null pointers. Moreover, given the recent
success of open-source controllers, like OpenDayLight [1],
ONOS [33], Ryu [41], etc., and the emergence of SDN
App stores, like HP’s SDN App Store [145], it is expected
that greater numbers of apps will be offered with only
limited testing by third parties. However, SDN suffers

VOLUME 5, 2017 25507

J. H. Cox et al.: Advancing SDNs: A Survey

from fate-sharing relationships between SDN apps and their
controllers or SDN apps and the network wherein failure in
the first example leads to a mutual crash of the controller
and its applications, while the second leads to network safety
violations (e.g., network-loops, black-hole, etc.) [72]. Further
analysis in [72] shows that bugs even exist in the SDN apps
that come bundled with controllers, like OpenDayLight, by
default. As a result, it is no surprise that some network
operators are hesitant to adopt SDN.

In order to improve the fault tolerance of SDNs, [72]
observe that three directions are primarily followed. The
first involves diagnosing and pinpointing the failures root
cause. The second involves providing better programming
abstractions for developers to avoid the root cause of
failures (see also §IV-B), and the third involves improving
fault-recovery techniques through controller replication. Of
these, only the third is identified as a means to recover from
SDN app failures in production networks, since generated
replicas can transparently take over the control of the network
in the advent of a primary controller failure. However, the
authors of [72], also point out that controller replication does
little for SDN app crashes caused by deterministic bugs.

The authors of [72] also discuss three challenges to
recovering SDN apps from failures. First, network state is
modified and shared amongst multiple SDN apps, which
creates a challenge for maintaining consistent state amongst
all apps during a failure recovery. Second, there are
no protocols allowing network operators to exploit the
semantics of SDN control messages to design better recovery
mechanisms, which they identify as a hard problem. Third,
controllers, being monolithic in their design, can often fail
even if only one of its components fails. As a result,
component isolation is also required.

Having identified the above challenges, LegoSDN [72]
is offered as a fault-tolerant controller architecture. By
sandboxing SDN apps, the failure of one app is constrained to
the sandbox where it runs, and interactions are communicated
via remote procedure calls (RPC). The authors also utilize
a FloodLight controller to support LegoSDN and allow
network operators to use a familiar API.

Similar to LegoSDN is Ravana [147], which ensures
transactions are executed only once across replicas, which
allows it to correctly handle switch state, while also avoiding
rollbacks or repeated command executions. However, Ravana
requires additional OpenFlow extensions for its participating
switches to guarantee correctness. Other related works focus
on recovery after a controller failure–typically by applying
Paxos [72], [148]. Beyond handling controller failures, other
approaches like Pyretic [40] and Ryuretic [42] seek to provide
more efficient programming frameworks for creating SDN
apps, which can potentially minimize or eliminate bugs. Yet,
these frameworks do not address isolation of SDN apps,
nor do they offer checkpoint and recovery support for SDN
apps. Hence, applying LegoSDN’s measures for avoiding
redundant or conflicting rules to such frameworks serves as a
future research direction.

Currently, many opportunities exist for advancing fault
tolerance in SDNs. While not a complete list, the following
bullets represent some areas where researchers can make
immediate impacts.
• Novel abstractions for minimizing bugs. While bugs
exist in most applications, bugs in an SDN app can crash
the entire SDN stack [72].

• Algorithms and frameworks for maintaining consistency
across both control and data planes to ensure safe
recovery [72].

• Isolation of SDN apps–allowing them to run in spite of
a controller failure, even if unable to interact with the
network [72].

• Minimize SDN application developer efforts to
avoid code changes when implementing fault-tolerant
architectures [72].

• Fast or timely recovery to avoid violations with service
level agreements (SLAs) [72].

• Creating methods or algorithms that are applied to both
network functions virtualization and SDN controllers.

• Frameworks addressing race conditions, atomicity
violations, deadlock, livelock, etc. [149].

• Algorithms to troubleshoot bugs and carefully schedule
replay events after an SDN app failure occurs [149].

• More efficient rollback algorithms to maintain consist-
ency across different SDN apps [72].

C. SCALABILITY AND PERFORMANCE
As with other networks, network operators must consider
scalability and performance in their SDN deployments.
While scalability challenges are not unique to SDNs
(even traditional networks struggle with convergence and
consistency requirements) they are a point of contention
[150]. As we will next discuss, scalability and performance
concerns for SDNs lie with both controllers and their
switches.

Controller scalability problems primarily arise from
three issues [14]. First is the latency that develops as a
single controller reacts with many nodes [14]. Second is
communication methods between peer, supporting, or slave
controllers via east-west bound APIs [14]. Third is the
size and operation of the controller’s backend database.
Research in this arena will undoubtedly focus on limiting
communications between network nodes and the controller
and reducing the size of the controller’s database [14].
Likewise, exploitation of parallelism inmulticores to improve
I/O performance may be adapted [150]. Yet, another solution
may include the ability to physically distribute the control
plane elements and still maintain a network-wide view, as is
done in Onix [63] [150].

The number of rules that can be installed on an OpenFlow
switch also raises scalability concerns. Some work [87]
seeks to optimize how limited rule-table space in hardware
is used. Some recommendations include adding a network
processor in the data plane of hardware switches, utilizing
a software agent on the hardware switch, or incorporating

25508 VOLUME 5, 2017

J. H. Cox et al.: Advancing SDNs: A Survey

software switches [87]. But, it is still not knownwhether these
compromises or some other course of action will resolve the
hardware scalability issues of OpenFlow switches.

Similarly, performance improvements require faster
software and hardware forwarding techniques. Improved
filtering mechanisms are needed as well to ensure better
efficiency and scalability of controller processing cycles in
order to avoid the repeated computation of policies that
also affect performance [70]. Partitioning of larger networks
into smaller subnetworks may also be called for to improve
performance and scalability issues [76], [151]. Consequently,
network partitioning and distribution of controllers will
drive research towards vendor-neutral and controller-neutral
east-west bound interfaces [76].

As an aid to evaluating SDN performance, network opera-
tors can also turn to various benchmarks. Most fields of engi-
neering incorporate gold standards or benchmarks to validate
their proposed improvements. Computer architecture, wire-
less networks, fault tolerance models, traditional networks,
and many others all utilize established benchmarks to com-
pare new architectures, protocols, and methods to existing
capabilities. SDN is no different, and there have developed
several benchmark systems from very simple (Cbench [152]),
to academic (OFCProbe [153], and commercial (Spirent
OpenFlow Suite for Test Centers or Ixia IxNetwork) for SDN
architectures.

Still, testbeds are also needed to validate the scalability,
performance, and fault tolerance of various solutions, and
to establish use cases for change management purposes.
Unfortunately, hardware is not cheap and network failures are
not acceptable, which makes testing on a live network more
difficult to accomplish. Thus, simulation and/or emulation
platforms are needed to provide researchers and engineers
with a means to validate their solutions before applying them
on a live network.

X. MODELING AND SIMULATION
Numerous tools are available within the realm of SDN
that permit both troubleshooting and performance analysis
of both live and simulated networks. Such tools are also
highly valuable for visualizing and evaluating changes to
network infrastructure or protocols. They are also valuable for
establishing justification in change management programs.
However, although briefly discussed in §III and §XIII-D, the
ease and intuition with which network operators will utilize
such tools can be improved. Likewise, the ability of such tools
to replicate live network traffic with flexible options can still
be expanded.

For instance, virtualization provides the most immediate
yet tedious mechanism for producing representative network
testbeds. Simply instantiating multiple virtual machines
(VMs) and then connecting them within a single computer
system is a readily available process. Additionally, the
VMs are effectively clean slates, allowing an operator to
install whichever operating system or software he/she may
choose. However, this option is certainly the most tedious

and resource-intensive, and as such, is not typically viewed
as a viable solution. More automation, visualization, and
scalability is preferred.

The predominant tool for creating and testing proposed
concepts and topologies in SDN isMininet [154]. Considered
a tool for building ‘‘a network in a laptop’’, Mininet is
designed around simple shell processes, which are given their
own network namespace and connected within a Linux-based
environment by virtual Ethernet (veth) pairs. This architecture
provides a lightweight option for rapidly prototyping
proposed SDNs. The shell processes, which act as the
hosts, middleboxes, and controllers of the network, require
significantly fewer resources than complete VMs, but only
permit the viewing of networks composed of homogeneous
systems. Constructing these emulated networks is generally
administered via a Python API, which permits the creation
and configuration of its various components. Additionally,
via the Python Standard Library, specific tasks for network
monitoring or traffic generation may be scheduled to execute
on the generated processes. As of Mininet version 2.1.0,
the MiniEdit [155] GUI has been included which permits
the creation and visualization of these configured network
topologies.

One of the more intrusive drawbacks to usingMininet is its
performance reliability at scale. For an emulated topology of
hundreds of components, performance may not necessarily
be hindered if memory usage of the underlying system is
not fully utilized. However, for larger scales in the thousands
of hosts, middleboxes, etc., performance has been shown
to degrade as more resources are required to fully realize
the underlying components of each node in the topology.
This degradation has been demonstrated in prior works
[156], [157]. Remedies to this issue are available by limiting
the percentage of process space that individual hosts can
occupy.With greater numbers of nodes though, the realism of
the virtualized hosts can become constrained. Furthermore,
limitations are not imposed on the virtualized middleboxes
and controllers, allowing them to still use as many resources
as they would typically need. Another performance fidelity
issue exists in the default connections employed by Mininet
which do not provide specific bandwidth limits or quality
of service between the veth pairs. If more specific link
constraints are required, TCLinks executing the Linux traffic
control (TC) programmay be used. Even so, themainMininet
process is still obligated to operate under the Linux scheduler
of the system on which it is run.

Multiple experimental extensions to Mininet have been
proposed to address some of its limitations. In terms of
scalability, distributed environments have been developed to
allow Mininet to operate across multiple computer systems.
Referred to as Mininet CE [158], this design permits Mininet
networks to execute collectively on different machines as a
single emulation. Another limitation ofMininet is its inability
to model wireless connections. OpenNet [159] addresses
wireless requirements by utilizing Mininet for the wired
infrastructure connected to an ns-3 [160] component for

VOLUME 5, 2017 25509

J. H. Cox et al.: Advancing SDNs: A Survey

wireless/mobility modeling. Connections between Mininet
and ns-3 are realized using TAP interfaces. In this way,
packets sent from a simulated node in ns-3 may be sent out
of the simulation to a real-world recipient, and conversely,
packets may be tunneled in through the TAP interface
and received within the simulation. OpenNet requires that
topologies be coded in both Mininet and ns-3 frameworks.
Together, these frameworks provide a high degree of
extensibility, allowing for the development and deployment
of new experimental protocols. More recently, Mininet-WiFi
[161] has been introduced as an alternative Mininet-based
emulator of OpenFlow/SDN scenarios, which replicates real
networking environments for high-fidelity experiments. Its
advantage over OpenNet is that it does not require an ns-3
component, so programming is primarily Python-based.

In addition to Mininet, numerous alternative emulation
and simulation tools exist for developing and researching
SDN. One commercial option, EstiNet [162] offers both a
GUI interface and the ability to model wireless networks.
Based on the network simulator, NCTUns, out of the National
Chiao Tung University, it provides a unique kernel reentering
simulation methodology that allows real applications to run
on nodes in its simulated network without modification.
Kernel reentering allows simulated packets to enter and exit
the simulation through network tunnels. This design allows
the simulator to use the actual network layers of the Linux
kernel to process packets. Through this mechanism, it can
support the simulation of any SDN controller library with
complete portability. As an example, previous work has
demonstrated its effectiveness in permitting NOX, POX, and
Floodlight controller applications. Other work has also aimed
to demonstrate its ability to maintain adequate performance
fidelity in comparison to Mininet [163]. However, as
proprietary software, it is difficult to adapt to new network
protocols as its source code cannot be modified directly.
It also limits simulation times to 1000 seconds and nodes
to 50. Other simulation and emulation solutions also
include CloudSim, NetKit/AutoNetKit, VL2, CORE, and
Air-in-a-Box as detailed in [2].

Some other, more experimental ventures in existing
simulation tools are also available; however, matriculation
cycles at research universities leave some of these tools
with uncertain maintenance outlooks. The flow-based
simulator fs [164] has been extended to support some SDN
capabilities in a framework known as fs-sdn [165]. This
framework is capable of directly incorporating the POX
OpenFlow controller libraries and API without modification.
POX is the only controller that is compatible with this
framework though, and it is limited to OpenFlow 1.0 switch
support. The Distributed OpenFlow Testbed (DOT) [166]
exhibits a distributed capability similar to Mininet CE,
emulating a network across multiple computer systems.
Additionally, DOT presents a similar link design to Mininet,
employing veth pairs. It differs from Mininet CE in design
though, implementing a master/slave architecture for node
management. The SDN Troubleshooting System (STS) [149]

provides a GUI and debugging support to permit trouble-
shooting of SDN topologies and applications utilizing
OpenFlow 1.0.

Various attempts, including the previously mentioned
Mininet/ns-3 hybrid OpenNet, have been implemented
in the network simulator ns-3 to contribute SDN-based
functionality. Within its baseline is an OpenFlow-based
device model that provides 0.8.9 support and a non-portable
controller interface [167]. More recently, an OpenFlow
1.3 capability has been introduced outside of the mainline
ns-3 which follows a similar design to the baseline
implementation. This extension provides a significant update
to a more practical OpenFlow specification but maintains the
non-portable controller design [168], [169]. Another work
on ns-3 and its Direct Code Execution (DCE) module [170]
provides a framework for directly executing Python-based
controller libraries, such as POX and Ryu, from within the
simulator. DCE provides a dynamic redirection mechanism
that allows network applications to directly execute within the
nodes of a simulated ns-3 topology. In conjunction with the
OpenFlow 1.3 work, the resulting DCE framework enables
portability of Ryu applications supporting OpenFlow 1.3
while still providing the variety of other capabilities available
in ns-3 (wireless and LTE support, BRITE integration,
real-world network connectivity and emulation, etc.).

As mentioned briefly in this section, VMs on a single
system or even a small-scale deployment prove to be a
tedious and resource-intensive option for employing a virtual
testbed for SDN research. However, ample scale, resources,
and infrastructure proves to be a more viable option in
national and international collaborative research efforts. This
concept is not new, with research environments such as
EmuLab [171] and PlanetLab [172] in operation for over
a decade. These frameworks provided virtual resources
for innovative networking research many years before
the initial breakthroughs realized in SDN. More recently,
organizations and collective collaborations have contributed
testbeds with the specific intent to further the state of the
art in SDN. Examples of these endeavors include the Global
Environment for Network Innovations (GENI) [173] in the
United States, the OpenFlow at Trans-Eurasia Information
Network (OF@TEIN) [174] connecting 20 countries in
Asia and 34 in Europe, OpenFlow in Europe Linking
Infrastructure and Applications (OFELIA) [175], Research
Infrastructure for large-Scale network Experiments (RISE)
[176] in Japan, the UniCloud project [177] out of Taiwan,
and Smart Applications on Virtual Infrastructure (SAVI)
[178] in Canada in addition to multiple others. A substantial
investigation of the technologies behind many of these
infrastructures has been previously conducted in [179]. That
work includes design objectives, architecture, and some
examples of research conducted in these testbeds while
also promoting similar endeavors implemented as the China
Environment for Network Innovations (CENI).

Universities and other research institutions have collabo-
rated to provide these environments of virtualized resources

25510 VOLUME 5, 2017

J. H. Cox et al.: Advancing SDNs: A Survey

that can be provisioned and leveraged for use in research
in SDN and other cutting-edge networking paradigms.
Participating campuses contribute functional components
that act in much the same way as traditional servers in data
centers and the ‘‘cloud’’ by allocating resources such as
virtual machines (VMs) in a fair and reliable manner. Using
SDN, numerous distinct networks can be realized through
virtual network slicing. The resulting slices are isolated
from one another, guaranteeing the integrity of each created
network in terms of its functional characteristics, such as its
link parameters, while preventing interference across slices.
Furthermore, a diverse array of resource options are available
in terms of VM configuration and link specification through a
number of tunneling techniques. Deployment of experiments
in these testbeds generally involves the following steps:
resource specification, virtual allocation, experimentation,
and resource release. Specifying the resources that are
required for a particular experiment is handled through
specification files describing the type and number of
resources to be requested and how they are linked together
while also permitting more fine-tuned installation behavior.
Software installation, service initialization, and other scripted
behaviors can be defined for particular compute resources
while bandwidth, delay, and other link characteristics can be
configured for the network connections. With a specification
created, a user can submit it, and if sufficient resources
are available, they will be allocated. As these resources are
real as opposed to simulated, they require some time to
boot and perform any requested installations or services.
Once available though, the experimenter can perform any
required experiments, analyzing various SDN controller or
switch configurations and generating traffic. Resources are
requested for a certain amount of time but may be renewed
as demand permits. Upon completion of experimentation, the
resources can be returned for use by other experimenters.
These types of infrastructure provide the necessary scale
that cannot be realized in small-scale emulators as well as
more adequate levels of accuracy and reliability that are not
achieved in network simulators.

While models and standards, have yet to be established
for SDN research, they are needed to demonstrate to
network operators how applications will interact within
their networks, and how security features will impact their
networks [32]. These models could evaluate the exchange
of secure information or expose insecure interfaces for
applications and other elements. Likewise, such modeling
can help address storage, compute, and networking concerns.
For example, performance is often considered in terms
of processing speed, which is tied to throughput and
latency, and these can be modeled through simulation.
Moreover, simulation environments that can replicate
the components of hybrid networks, software-defined
exchanges, and other emerging technologies can also
provide greater motivation to network operators to use these
platforms.

XI. HYBRID SOFTWARE-DEFINED NETWORKS
For many network operators, the bar to implementing a
’’clean slate’’ SDN network is simply too high [180]–[182].
Unlike greenfield deployments where networks are installed
and configured in the absence of an existing network,
companies and agencies are already heavily invested with
their current infrastructure. Hence, implementing a network
infrastructure to achieve SDN capabilities (e.g., a network
operating system or NOS) is prohibitive. Couple the above
issues with the lack of use cases for SDN or a defined
path for migrating existing network infrastructures to SDN,
and the possibility of an SDN-pure architecture is further
compounded [32]. Thus, for these organizations, economics
dictates that hybrid networks emerge well in advance of
purely SDN architectures as network engineers incorporate
SDN capable upgrades into equipment life-cycle iterations.

A couple of organizations working in Hybrid SDN
include the IETF with their path computation element [14]
and the OpenFlow Networking Foundation (ONF) [49]
Hybrid Working Group (WG), who are evaluating various
hybrid models such as ships in the night (SIN) where
communication between legacy and OpenFlow control
planes are denied interaction with no need to synchronize
states between management and control planes [183]. Such
an architecture provides isolation through per-VLAN and
per-port segregation. Still much work is left to be completed.

An early example of a hybrid network includes Google’s
Inter-Data Center WAN [7], [184]. Yet, while such networks
enable automation, reduce overall equipment costs, and
provide predictability once implemented [7], [8], [183],
[184], they also require significant levels of research,
engineering, labor-hours, and cost to accomplish. Yet, the
average network operator may not have these resources
available to them. As a result, network operators seeking
to incorporate SDN into their network upgrades will likely
follow a staged process [180]. As network operators begin
this process, they enter into the realm of transitional networks
consisting of both traditional network devices and SDN
devices [180].

Because of the above circumstances, network operators
will likely find their networks converging into one of four
models: 1) topology-based, 2) service-based, 3) class-based,
or 4) an integrated hybrid network [182]. For instance,
network operators, who control enterprise networks that
span several different regions or geographical locations,
might be more inclined to incorporate a topology-based
hybrid network. In this type of network, an SDN is set
up in one region while a traditional network, consisting of
legacy equipment, remains in other regions. A service-based
or class-based model might also be appropriate for other
network operators seeking to run both traditional network
and SDN paradigms on their network concurrently. With
a service-based hybrid model, the network operator may
choose to use traffic engineering and load balancing at the
network’s edge while using traditional network paradigms at

VOLUME 5, 2017 25511

J. H. Cox et al.: Advancing SDNs: A Survey

the network’s core [182]. Using the service-based model also
allows network operators to take advantage of edge-based,
security features and programming frameworks offered for
SDN, like [42], [140]–[142]. Then again, the network
operator may be more concerned with only applying the
SDN paradigm to TCP (port 80) traffic and using the
traditional network paradigm for everything else. This would
indicate the need for a class-based hybrid model. However,
some service-based models and the class-based models
require that switches allocate memory for both traditional
network devices and SDN controllers, which does not make
for a simpler data plane device. Moreover, the cost of
converting all switches that support these two models may
be prohibitive [182].

Since converting all switches to support SDN may not
be a possibility, network operators may instead seek to
deploy a partial service-based model that only replaces
a minimum number of traditional network switches with
OpenFlow switches in order to realize a majority of SDN
functions without completely overhauling the network [180],
[181]. Research by Levin et al. [180] has shown that over
80% of on an enterprise network can be operated as an
SDN after upgrading less than 0.6% of available switches
in networks consisting of 1500 or more switches while
still meeting VLAN and flow table resource constraints.
Additional use cases and procedural documentation for
implementing this strategy is still needed to assist network
operators with the placement of OpenFlow switches and SDN
controller implementation on their networks. Finally, network
operators might look to an integrated model that allows for
SDN programming at the application level, but utilizes an
interpreter to pass SDN application demands to the command
line interface (CLI) of legacy switches. This method is a
less intrusive approach, but complications with generating
CLI commands for various proprietary network devices may
prove too difficult.

Hybrid networks also carry their own set complications.
Already, concerns over how to share control plane
resources (e.g., ports, tables, and meters) have been
indicated [183]. Yet, each of these models offer strengths
and weaknesses for which network operators should be
informed. Use cases to help network operators overcome
their concerns with resilience, robustness, and scalability
are also desired, and greater development is needed to
achieve balance between traditional network protocols
and SDN communications [14]. Similarly, options for
interacting with operation, administration, and management
(OAM) functions, legacy devices, and neighboring domains
are needed [183]. The communication from legacy data
planes to OpenFlow controllers and the communication
between legacy and SDN control planes cannot be ignored
either [183].

While industry and government may not be ready
to fully embrace SDN-pure solutions for many years,
targeted research focused on bridging the levee of
legacy networks could further hasten the adoption of

SDN by these organizations. By offering use cases and
application assessments for hybrid SDN networks, as well
as simulation models that demonstrate other benefits of
partial SDN deployment, researchers can offer practical
advice and procedures to network operators for incorporating
SDN capabilities into their future plans for life-cycle
replacement of legacy systems. Such use cases should
demonstrate how to make OpenFlow-enabled switches fully
compatible with current operational networks, or they
may simply demonstrate how to use OpenFlow switches
to complement the capabilities of legacy switches (e.g.,
flexibility for rule matching) [183]. In doing so, researchers
are poised to highlight exactly how network operators
might reduce cost and complexity, improve budget planning,
introduce new capabilities, manage workloads, and improve
reliability with dependable performance and predicted
outages [185].

XII. SOFTWARE-DEFINED EXCHANGE (SDX) /
SOFTWARE-DEFINED INFRASTRUCTURE (SDI)
A Software-defined Exchange (SDX) allows participating
organizations to introduce their policies to a centralized
controller serving as an arbitrator for global policy for
multiple domains and autonomous systems. With a global
view, the SDX controller is able to introduce scaling
techniques that can accommodate a large number of
policies and participants [27]. As a result, SDX can resolve
inter-domain routing problems that have long plagued
exchange points by introducing new policies that handle
packets at more granular level, while maintaining consistent
BGP route advertisements [27]. Other benefits that SDX
stands to contribute are prevention of policy violations,
participant communication, and DoS attacks; forwarding
optimizations for fast convergence, data offloading,middlebox
traffic steering, and inbound traffic engineering; application
specific peering; and remote control of BGP path selection
and wide-area load balancing [186].

Already SDX is being implemented at various research
and education networks [27], [187]–[190]. The range of
SDX possibilities and use cases include Layer 2 Ethernet
circuits, Layer 3 BGP policies, SDN multi-domain, and
Software-defined Infrastructure (SDI) [191], [192]. However,
agreement on what a Software-defined Exchange (SDX) is,
what it should provide, and how SDX will provide it has
not yet been reached [186], [193]. Questions posed include
should it be a virtualized ‘‘meet-me’’ point where network
operators bring their own compute and storage resources or
just a place to exchange networking capabilities, like the
already existing Internet exchange points (IXPs) [194].

To unify these definitions, theNational Science Foundation
(NSF) has proposed a distinction between SDI and SDX.
An SDI takes advantage of the virtualization of computing
and storage resources, such as SDN and software defined
radio (SDR), to build more programmable and agile
cyberinfrastructures, while an SDX enables the exchange
of these resources across domains. Nonetheless, SDX

25512 VOLUME 5, 2017

J. H. Cox et al.: Advancing SDNs: A Survey

seeks to employ SDN as a tool for overcoming the
limitations experienced with traditional peering across
Internet Exchange Points (IXPs). These limitations include
those already associated with Border Gateway Protocol
(BGP) and the lack of expressiveness afforded traffic
policies [27]. On the operational side, another issue involves
sending a request to a network operating center and the time
required to obtain the connection [195].

SDX must also find sufficient compromise between
multiple stakeholders consisting of content providers (e.g.,
Google, Netflix, etc.), ‘‘eyeballs’’ providers (e.g., Comcast,
Verizon), and transit providers (e.g., AT&T and Internet
2) [27], [186]. Each of these stakeholders approach SDX
with unique financial and political motivations. For instance,
Internet Service Providers (ISPs) only want to share their
external routing policies, but not their internal ones. On the
other hand, research and education networks want to share
compute, storage and networking resources. As a result,
research in this field must not only consider the realm of the
possible, but also the political and financial implications to
network infrastructure stakeholders if their research is to be
adapted.

The NSF currently sponsors a few projects in SDX [27],
[188], [196]–[199]. One project includes leveraging an SDX
to support large data flows from new telescopes in South
America to supercompute centers in North America [188].
Others involve enhancing Software-defined Infrastructure
(SDI) capabilities, improving dynamic resource allocation
across multiple domains, and bridging SDN islands, topology
exchange services, and multi-architecture frameworks [186],
[187]. So, a wide range of applications exist within the
SDX/SDI framework.

In regard to security, SDX offers the opportunity to
prevent or block policy violations, deny communication
between participants, and block DoS attacks upstream [186].
Additionally, researchers are already seeking to incorporate
the middlebox traffic steering, traffic offloading, and inbound
traffic engineering features of SDN within SDX [27], [186],
[188]. Accordingly, network operators already working at
Internet Exchange Points may find SDX capabilities, such
as application-specific peering and remote control, useful for
influencing BGP path selection and performing wide-area
load balancing [27].

Ongoing research in SDX includes reducing state space
and control overhead, updating controllers, leveraging
multiple tables and switches, and developing APIs for
specifying policies [27], [186], [200]. In the realm of
Internet Exchange Points, project Cardigan [190] is an
SDX implementation utilizing RouteFlow-based, distributed
routing and a mesh of OpenFlow switches, to mimic
a single logical switch. To interconnect SDN islands,
WE-Bridge offers a mechanism to allow various SDN
administrative domains to peer and cooperate [201]. As a
result, collaborations are forming to create large-scale
federated testbeds across different continents such as the
AtlanticWave-SDX [186], [188] between North and South

America, and FELIX [202] between Europe and Japan.
The next steps for SDX include operational deployments
and the development of additional applications and
distributed exchange points [53]. Such examples include
deploying ubiquitously at the metro-level [203], providing
accountability services at the SDX [204], and also Science
DMZs.

Scalability of SDXes are also a concern, as well as
limitations imposed by available hardware platforms [200].
Hardware capabilities are quickly catching up to network
administrator’s desires; however, implementation has thus
far not been fully compliant at best, or incorrect at
worst [205]. Moreover, the development of policies for
facilitating cooperation amongst varies autonomous systems
and peer groups are needed.

Another issue plaguing SDX and multi-domain SDN
environments is policy enforcement across domains. Since
SDN controllers in one domain cannot define nor monitor
policies in other domains, network operators are unable
ensure that their own policies are being enforced in domains
external to their own. Hence, challenges to policy checking
within SDX and multi-domain SDN environments presents
a rich field of study for researchers seeking to better
equip network operators. Solutions like LegoSDN [72],
while intended to provide fault tolerance by sandboxing
SDN applications, may also prove useful for providing
limited control capabilities to network operators across
domains–provided appropriate communication channels
can be established. Consequently, some researchers have
already made initial attempts to enforce policies for
single domains using declarative languages [67], [206],
[207] to express polices (i.e., forwarding rules), yet they
do not consider secondary or tertiary domains. Thus,
verifying that their origin policies are enforced in external
domains remains a challenge. Likewise, other research
for verifying SDN configurations, like VeriFlow [208],
FatTire [209], FortNOX [210], and NetPlumber [211], seek
to deconflict policy rules, validate legitimate rules, or detect
misconfigurations; yet, they too do not consider validation of
policies in external domains.

This presents a problem when database servers are located
in external domains as network operators cannot be sure
that their policies are being enforced for the said server.
For instance, network operators may want to ensure that
network policies are blocking all flows to the database
server except for those originating from their IT department.
Hence, [212] offers an SAT-based, solution, AudIt, which
attempts to solve the foreign controller verification problem
by auditing network policies across multiple domains
to determine whether origin policies are enforced. Still,
AudIt [212] can only verify whether a policy is enforced,
and measures for enforcing polices across multiple-domains
without circumventing each domain’s origin policies are still
largely absent. AudIt also requires that OpenFlow extensions
be added to participating switches. Likewise, performing
policy verification and enforcement across domains without

VOLUME 5, 2017 25513

J. H. Cox et al.: Advancing SDNs: A Survey

creating additional security risks is yet another field of
research in need of development.

Moreover, to support agile end-to-end management and
orchestration of resources and services in multi-operator
environments, a common marketplace for resource exchange
is required. Further hindering agile management and
orchestration are multi-operator services, which are protected
by legal contracts and take long periods of time for parties
to define and reach agreement. Hence, Griffioen et al. [204]
proposed a coin-operated SDX for IXPs that defines
an economic plane to tie routing policies to economic
relationships of cost and benefit between peers. Their
initial proof-of-concept uses the concept of a ‘‘coin’’ for
authentication and charge of flow rule requests between
IXP peers. However, if the coin concept if not implemented
correctly, many issues related to digital currencies (e.g.,
double spending) may degrade trust in the SDX.

XIII. EMERGING TECHNOLOGIES
As we initially indicated, the areas of research comprising
SDN are indeed numerous. Likewise, the demand for
applications that enhance productivity and leisure will
continue to grow as dependence on augmented reality
applications and many others become the new norm. As a
result, SDN is steadily proliferating throughout emerging
technologies (e.g., IoT, ICN, Wireless, 5G, etc.). Within all
these areas, SDN offers the ability to provide fine-grained,
QoS-aware resource allocation for singular flows while also
addressing changing traffic patterns via dynamic network
reconfiguration. Hence, we attempt to offer a brief overview
of these emerging technologies along with further research
opportunities serving to advance SDN.

A. INTERNET OF THINGS (IoT)
The future seems to indicate an inter-networking of nearly
everything, including traditional end devices (e.g., laptops
and smartphones), home appliances (e.g., thermostats and
refrigerators), industrial systems, people, and much more.
As a result, anywhere from 20 billion to 50 billion devices
are projected to connect to the Internet by 2020 [213],
and many network operators are also trying to adapt their
networks for what is now being dubbed the Internet of Things
(IoT). This IoT paradigm may potentially revolutionize the
way people live and work via a wealth of new services;
however, these services must run atop an enormous variety
of heterogeneous devices requiring a greater diversity of
communication requirements and application domains [214].
Security standards and mandates are also sufficiently lacking
for these devices [215]. Consequently, this heterogeneity
and lack of security, coupled with large-scale and latency
sensitive applications for numerous devices, challenges
network operator attempts to fully realize the IoT vision.

Fortunately, the SDN paradigm can potentially be
applied to IoT as an enabler for numerous SDN-based
IoT applications. Yet, these applications also come with
their own challenges. For instance, SDN requires greater

abstractions to achieve the required levels of service
and security needed to fully augment IoT infrastructures.
Moreover, it may also require integration with virtualized
components. For instance, a natural application to address the
heterogeneous QoS requirements of IoT is to include network
slicing [213]. Additionally, IoT device security may require
the incorporation of NFV technologies to aid SDN controllers
with monitoring and enforcing policies on IoT network flows
to improve security [77]. Consequently, many opportunities
for advancing SDN-enabled IoT applications exist.

1) WIRELESS SENSOR AND ACTUATOR NETWORKS
While SDN enables the programming of core network
devices, allowing for the injection of routing logic [216],
it has yet to offer a solution for guaranteeing correctness
and temporal coherence for software controlled actuators
and other devices [217]. Already, researchers are looking for
novel ways to employ OpenFlow technology to assist net-
work operators with wireless networks. Moreover, substan-
tial research on interconnecting Wireless Sensor Networks
(WSNs) into wider IoT frameworks by leveraging SDN
and virtualization has already been completed [213], [218].
Yet, other goals include improving reachability, sharing of
resources, and improving scalability [219].Within this frame-
work, Wireless Sensor and Actuator Networks (WSANs)
have arisen, and software-defined and software-controlled
WSANs are emerging as research topics for application
development. Still, there remains a question as to the extent
wireless sensor and actuator network limitations will affect
the SDN paradigm [217]. Furthermore, applications in this
arena have yet to fully surface.

2) IoT IN URBAN ENVIRONMENTS
Urban environments, particularly their transportation,
utilities, and law enforcement services, stand to benefit from
IoT. However, an interesting argument of the works covered
in [213] is that IoT urban deployments should allow for the
same set of sensor nodes to support multiple applications
from multiple developers across the same shared physical
infrastructure via software only. This makes SDN an ideal
candidate, since developers can exploit its Northbound APIs
to orchestrate an IoT network. Consequently, their proposed
network consists of three layers, which are much akin to
current SDN networks:

1) Physical layer This layer contains physical network
devices (e.g., sensors, smartphones capable of
sensing, base stations/access points, and the gateways
connecting to the network’s backbone). As with the
SDN paradigm, the SDN-IoT architecture nodes in this
layer lack intelligence and relies on its control layer for
decision making.

2) Control layer Residing between the Physical layer
and the Application layer, it manages the devices in
the physical layer and offers developer APIs to the
application layer. For urban sensing, it also offers

25514 VOLUME 5, 2017

J. H. Cox et al.: Advancing SDNs: A Survey

aggregated data, network transmission, and processing.
What’s more, the SDN controller resides in this layer
ensuring device sharing and QoS-aware routing of
the generated data from the core network towards its
eventual clients.

3) Application layer Developers use the abstractions
in this layer to build IoT applications. As a result,
the underlying layers and physical infrastructure are
hidden from the developer as they work to create
applications for IoT.

Of course, this framework is loaded with challenges.
Some include translation of application requirements as they
relate to QoS and geographical sensor location, inner sensor
node configurations, sharing of sensors amongst competing
applications, transmitting optimized and QoS-aware data
flows towards end-servers, and efficient distribution of data
for cloud processing [213]. Additionally, fully centralized
SDN controller architectures do not adequately address
the different access networks expected to comprise the
urban-scale IoT mobile multi-networks, such as LTE, WiFi,
or ZigBee [213]. Hence, a distributed scheme is called for.
Likewise, mobility is a consideration as IoT devices are
expected to roam from one access point to another [220].
Scalability issues are also addressed in [220] with a
distributed hashing algorithm for assigning IoT devices to
a respective SDN controller. It also serves to reassign IoT
devices to access points to manage loads and mobility.
However, work to optimize flow scheduling for the backbone
network is still not fully developed [213].

3) VANETs
Another aspect of an IoT infrastructure is the Vehicular Ad
Hoc Network (VANET) [221]. Within this context, vehicles
communicate to each other (V2V) in an ad hoc manner and
with fixed infrastructure consisting of roadside transceivers
or cellular base stations. In this setting, an SDN controller
can perform routing actions while vehicles and roadside
units serve as SDN switches. We mention this work to
provide another aspect of emerging technologies with regard
to SDN-IoT infrastructure, and refer the reader to [213],
[221], for a more complete overview.

4) BYOD
The bandwidth-intensive nature of bring your own device
(BYOD) initiatives also falls within the context of IoT,
serving as yet another driver for SDN adoption. For instance,
Hong et al. [222] propose a fine-grained network security
framework for network management and policy enforcement
on mobile apps and devices in enterprise networks, by the use
of virtual switches and containers to extend SDN capabilities
to the end host.

Still, as the authors point out, SDN-based solutions on
the client side are still subject to various challenges [222].
These include system circumvention by disabling context
functionality (e.g., GPS, PBS-DROID, etc.), portability

between a multitude of devices, protocol and interference
coverage (e.g., current solutions only support TCP),
controller scalability (which is a universal concern of SDN
applications), and SDN-based attacks (see §VIII).

5) IoT SECURITY
Another aspect of IoT that concerns many experts is the
lack of security standards for front-end IoT devices as
they proliferate and increasing connect to one another and
the Internet [215]. These same experts also point out that
manufacturers of these devices do so with a focus on function
and cost–a focus of their consumers. However, without
standards or government mandates, manufacturers have little
motivation to raise costs and secure these devices. The result
being a vastly growing attack surface. With the security
of these devices in question, network operators are further
challenged to ensure that these devices cannot somehow be
leveraged for malicious purposes within their own networks.

To this end, SDN-based frameworks are needed to monitor
network flows, detect anomalies, and automatically prevent
malicious activity on organizational networks. Much of this
activity is best detected along the network’s edge as has been
observed by [4], [141], and [142]. Opportunities for doing so,
however, remain widely unexplored.

B. INFORMATION-CENTRIC NETWORKING (ICN)
Network operators are also challenged to address new
routing protocols aimed at improving efficiency of content
delivery and content availability for their clients [2], [58].
One such architecture is Information-Centric Networking
(ICN) or Content-Centric Networking (CCN) where packets
are routed based on desired content instead of traditional,
location-based, addressing [58]. Within this context, desired
content is moved from its home server to a location (e.g., an
information cache) closer to the client desiring it.

Past projects [223]–[225] have already demonstrated
various SDN applications or have developed prototype
ICNs, which demonstrate how SDN applications can
positively impact the roll-out of ICN solutions. NFV
components–essentially virtualized software instances
deployed in Virtual Machines (VMs)–can also be chained
together and managed through an SDN controller to enhance
end-to-end content distribution.

For instance, the concept of Information-Centric Network
(ICN) is combined with virtualization in [213] and [226] to
provide network slicing and node caching within a wireless
network. The result being that desired content is closer to
the clients requesting it. To do so, they offer three slicing
paradigms, consisting of Network-level slicing, Flow-level
slicing, and Content-level slicing. The more interesting of
these is their Content-level slicing where the content cache
is virtualized and content is divided into multiple slices for
different users. Accordingly, an SDN controller is suggested
as a means for allowing network operators to optimize
mappings between available physical resources and the
virtual resources granting services. However, as observed

VOLUME 5, 2017 25515

J. H. Cox et al.: Advancing SDNs: A Survey

by [213], their work lacks any methods or algorithms for
actually achieving this optimization.

Similarly, NDNFlow [213], [227] utilizes Named Data
Networking (NDN) and SDN to setup and facilitate ICN
networks. However, to avoid modification of the OpenFlow
specifications, they choose to incorporate separate, parallel
ICN layer using a separate controller module. This approach
allows ICN flows to be handled separately from regular IP
flows. However, their method also requires that software
plug-ins be installed on end elements to render them ICN
capable. Furthermore, SDN solutions for ICNs still require
the creation of more adaptive northbound APIs to better
support their applications. Likewise, an expansion of the
OpenFlow protocol to support customized header matching
may also be required to better enable traffic engineering that
supports ICNs [2].

C. FIFTH GENERATION (5G)
As with IoT, and perhaps because of IoT, the explosion
of mobile traffic along with the combination of highly
virtualized environments are exposing limitations in current
telco networks and the need for highly dynamic and more
scalable networks. For telcos, the development of services has
progressed with featured services (e.g., 2G-voice, 3G-data,
and 4G-speed). For 5G, many researchers believe its defining
characteristic will be services at scale, offering lower
application latency [228]. However, [229] see two main
challenges for 5G networks: 1) a reliable connection despite
increased data traffic due to IoT and 2) maximum end-to-end
delay guarantees for real-time applications. Accordingly,
future 5G networks can also expect extreme traffic volumes
over both its fronthaul and backhaul [213]. Likewise, the
vast amount of usage scenarios coupled with heterogeneous
devices and requirements still offers many hurdles [213].

Accordingly, many researchers see countless use case
for 5G that includes broadband access everywhere (e.g.,
50+ MBPS everywhere), broadband access in dense areas
(e.g., pervasive video), higher user mobility (e.g., high
speed train), massive Internet of Things (e.g., sensor
networks), extreme real-time communications (e.g., tactile
Internet), lifeline communications (e.g., natural disaster),
ultra-reliable communications (e.g., e-health services),
broadcast-like services (e.g., broadcast services), and
many others yet unimagined today [230]. For instance,
much of the smart home sensory data from devices,
like smart meters, temperature sensors, security cameras,
multimedia sensors, etc., are processed locally; however,
new technologies, like virtual reality, augmented reality,
semantic recommendations, tactile Internet, real-time pattern
recognition, and a growing number of others, require that
greater amounts of sensory data be processed in virtualized
servers in remote locations with outcomes made available to
the user [229]. In such cases, the challenge lies with timely
results that require near-real-time guarantees.

Hence, research within this context has the potential to
shape much of network landscape for network operators

in coming years. Additionally, the combination of SDN’s
centralized controller and virtualization technologies to
implement various network functions is seen as a key enabler
for future 5G networks [231]. For example, SDN-based
architectures can provide dynamic topology reconfiguration,
while NFV can help address local content sharing challenges
by providing storage and processing resources [229].
As a result of SDN and virtualization technologies, new
technology enablers, like self-organizing networking (SON),
the cloud radio access network (C-RAN), and mobile edge
computing (MEC) may soon be fully realized and better
support content specific topologies for information-centric
networking (ICN), instead of an IP-based topology as
discussed in [229].

SoftAir [232] represents one framework that combines
SDN, NFV, and NV into a complete 5G cellular system.
Some of its key aspects include high network flexibility
from moving functions (e.g., mobility management, QoS
routing, and billing) to the cloud and network slicing
to dynamically allocate isolated subnets to different
network entities to provide customized services [213], [232].
Another key aspect is a central SDN-enabled cloud
orchestration, which includes a mobility aware traffic
management module, a distributed traffic classification
function, and a resource-efficient network virtualization
module [213], [232]. Additional simplifications provided by
SoftAir are location management in terms of less signaling
overhead and rerouting in case of handoff using a centralized
controller to exploit combinations of cellular andWiFi access
networks and a global network topology to choose new best
paths [213], [232]. As described, Softair forms a complete
system-level design that could encompass every aspect of
5G; however, it remains to be determined if the performance
of such a system and its algorithms will prove commercially
viable.

As stated previously, the capacity of certain coverage areas
are seen as a significant challenge for 5G. Options for dealing
with increased capacity include using more spectrum bands,
deploying new technologies to improve spectral efficiency
(Hertz rate), increasing access node numbers, or using
device-to-device communication techniques [229]. As a
result of these capacity enhancements, network densification
is seen as the dominant theme for 5G’s wireless evolution
[229], [233]. Yet, network densification also creates its own
challenges for network management. For instance, as small
cells increase, the distance between channels using the same
frequency will decrease while the edges for cell coverage
areas increase. These changes will lead to more interference
between cells as well as more frequent handovers. Likewise,
the increased number of cells will lead to increased energy
consumption. To address these issues, [229] identify several
areas where SDN can assist other technologies in mitigating
these challenges–as listed below.
• Spectral efficiency: dynamic frequency resource
allocation and centralized transmission power
control

25516 VOLUME 5, 2017

J. H. Cox et al.: Advancing SDNs: A Survey

• MobilityManagement: coordination and optimization of
handovers, predictive learning methods, and storage of
mobility data

• Energy efficiency: topology manager for active cell
minimization andmoving features like spectrum sensing
to data centers to remove energy costs from cells

• Cloud-IoT integration: centralized utilization of frequency
resources and consideration for QoS/QoE of IoT-Cloud
communication

Other research [234] has identified opportunities for
using SDN to share the licensed and unlicensed bands
of spectral resources to achieve gigabit data rates in
5G. Unlicensed bands might include industrial, scientific,
and medical (ISM) band, visible light communication
(VLC), and millimeter-wave (mm-Wave bands) [234]. This
functionality can also enable device-to-device (D2D) or
machine-to-machine (M2M) communications. To do so,
in [234], the authors attempt to balance task distribution
between base stations (BS) and the SDN controller.
Additionally, they argue that the spectrum can be better
utilized by using data-base-assisted spectrum management
over spectrum sensing, which they identify as a key challenge
to spectrum sharing due to the uncertainties imposed by
the wireless medium. They identify other key challenges
to spectrum sharing as decision making and admission
control. With the SDN controller orchestrating the back-end
network and BSs comprising the front-end, the authors
present a framework and an efficient resource management
algorithm for future 5G networks. Simulations also indicate
that potential performance gains in access and reduced
interference can be achieved. Still, real world applications
and metrics for this framework have yet to surface.

SDN also offers unique security features for future
5G networks. For instance, [235] offer privacy protection
for 5G networks by introducing an SDN-based efficient
authentication handover and privacy protection solution.
Their work suggests that SDN-enabled security solutions are
particularly relevant for delay-constrained 5G networks.

The potential contributions of SDN to 5G are potentially
numerous; yet, some concerns must also be addressed.
One concern for SDN, due to its logically centralized
controller, includes scalability, which authors argue is still not
sufficiently addressed for 5G [229], [234]. Another concern
is latency, especially as results of IoT devices must be
rendered in real time [234]. Additionally, if spectrum sharing
is considered, compelling business models and safe guards
are needed to entice organizations to cooperate.

D. SOFTWARE-DEFINED WIRELESS NETWORKS (SDWN)
As SDN and OpenFlow developed, they did so with
infrastructure networks (specifically, wired networks) in
mind [236]. As a consequence, the path to wireless platforms
is a challenging one. As we discussed in §X, even SDN
wireless simulators have only recently been developed.
Yet, wireless provides campus, industry, and government
networks tremendous flexibility and are highly desired.

Wired connections impose costs as new lines are installed
and maintained, and each new line increases the network’s
complexity and diameter limitations [236]. However, wired
connections still possess enough flexibility to overcome
these challenges. Wireless, however, imposes limits that
are harder to overcome and users are often subjected to
rate limitations [236]. Wireless networks also have specific
requirements like dynamic channel configuration, mobility
management, and rapid client re-association [237].

To successfully utilize SDN for wireless, network
operators must be able to limit interactions between
defined slices, and their devices must communicate status
information to the controller [236]. Note that a network
slice is simply a mechanism for dividing the network
infrastructure into disparate partitions (or subnetworks) so
multiple instances can coexist [237]. Unfortunately, these
operations are far from simple. For instance, slicing requires
the isolation of communication channels so a FlowVisor
application (i.e., an OpenFlow-based proxy layer that creates
slices based on parameters like flow-space, bandwidth, and
CPU load [237]) can offer different coordinators a list of
non-interfering subnetworks [236]. A wireless SDN must
therefore manage a limited number of independent channels
while maintaining a global view of the network to avoid
link interference and reuse geographical channels [236].
Regarding status updates, wireless requires that controllers
receive more than CPU load or available memory. They
also require link information (e.g. load, delay, loss, rate,
and stability) and topology discovery (which includes
identification of local access points) [236].

Since many wireless users are also mobile, wireless SDNs
must be able to affectively coordinate the handoff of wireless
devices from one access point to another. So, solving issues,
like separation of data channels, slicing, topology discovery,
channel estimation, and interference management, are key to
offering clients a reliable and robust wireless SDN. These
issues are compounded by that fact that many networks
consist of hundreds of access points [159]. Accordingly,
network operators need tools for assessing the scalability of
such implementations before deploying them. To that end,
tools, which are notably missing, are needed. Many such
models or simulators [154], [160], [238] allow researchers
to emulate SDN or wireless, but not both. Only recently, has
open source tools [159], [161], capable of modeling wireless
SDNs, been offered, while a commercial simulation tool,
EstiNet [162], was introduced in 2013.

If the challenges of wireless SDN can be overcome,
then there are also a number of opportunities that
will greatly advantage network operators. Those include
improved end-user connectivity and QoS, multi-network
planning, enhanced security and user localization [236].
Other benefits include freedom from expensive commercial
wireless-management products in addition to flexible
management, traffic isolation, and link-layer mobility
management [159]. However, these opportunities still need
to come in the form of feasible implementations that network

VOLUME 5, 2017 25517

J. H. Cox et al.: Advancing SDNs: A Survey

operators can deploy on top of their existing systems. As
with other SDN applications, use cases and best practices are
desired.

E. SOFTWARE-DEFINED RADIO ACCESS
NETWORKS (SDRAN)
Radio access networks (RAN) make up an important part of
cellular networks, providing wide-area wireless connectivity
to mobile devices. However, managing a limited spectrum
to maintain connectivity for a growing number of mobile
devices is one challenge that researchers believe SDN can
help address. With SDN, researchers hope to better allocate
resources, setup handovers, balance loads, and manage
interference [239]. This trend has also been growing over the
past several years. From [2], some interesting work that could
be done in this field include 1) collecting and analyzing the
quality measurement data from the base station and mobile
terminals, and correspondingly adjusting the settings of the
base station and 2) developing various SDN-based scheduling
mechanisms for managing uplink and downlink flows. In the
case of SoftRAN [234], [239], a virtual big base station
(BS), comprised of a centralized controller and physical BS,
implements an architecture for coordinating radio resource
through the software defined control plane of the RAN.

Cai et al. [240] advance the application of SDN and NFV
for RANs by observing that the control plane and data plane
of a RAN requires a significant amount of modification
to implement device-to-device (D2D) communications.
However, integration of D2D communications can be greatly
facilitated by SDN and NFV. Within the context of an
SDN and NFV enabled architecture, they address the
imperfectness of network state information (e.g., channel
state information (CSI) and queuing state information (QSI))
in virtual wireless networks for D2D communications.
Accordingly, they develop a resource sharing scheme and
demonstrate through simulation that this architecture can
achieve considerable performance gains in both user utility
and system throughput under common network conditions.

F. DISCUSSION OF SDN-BASED OPEN RESEARCH IN
EMERGING TECHNOLOGIES
As has been pointed out in [213] and [229], further
optimization of SDN and OpenFlow to accommodate the
peculiarities of IoT are still needed. For instance, the growing
number of participating devices leads to ever-growing flow
tables on SDN switches. Likewise, with devices continuously
entering and leaving subnetworks, enabling and disabling
flows in a rapidmanner creates substantial overhead requiring
further optimization. Hence, further study of temporal
behaviors and requirements of IoT devices can further benefit
this framework.

Additionally, the extreme heterogeneity of devices
participating in IoT infrastructure and their requirements are
other points of consideration [213]. In this context, smart
vehicle applications might require almost zero latency due
to their dependency on other vehicles. Yet, IoT sensors in an

industrial plant might allow for minimal packet loss, while
video surveillance applications could potentiality tolerate
both latency and modest packet loss–but with substantially
higher bandwidth requirements. Consequently, having SDN
offer smart routing and scheduling solutions in conjunction
with virtualization to form network slices could better isolate
such IoT use-cases having conflicting requirements.

Cellular technology is also expected to serve as a critical
enabler for IoT, and SDN and NFV are expected to be
key factors in handling the vast increase of data traversing
both access and core networks [213]. Extended automation,
QoS-aware differentiation of IoT traffic classes, and data
collection/analysis to enable network optimization through
SDN are also required to advance IoT applications. Hence,
it is important that 5G architecture designs prepare to handle
the onslaught of data produced by growing IoT applications.
Likewise, the realization of IoT on a large scale requires that it
be fully integrated with cloud computing [229]. Additionally,
due to limited energy, storage, and compute, the massive data
produced by these devicesmay only be useful if IoT and cloud
resources are deployed together [229].

Security is yet another advantage that SDN potentially
brings to emerging technologists, assuming the SDN
controller can be protected from exploitation. The challenge
here lies in the development of time-sensitive and mission
critical applications capable of detecting and mitigating
specific security threats. As we discussed in §VIII-B, the
network’s edge is the least complex way to capitalize
on device state for detecting various threats. SDN also
enables the creation of complex rules for device-access. As
a result, the complexity of multi-network management for
hundreds of different devices, having different permission
levels for different clients, can be greatly reduced for network
operators. Additionally, network slicing via virtualization
can help isolate sensitive traffic flows to ensure the data’s
confidentiality and integrity. As previously alluded to, the
development and standardization of such security protocols,
interfaces, and applications specifically tailored to emerging
technologies (i.e., IoT, 5G) are still open areas of research.

New machine learning techniques can also be used in
conjunction SDN’s centralized network management and
data collection to make networks more intelligent and
capable of responding to client needs. Likewise, learning
algorithms can allow traffic characteristics to influence
real-time decisions. Hence, the development of customized
machine learning algorithms–merging networking and
artificial intelligence paradigms–to handle traffic flow across
these emerging technologies is also expected to be an
emerging research field [213].

XIV. DISCUSSION
We have observed that SDN’s key innovations hinge on
its ability to separate the control and data planes and
provide centralized control and programmability over the
network. Likewise, SDN, NFV, and NV combinations bring
significant benefits to 5G, IoT, and other developing network

25518 VOLUME 5, 2017

J. H. Cox et al.: Advancing SDNs: A Survey

infrastructures. With SDN, these innovations can be further
complemented once standard southbound, northbound, and
east-west APIs are accepted. As [16] observes, even
carriers who have historically been hesitant to embrace
new technologies that might disrupt network services are
turning to SDN-NFV technologies to reduce CAPEX and
better monetize their services. Additionally, due to the
complementary nature of NFV and SDN technologies
to increase flexibility, support scalability, and speed up
the introduction of new services, we are already seeing
a convergence of these technologies, enhancing cloud
management platforms and network service orchestration
platforms [2], [19]. Additionally, SDN, NFV, and Cloud are
all expected to play a significant role in future development
of 5G services.

Likely, both SDN and NFV will continue to drive
innovation in telecommunications, networking and enterprise
data centers [2]. Both technologies serve to decrease
costs, increase flexibility, accelerate the introduction of
new services, and support scalability. However, SDN when
applied to NFV may provide network operators with a better
solution for dynamic resource management and intelligent
service orchestration [2]. The challenge that still faces this
technology is how to seamlessly integrate virtual network
functions into existing SDN and cloud infrastructures to
support multi-tenancy [2]. Other issues for network operators
include ensuring that their SDN controllers provide them
with the features they need (e.g., flow mapping applications,
east-west bound communication, etc.).

Perhaps the greatest contribution SDN provides to network
service providers (NSP) is service chaining. By steering
traffic between network functions, SDN has provided for
greater flexibility in the placement of network functions
(or service components). However, NSPs currently do not
possess the ability to orchestrate the placement of network
functions in their networks in an optimal way. Hence, future
research opportunities with service function orchestration are
numerous.

Network operators must consider certain factors when
deploying SDN and NFV solutions, including: 1) which
network functions to virtualize, 2) return on investment,
3) interoperability, 4) scalability and elasticity issues,
5) resource management, and 6) APIs allowing ease
of management [2]. However, certain elements of these
technologies can still slow down adoption [16]. For instance,
one key element is a shortage of adequate skill sets can hinder
an organization’s ability to integrate an SDN architecture
with its network. Partly, this is because of the push towards
automated and highly programmable networks represents a
significant paradigm shift in skill sets that stray from the
highly specialized network engineer. Hence, the need for
training and certification. Another element is the complexity
of solutions. According to [16], the complexity of a full roll
out is much higher than originally anticipated. As a result,
full SDN deployments represent only a small fraction of what
earlier predictions anticipated.

Integrating with real-world production systems is yet
another challenge to SDN deployments. As we discussed
in §XI, many organizations do not have the luxury of
greenfield deployments. Instead, they must integrate new
SDN technologies with existing network infrastructures. This
drives a pertinent question within such hybrid solutions. How
will orchestration for the data plane be handled for such
networks. As observed by [16], interoperability between SDN
and traditional network architectures can be trying, even for
more experienced network operators. As a result, SDN has
much room for improvement, and network operators are not
placed in ideal positions for improving it. Consequently, the
majority of effort needed to make SDN more deployable will
fall to the research community (industry, government, and
academia) and standardization bodies. The main challenges
that we identified as hindering the adoption of SDN by
network operators include the lack of an intuitive APIs for
the north-bound interface, the lack of standardization and
certification for such interfaces, and the lack of security
offered in current SDN architecture.

Even now state-of-the-art security operations rely on
network operators to interpret high-level policy documents
and then implement them through low level interfaces while
also manually implementing exceptions to accommodate
various academic or operational requirements. They must
also interpret a variety of alerts and reports generated by
various security mechanisms (often middleboxes) and still
be able to handle actual security events. Hence, network
operators and service providers stand to benefit from the
intelligent control of systems and the ability to orchestrate
(or program) thousands of network devices. In addition, this
paradigm makes network operators better suited to provide
QoS guarantees for services like voice, video, and data while
concurrently offering security through service isolation.

SDN indeed offers incredible opportunities, yet it also
possesses equitable challenges for network operators.
With a centralized controller, network operators can
easily implement control changes by altering the control
program [104]. Unfortunately, the absence of a standardized
application interface for network operators means that
creating control programs is not as simple as it needs to be.
However, once intuitive abstractions become the norm for
SDN, network operators will benefit from the ability to easily
orchestrate a large number of network devices.

Provided a simple API can be offered, network operators
will develop policies and dynamically implement them as
requirements dictate via the control program. In a traditional
control plane, which is completely distributed, such a feat
would be extremely difficult and time consuming. Hence,
it is the concept of programming the control plane that
makes SDN such a powerful option for network operators;
yet, we, again, argue that the abstractions offered by APIs
must be intuitive. API intuition is a huge challenge for
researchers who must work through a lack of documentation
and essentially peel back the layers of abstraction when it
comes to SDN programming languages in order to implement

VOLUME 5, 2017 25519

J. H. Cox et al.: Advancing SDNs: A Survey

their own designs. We cannot expect this to be the norm for
network operators, nor should we.

Network operators still need better ways to articulate
the traffic they wish to monitor at higher levels of
abstractions than is provided by current mechanisms [70].
Researchers must also maintain awareness that network
operators need more than routing from SDN. Network
operators make their living providing services–SDN is
merely a platform to provide those services. Additionally,
unless network operators are a part of an organization with
a significant research budget for engineering and integration,
they have limited support with testing SDN alongside
their existing traditional networks. Thus, the research
community must drive the further development of the SDN
paradigm with additional mechanisms and applications for
deploying these services if the adoption of SDN is to be
hastened.

Thus, simulation can assist network operators to determine
if SDN is the right solution for their network, since they
can quickly ascertain whether their network possesses the
flexibility to adapt new technologies, protocols, systems, and
security features. Likewise, models offer network engineers
a new means of explaining the impact of a network change
prior to its implementation. More importantly, modeling can
potentially provide network operators with pictures, graphs,
and statistics needed to portray the advantages of SDN and
convince their managers, change control boards, and budget
review boards that SDN is the best solution. The result would
be a better understanding of potential risks and, hopefully,
greater approval rates for network changes.

Researchers must also consider the time-line that goes
beyond 5th generation (5G)–the network development period
after 2020 [229]. SDN is expected to serve as a technological
enabler that is thoroughly integrated with NFV and Cloud
technologies to offer self-organizing networks (SON), cloud
radio access network (C-RAN), mobile edge computing
(MEC), and content-specific topologies. Likewise, SDN
can potentially revolutionize core network, backhaul, and
fronthaul designs of next generation wireless architecture,
while also serving as a key enabler for Radio Access
Networks (RAN) and Cloud Radio Access Networks
(CRAN) [229]. Without question, smart network functions
are needed to make the radio technologies support more
flexible networks. Hence, dynamic management enablers,
such as SDN, and virtualization technologies are needed to
meet these requirements.

Finally, we note that the surveys in this work focus on
SDN deployments in the United States. While some of these
issue may hold true in other countries, such findings are not
contained in this work. Hence a focused international SDN
deployment survey would also make for a valuable research
contribution.

XV. CONCLUSION
SDN seeks to apply modularity to network control and gives
network operators the opportunity to dynamically configure

the control plane. Consequently, SDN’s uses have found
their way into virtualization, security, wireless, and numerous
other technologies where greater opportunities exist for
SDN’s advancement. In this work, we presented a thorough
study of SDN, its enablers, and current research challenges
and opportunities. We began this study with the state of
SDN as it relates to recent market reports and surveys where
we identified some of the primary drivers and concerns
impacting SDN’s advancement. Having identified specific
requirements, we then systematically explored opportunities
for advancement with SDN’s control plane and data plane,
its interoperability with virtualization technologies, security
impacts and concerns, modeling and simulation technologies,
hybrid networks, software-defined infrastructures, and other
emerging technologies.

Within the forwarding plane, SDN has already solved
many problems including cost, management, multi-tenancy,
and high entry-level barriers that stifle innovation. The
ability to simultaneously program (or orchestrate) a large
number of network devices makes SDN a powerful asset
for future network operators. Yet, transition strategies must
be considered, user-friendly applications must be developed,
and standards must be agreed upon. Given the investment that
campus, industry, and government organizations have already
committed to SDN, we are certain that our future networks
will be far more programmable than they are today. However,
the key to this achievement is ensuring that network engineers
and operators are provided a standardized, application rich,
architecture to incrementally add to their existing network or
setup as a greenfield deployment.

With regard to the future of SDN, common factors
across all research areas, including, latency, jitter, flow
rate, redundancy, reliability, security, cost, and availability,
must be addressed [32]. As a result, network operators can
still expect to see several revisions to SDN’s architecture,
interfaces, and applications prior to realizing an optimal set of
capabilities. Accordingly, this paper identified and discussed
some of the main challenges hindering the adoption of
SDN by network operators. Many of which were repeatedly
highlighted: the lack of an intuitive API for the north-bound
interface, the lack of standardization of such interfaces, and
the lack of security provided by the current SDN architecture.
We also argued that the research community must continue to
drive further innovations in SDN, as network operators may
lack the resources and support needed to embrace SDN in
their own infrastructures.

This work also provided a current snapshot of SDN
adoption across government, industry, and campus networks
as determined by various market reports and surveys. It may
also serve as a reference point to steer future efforts of both
researchers and industry practitioners seeking to contribute
to the advancement of SDN–specifically, with regard to the
numerous applications (both current and envisioned) within
the context of emerging technologies. Moreover, this work
addressed immediate research needs for enhancing traditional
networks with SDN.

25520 VOLUME 5, 2017

J. H. Cox et al.: Advancing SDNs: A Survey

REFERENCES
[1] The Linux Foundation Projects.OpenDayLight. Accessed: Jun. 29, 2017.

[Online]. Available: https://www.opendaylight.org/
[2] S. K. N. Rao, ‘‘SDN and its use-case–NV and NFV,’’

NEC, Whitepaper, 2014, accessed: Oct. 18, 2017. [Online].
Available:http://www.nectechnologies.in/en_TI/pdf/NTI_whitepaper_
SDN_NFV.pdf

[3] Tempered Networks, ‘‘The future of network virtualization
and SDN controllers,’’ SDxCentral, Market Rep.,
2016, Accessed: Oct. 18, 2017. [Online]. Available:
https://www.temperednetworks.com/sites/default/files/pdfs/featured_
content/2016-SDN-NV-Report_Tempered_Networks.pdf

[4] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, ‘‘Fabric: A
retrospective on evolving SDN,’’ in Proc. 1st Workshop Hot Topics Softw.
Defined Netw., 2012, pp. 85–90.

[5] ONF, ‘‘Software-defined networking: The new norm for networks,’’
ONF, White Paper, 2012, accessed: Oct. 18, 2017. [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/white-papers/wp-sdn-newnorm.pdf

[6] M. Bindhu and G. Ramesh, ‘‘The journey to SDN: A peek into the history
of programmable networks,’’ Int. J. Comput. Sci. Eng. Commun., vol. 2,
no. 5, pp. 500–506, 2014.

[7] S. Jain et al., ‘‘B4: Experience with a globally-deployed software
defined WAN,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 3–14, 2013.

[8] C. Hong et al., ‘‘Achieving high utilization with software-driven WAN,’’
ACM SIGCOMMComput. Commun. Rev., vol. 43, no. 4, pp. 15–26, 2013.

[9] S. Marek, ‘‘Verizon Executive Calls for SDN Standardization,’’ Fierce
Telecom, Newton, MA, USA, Tech. Rep., May 2015. [Online]. Available:
http://www.fiercetelecom.com/story/verizon-executive-calls-sdn-
standardization/2015-05-12

[10] A. Irei, ‘‘Verizon Offers Managed SD-WAN, with Cisco IWAN
Technology,’’ TechTarget, Tech. Rep., Sep. 2015. [Online]. Available:
http://searchsdn.techtarget.com/news/4500253097/Verizon-offers-
managed-SD-WAN-with-Cisco-IWAN-technology

[11] NSF, DoE, and NCO. (Dec. 2013.). Program Review:
Operationalization of Software-Defined Networks. [Online]. Available:
https://www.nitrd.gov/pubs/SDN_Program_Review_Report_2013.pdf

[12] B. Roach, ‘‘3 Reasons software-defined networking
is streamlining DOD IT,’’ Defense Systems,
McLean, VA, USA, Apr. 2015. [Online]. Available:
http://defensesystems.com/articles/2015/04/14/comment-sdn-software-
defined-networking-dod.aspx

[13] N. Feamster, J. Rexford, and E. Zegura, ‘‘The road to SDN: An
intellectual history of programmable networks,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 44, no. 2, pp. 87–98, 2014.

[14] S. Sezer et al., ‘‘Are we ready for SDN? Implementation challenges
for software-defined networks,’’ IEEE Commun. Mag., vol. 51, no. 7,
pp. 36–43, Jul. 2013.

[15] D. Kreutz, F. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, ‘‘Software-defined networking: A comprehensive survey,’’
Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[16] SDxCentral. (2015). SDxCentral SDN and NFV Market Size
Report. [Online]. Available: https://www.sdxcentral.com/reports/
sdn-nfv-market-size-forecast-report-2015/

[17] PiperJaffray. (Jan. 2015). 2015 Piper Jaffray CIO Survey. [Online].
Available: https://piper2.bluematrix.com/sellside/EmailDocViewer?
encrypt=7856c68e-3f1a-4ce9-a7e7-99fe25145cd9&mime=pdf

[18] K. Marco. (Jun. 2014). InformationWeek 2014 State of the Data
Center Survey. [Online]. Available: http://reports.informationweek.com/
abstract/6/12525/Data-Center/research-2014-state-of-the-data-center.
html

[19] SevOne. (2016). [White Paper] State of SDN: 6 Reasons Why
SDN is on the Rise. [Online]. Available: http://info.sevone.
com/rs/505-CNP-948/images/SDN%20Whitepaper.pdf

[20] MeriTalk and Juniper Networks and General Dynamics, ‘‘Automation
to Support Government Imperatives: Dawn of SDN,’’ Tech. Rep., 2015.
[Online]. Available: https://www.meritalk.com/study/dawn-of-sdn/

[21] Juniper Networks, ‘‘Readiness, benefits, and barriers: An
SDN progress report,’’ Juniper Netw., Inc., Sunnyvale,
CA, USA, Status Rep., Nov. 2014. [Online]. Available:
https://www.usebackpack.com/resources/7178/download?1451715494

[22] CIO/G-6. (Mar. 2016). Shaping the Army Network 2025–2040. [Online].
Available: http://ciog6.army.mil/Portals/1/Shaping%20the%20Army
%20Network%202025-2040.pdf

[23] E. I. S. Group. (Oct. 2015). Network Function Virtualization. [Online].
Available: http://portal.etsi.org/portal/server.pt/community/NFV/367

[24] R. Mijumbi, J. Serrat, J. L. Gorricho, S. Latre, M. Charalambides,
and D. Lopez, ‘‘Management and orchestration challenges in network
functions virtualization,’’ IEEE Commun. Mag., vol. 54, no. 1,
pp. 98–105, Jan. 2016.

[25] G. Finnie. Policy Control and SDN: A Perfect
Match. Accessed: Oct. 18, 2017. [Online]. Available:
http://www.informationweek.com/pdf_whitepapers/approved/
1370538516_hr_sandvine_policy.pdf

[26] E. Maini, ‘‘Orchestration of logical resources in software defined
infrastructures,’’ Ph.D. dissertation, Univ. degli Studi di Napoli Federico
II, Naples, Italy, 2015.

[27] A. Gupta et al., ‘‘SDX: A software defined internet exchange,’’ in Proc.
ACM Conf. SIGCOMM, 2014, pp. 551–562.

[28] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, ‘‘SPHINX: Detecting
security attacks in software-defined networks,’’ in Proc. Netw. Distrib.
Syst. Secur. (NDSS) Symp., 2015, pp. 1–15.

[29] ONF. (2017).ONF Certified SDN Engineer (OCSE). [Online]. Available:
https://www.opennetworking.org/skills-engineer#prerequisiteknowledge

[30] M. Jarschel, T. Zinner, T. Hoßfeld, P. Tran-Gia, and W. Kellerer,
‘‘Interfaces, attributes, and use cases: A compass for SDN,’’ IEEE
Commun. Mag., vol. 52, no. 6, pp. 210–217, Jun. 2014.

[31] M. Ashton et al., ‘‘Ten things to look for in an SDN controller,’’ Ashton,
Metzler & Associates, Sanibel, FL, USA, White Paper, 2013. [Online].
Available: www.necam.com/Docs

[32] I. Monga et al., ‘‘Operationalization of Software-Defined Networks
(SDN) program review,’’ Nat. Sci. Found., Arlington, VA, USA, White
Paper, 2013.

[33] P. Berde et al., ‘‘ONOS: Towards an open, distributed SDN OS,’’ in Proc.
3rd Workshop Hot Topics Softw. Defined Netw., 2014, pp. 1–6.

[34] The Linux Foundation Projects. OPNFV. Accessed: Jun. 29, 2017.
[Online]. Available: https://www.opnfv.org/software

[35] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, ‘‘Scalable flow-based
networking with DIFANE,’’ ACM SIGCOMM Comput. Commun. Rev.,
vol. 41, no. 4, pp. 351–362, 2011.

[36] A. Tootoonchian and Y. Ganjali, ‘‘HyperFlow: A distributed control plane
for OpenFlow,’’ in Proc. Internet Netw. Manage. Conf. Res. Enterprise
Netw.. 2010, p. 3.

[37] N. Gude et al., ‘‘NOX: Towards an operating system for networks,’’ ACM
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, 2008.

[38] G. Romero. (Oct. 2012). SNAC. [Online]. Available: http://www.
valleytalk.org/wp-content/uploads/2013/02/Evaluation_Of_OF_
Controllers.pdf

[39] J. McCauley et al.. POX. Accessed: Dec. 13, 2016. [Online]. Available:
https://github.com/noxrepo/pox

[40] J. Reich et al., ‘‘Modular SDN programming with pyretic,’’
USENIX, Berkeley, CA, USA, Tech. Rep., Oct. 2013,
vol. 38, no. 5, Accessed: Oct. 18, 2017. [Online]. Available:
https://www.usenix.org/system/files/login/articles/09_reich-online.pdf

[41] Ryu OpenFlow Controller. Accessed: Oct. 18, 2017. [Online]. Available:
http://osrg.github.io/ryu/

[42] J. H. Cox, S. Donovan, R. J. Clarky, and H. L. Owen, ‘‘Ryuretic: A
modular framework for Ryu,’’ in Proc. IEEE Military Commun. Conf.
(MILCOM), Nov. 2016, pp. 1065–1070.

[43] D. Erickson, ‘‘The beacon OpenFlow controller,’’ in Proc. 2nd ACM
SIGCOMMWorkshop Hot Topics Softw. Defined Netw., 2013, pp. 13–18.

[44] Project Floodlight. Floodlight. Accessed: Jun. 29, 2017. [Online].
Available: http://www.projecfloodlight.org/FLodlight/

[45] Trema. Full-Stack OpenFlow Framework in Ruby and C. Accessed:
Jun. 28, 2017. [Online]. Available: http://trema.github.io/trema/ and
http://www.projecfloodlight.org/FLodlight/

[46] Kandoo. Introduction. Accessed: Jun. 28, 2017. [Online]. Available:
http://kandoo.github.io/

[47] OpenContrail. An Open-Source Network Virtualization Platform
for the Cloud. Accessed: Jun. 29, 2017. [Online]. Available:
http://www.opencontrail.org/opencontrail-architecture-documentation/

[48] OpenMUL. High Performanance SDN. Accessed: Jun. 2017. [Online].
Available: http://www.openmul.org/

VOLUME 5, 2017 25521

J. H. Cox et al.: Advancing SDNs: A Survey

[49] ONF. Leveraging Disaggregation to Build Innovative Open Source
Solutions for Operator Networks. Accessed: Jun. 29, 2017. [Online].
Available: https://www.opennetworking.org/

[50] N. McKeown et al., ‘‘OpenFlow: Enabling innovation in campus
networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Apr. 2008.

[51] A. Doria et al. (Mar. 2010). Forwarding and Control Element
Separation (ForCES) Protocol Specification. [Online]. Available:
http://sdn.ieee.org/images/files/pdf/Software_Defined_Infrastructure
-IEEE-SDN-Initiative.pdf

[52] H. Song, ‘‘Protocol-oblivious forwarding: Unleash the power of SDN
through a future-proof forwarding plane,’’ in Proc. 2nd ACM SIGCOMM
Workshop Hot Topics Softw. Defined Netw., 2013, pp. 127–132.

[53] N. Feamster. (Jun. 2015). Coursera, SDN Networks. [Online]. Available:
https://class.coursera.org/sdn1-001/wiki/

[54] M.-K. Shin, K.-H. Nam, and H.-J. Kim, ‘‘Software-defined networking
(SDN): A reference architecture and open APIs,’’ in Proc. Int. Conf. ICT
Converg. (ICTC), Oct. 2012, pp. 360–361.

[55] ONF. (Jun. 2012). OpenFlow Switch Specification, Version 1.3.0.
[Online]. Available: https://www.opennetworking.org/images/stories/
downloads/sdn-resources/onf-specifications/openflow/openflow-spec-
v1.3.0.pdf

[56] T. Nolle. (2013). Centralized vs. Decentralized SDN Architecture:
Which Works for You? [Online]. Available: http://searchsdn.techtarget.
com/tip/Centralized-vsdecentralized-SDN-architecture-Which-works-
for-you

[57] J. Amann andR. Sommer, ‘‘Providing dynamic control to passive network
security monitoring,’’ in Proc. Int. Workshop Recent Adv. Intrusion
Detection, 2015, pp. 133–152.

[58] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and
T. Turletti, ‘‘A survey of software-defined networking: Past, present,
and future of programmable networks,’’ IEEE Commun. Surveys Tuts.,
vol. 16, no. 3, pp. 1617–1634, 3rd Quart., 2014.

[59] H. Kim andN. Feamster, ‘‘Improving networkmanagement with software
defined networking,’’ IEEE Commun. Mag., vol. 51, no. 2, pp. 114–119,
Feb. 2013.

[60] Y. Yuan, R. Alur, and B. T. Loo, ‘‘NetEgg: Programming network policies
by examples,’’ in Proc. 13th ACM Workshop Hot Topics Netw., 2014,
p. 20.

[61] F. A. Lopes, M. Santos, R. Fidalgo, and S. Fernandes, ‘‘A software
engineering perspective on SDN programmability,’’ IEEE Commun.
Surveys Tuts., vol. 18, no. 2, pp. 1255–1272, 2nd Quart., 2016.

[62] Z. Cai, A. L. Cox, and T. E. Ng, ‘‘Maestro: A system for
scalable OpenFlow Control,’’ Rice Univ., Houston, TX, USA, Tech.
Rep. TR10-08, 2010.

[63] T. Koponen, ‘‘Onix: A distributed control platform for large-scale
production networks,’’ in Proc. OSDI, vol. 10. 2010, pp. 1–6.

[64] (Apr. 2015). Intent Framework. [Online]. Available: https://wiki.
onosproject.org/display/ONOS/Intent+Framework

[65] Y. Yuan et al., ‘‘Scenario-based programming for SDN policies,’’ in Proc.
11th ACM Conf. Emerg. Netw. Experim. Technol. 2015, Art. no. 34.

[66] C. J. Anderson et al., ‘‘NetKAT: Semantic foundations for networks,’’
ACM SIGPLAN Notices, vol. 49, no. 1, pp. 113–126, 2014.

[67] C. Monsanto, N. Foster, R. Harrison, and D. Walker, ‘‘A compiler and
run-time system for network programming languages,’’ ACM SIGPLAN
Notices, vol. 47, no. 1, pp. 217–230, Jan. 2012.

[68] X. Jin et al., ‘‘CoVisor: A compositional hypervisor for software-defined
networks,’’ in Proc. 12th USENIX Symp. Netw. Syst. Design Implement.
(NSDI), 2015, pp. 87–101.

[69] D. Lenrow. (Jan. 2015). Intent: What. Not How, ONF Blog. [Online].
Available: https://www.opennetworking.org/?p=1633&option=com_
wordpress&Itemid=155

[70] S. Donovan and N. Feamster, ‘‘Intentional network monitoring: Finding
the needle without capturing the haystack,’’ in Proc. 13th ACMWorkshop
Hot Topics Netw. (HotNets-XIII), NewYork, NY, USA, 2014, pp. 5:1–5:7.

[71] M. Robuck. (Sep. 2015). ONF Debuts Northbound Interfaces for
Intent-Based Networking. [Online]. Available: https://www.sdxcentral.
com/articles/news/onf-debuts-northbound-interfaces-for-intent-based-
networking/2015/09/

[72] B. Chandrasekaran, B. Tschaen, and T. Benson, ‘‘Isolating and tolerating
SDN application failures with LegoSDN,’’ in Proc. Symp. SDN Res.,
2016, p. 7.

[73] HP SDN Dev Center App Store. Accessed: May 1, 2017. [Online].
Available: http://www8.hp.com/us/en/networking/sdn/devcenter-index.
html

[74] D. Hock et al., ‘‘POCO-PLC: Enabling dynamic pareto-optimal resilient
controller placement in SDN networks,’’ in Proc. IEEE Conf. Comput.
Commun. Workshops (INFOCOM WKSHPS), Jun. 2014, pp. 115–116.

[75] POCO-Toolset. Accessed: Oct. 18, 2017. [Online]. Available:
http://www.comnet.informatik.uni-wuerzburg.de/forschung/projects/
next_generation_networks_projects/poco/

[76] P. Lin, J. Bi, and Y. Wang, ‘‘East-west bridge for SDN network peering,’’
in Frontiers in Internet Technologies. Berlin, Germany: Springer, 2013,
pp. 170–181.

[77] J. H. Cox, R. J. Clark, and H. L. Owen, ‘‘Security policy transition
framework for software defined networks,’’ in Proc. 1st Int. Workshop
Secur. NFV-SDN (SNS), Nov. 2016, pp. 56–61.

[78] L. Schiff and S. Schmid, ‘‘Study the past if you would define the future:
Implementing secure multi-party SDN updates,’’ in Proc. IEEE Int. Conf.
Softw. Sci. Technol. Eng. (SWSTE), Jun. 2016, pp. 111–116.

[79] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. Kompella,
‘‘Towards an elastic distributed SDN controller,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 43, no. 4, pp. 7–12, Oct. 2013.

[80] P. Bosshart et al., ‘‘P4: Programming protocol-independent packet
processors,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, 2014.

[81] S. Matsumoto, S. Hitz, and A. Perrig, ‘‘Fleet: Defending SDNs from
malicious administrators,’’ in Proc. 3rd Workshop Hot Topics Softw.
Defined Netw., 2014, pp. 103–108.

[82] S. Shenker. (2013). Stanford Seminar—Software-Defined Networking
at the Crossroads. [Online]. Available: https://www.youtube.com/
watch?v=WabdXYzCAOU

[83] M. Shahbaz et al., ‘‘PISCES: A programmable, protocol-independent
software switch,’’ in Proc. Conf. ACM SIGCOMM Conf. (SIGCOMM),
New York, NY, USA, 2016, pp. 525–538.

[84] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown,
‘‘I know what your packet did last hop: Using packet histories to
troubleshoot networks,’’ in Proc. NSDI, 2014, pp. 71–85.

[85] Big Switch Networks, Inc., Mountain View, CA, USA. (2013).
Switch Light DataSheet. Accessed: Oct. 18, 2017. [Online].
Available: http://www.bigswitch.com/sites/default/files/sdnresources/
switchlightdatasheet.pdf

[86] P. Bosshart et al., ‘‘Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 43, no. 4, pp. 99–110, Oct. 2013.

[87] N. Katta, O. Alipourfard, J. Rexford, and D.Walker, ‘‘Infinite CacheFlow
in software-defined networks,’’ in Proc. 3rd Workshop Hot Topics Softw.
Defined Netw., 2014, pp. 175–180.

[88] P4 Language Consortium. P4. Accessed: Jun. 29, 2017. [Online].
Available: http://www.p4.org

[89] N. F. M. Shahbaz. (Jun. 2015). NetASM-Python. [Online]. Available:
https://github.com/NetASM/ NetASM-python/wiki

[90] B. Pfaff et al., ‘‘The design and implementation of open vSwitch,’’ in
Proc. 12th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2015,
pp. 117–130.

[91] J. Sherry, S. Ratnasamy, and J. S. At, ‘‘A survey of enterprise middlebox
deployments,’’ Dept. EECS, Univ. California, Berkeley, Berkely, CA,
USA, White Paper UCB/EECS-2012-24, 2012.

[92] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, ‘‘Flowguard: Building robust
firewalls for software-defined networks,’’ in Proc. 3rd Workshop Hot
Topics Softw. Defined Netw., 2014, pp. 97–102.

[93] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, ‘‘Making middleboxes someone else’s problem: Network
processing as a cloud service,’’ ACM SIGCOMMComput. Commun. Rev.,
vol. 42, no. 4, pp. 13–24, 2012.

[94] M. Chiosi et al., ‘‘Network functions virtualisation introductory white
paper,’’ in Proc. SDN OpenFlow World Congr., 2012, pp. 1–16.

[95] V. Sekar et al., ‘‘Design and implementation of a consolidated middlebox
architecture,’’ presented as 9th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2012, pp. 323–336.

[96] Z. Qazi, C.-C. Tu, R.Miao, L. Chiang, V. Sekar, andM.Yu, ‘‘Practical and
incremental convergence between SDN and middleboxes,’’ Open Netw.
Summit, Santa Clara, CA, USA, Tech. Rep., 2013.

[97] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
‘‘SIMPLE-fying Middlebox policy enforcement using SDN,’’ ACM
SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 27–38, 2013.

25522 VOLUME 5, 2017

J. H. Cox et al.: Advancing SDNs: A Survey

[98] S. H. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
‘‘Enforcing network-wide policies in the presence of dynamic middlebox
actions using FlowTags,’’ in Proc. 11th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2014, pp. 543–546.

[99] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, ‘‘Ethane: Taking control of the enterprise,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 37, no. 4, pp. 1–12, 2007.

[100] ETSI. (2013). Draft ETSI GS NFV-SEC 001 V0. 2.1 (2014-06).
[Online]. Available: http://www.etsi.org/deliver/etsi_gs/NFV-SEC/001_
099/001/01.01.01_60/gs_NFV-SEC001v010101p.pdf

[101] J. Carapinha and J. Jiménez, ‘‘Network virtualization: A view from the
bottom,’’ in Proc. 1st ACM Workshop Virtualized Infrastructure Syst.
Architectures, 2009, pp. 73–80.

[102] Linux Foundation Collaborative Projects. (2016). Open vSwitch.
Accessed: Oct. 18, 2017. [Online]. Available: http://openvswitch.org/

[103] R. Sherwood et al., ‘‘FlowVisor: A network virtualization layer,’’
OpenFlow Switch Consortium, Tech. Rep. OPENFLOW-TR-2009-1,
2009.

[104] R. Jain and S. Paul, ‘‘Network virtualization and software defined
networking for cloud computing: A survey,’’ IEEE Commun. Mag.,
vol. 51, no. 11, pp. 24–31, Nov. 2013.

[105] R. Sherwood et al., ‘‘Carving research slices out of your production
networks with OpenFlow,’’ ACM SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 1, pp. 129–130, 2010.

[106] D. Drutskoy, E. Keller, and J. Rexford, ‘‘Scalable network virtualization
in software-defined networks,’’ IEEE Internet Comput., vol. 17, no. 2,
pp. 20–27, Mar./Apr. 2013.

[107] Z. Bozakov and P. Papadimitriou, ‘‘AutoSlice: Automated and scalable
slicing for software-defined networks,’’ in Proc. ACM Conf. CoNEXT
Student Workshop, 2012, pp. 3–4.

[108] S. Barkai, R. Katz, D. Farinacci, and D. Meyer, ‘‘Software defined
flow-mapping for scaling virtualized network functions,’’ in Proc. 2nd
ACM SIGCOMM Workshop Hot Topics Softw. Defined Netw., 2013,
pp. 149–150.

[109] L. Peterson et al., ‘‘Central office Re-architected as a data center,’’ IEEE
Commun. Mag., vol. 54, no. 10, pp. 96–101, Oct. 2016.

[110] M. Chiosi et al., ‘‘Network functions virtualisation: An introduction,
benefits, enablers, challenges and call for action,’’ in Proc. SDN
OpenFlow World Congr., 2012, pp. 22–24.

[111] J. G. Herrera and J. F. Botero, ‘‘Resource allocation in NFV: A
comprehensive survey,’’ IEEE Trans. Netw. Service Manage., vol. 13,
no. 3, pp. 518–532, Sep. 2016.

[112] A. Al-Shabibi and L. Peterson, ‘‘CORD: Central office re-architected as
a datacenter,’’ OpenStack Summit, pp. 1–38, 2015.

[113] P. Pate. SdxCental. (Mar. 2013). NFV and SDN: What’s the
Difference? [Online]. Available: https://www.sdxcentral.com/articles/
contributed/nfv-and-sdn-whats-the-difference/2013/03/

[114] Y. Li and M. Chen, ‘‘Software-defined network function virtualization:
A survey,’’ IEEE Access, vol. 3, pp. 2542–2553, 2015.

[115] T. Xing, Z. Xiong, D. Huang, and D. Medhi, ‘‘SDNIPS: Enabling
software-defined networking based intrusion prevention system in
clouds,’’ in Proc. 10th Int. Conf. Netw. Service Manage. (CNSM), 2014,
pp. 308–311.

[116] P. Boyle and J. Cox, ‘‘Main communications facility start up,’’ Army
Commun., vol. 39, p. 61, Jun. 2014.

[117] SDxCentral. (2015). SDN & NFV Use Cases Defined. [Online].
Available: https://www.sdxcentral.com/sdn-nfv-use-cases/

[118] R. Spillane, W. Wang, L. Lu, M. Austruy, R. Rivera, and
C. T. Karamanolis, ‘‘Exo-clones: Better container runtime image
management across the clouds,’’ in Proc. 8th USENIX Workshop Hot
Topics Storage File Syst. (HotStorage), 2016, pp. 1–5.

[119] A. Boubendir, E. Bertin, and N. Simoni, ‘‘On-demand dynamic network
service deployment over NASS architecture,’’ in Proc. IEEE/IFIP Netw.
Oper. Manage. Symp. (NOMS), Apr. 2016, pp. 1023–1024.

[120] J. Evens, ‘‘A comparison of containers and virtual machines for use with
NFV,’’ M.S. thesis, Technical Univ. of Liberec, Liberec, Czech Republic,
2015.

[121] A. Bremler-Barr, Y. Harchol, and D. Hay, ‘‘OpenBox: A software-defined
framework for developing, deploying, and managing network functions,’’
in Proc. Conf. ACM SIGCOMM Conf., 2016, pp. 511–524.

[122] B. Anwer, T. Benson, N. Feamster, and D. Levin, ‘‘Programming slick
network functions,’’ in Proc. 1st ACM SIGCOMM Symp. Softw. Defined
Netw. Res., 2015, p. 14.

[123] ATIS, Washington, DC, USA. ATIS Workspace. Accessed: Oct. 18, 2017.
[Online]. Available: https://www.atis.org/NFV/index.asp

[124] E. Kohler, R.Morris, B. Chen, J. Jannotti, andM. F. Kaashoek, ‘‘The click
modular router,’’ ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–297,
2000.

[125] J. Martins, ‘‘ClickOS and the art of network function virtualization,’’
in Proc. 11th USENIX Conf. Netw. Syst. Design Implement., 2014,
pp. 459–473.

[126] Nokia Corporation, Datasheet, Espoo, Finland. (2017). ClooudBand
Release 17.5. Accessed: Oct. 18, 2017. [Online]. Available:
https://resources.ext.nokia.com/asset/200060

[127] B. Graham. Zoom Project, TmForum, Suffolk,
U.K. Accessed: Oct. 18, 2017. [Online]. Available:
https://www.tmforum.org/collaboration/zoom-project/

[128] N. Anderson et al. (Jun. 2014). Cyan Introduces Planet Orchestrate,
The IndustryŠs First Orchestration Application That Integrates
Cloud Services, NFV, and WAN, Ciena Corporation, News Release,
Petaluma, CA, USA. Accessed: Oct. 18, 2017.. [Online]. Available:
http://www.blueplanet.com/about/newsroom/Cyan-Introduces-Planet-
Orchestrate-the-Industrys-First-Orchestration-Application-that-
Integrates-Cloud-Services-NFV-and-WAN.html

[129] D. Kushner, ‘‘The real story of stuxnet,’’ IEEE Spectr., vol. 50, no. 3,
pp. 48–53, Mar. 2013.

[130] D. Kreutz, F. Ramos, and P. Verissimo, ‘‘Towards secure and dependable
software-defined networks,’’ in Proc. 2nd ACM SIGCOMM Workshop
Hot Topics Softw. Defined Netw., 2013, pp. 55–60.

[131] E. Auchard. (Sep. 2015).Cisco Router Break-Ins Bypass Cyber Defenses.
[Online]. Available: http://www.reuters.com/article/2015/09/15/
us-cybersecurity-routers-cisco-systems-idUSKCN0RF0N420150915?
feedType=RSS&feedName=businessNews

[132] R. Kloti, V. Kotronis, and P. Smith, ‘‘OpenFlow: A security analysis,’’ in
Proc. 21st IEEE Int. Conf. Netw. Protocols (ICNP), Oct. 2013, pp. 1–6.

[133] S. Shin et al., ‘‘Rosemary: A robust, secure, and high-performance
network operating system,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2014, pp. 78–89.

[134] P. Porras et al., ‘‘A security enforcement kernel for OpenFlow
networks,’’ in Proc. 1st Workshop Hot Topics Softw. Defined Netw., 2012,
pp. 121–126.

[135] K. Benton, L. J. Camp, and C. Small, ‘‘OpenFlow vulnerability
assessment,’’ in Proc. 2nd ACM SIGCOMM Workshop Hot Topics Softw.
Defined Netw., 2013, pp. 151–152.

[136] S. Hong, L. Xu, H. Wang, and G. Gu, ‘‘Poisoning network visibility
in software-defined networks: New attacks and countermeasures,’’
NDSS, an Diego, CA, USA, Tech. Rep., 2015. [Online]. Available:
http://dx.doi.org/10.14722/ndss.2015.23283

[137] U. Toseef, A. Zaalouk, T. Rothe, M. Broadbent, and K. Pentikousis,
‘‘C-BAS: Certificate-based AAA for SDN experimental facilities,’’ in
Proc. 3rd Eur. Workshop Softw. Defined Netw. (EWSDN), Sep. 2014,
pp. 91–96.

[138] S. Betge-Brezetz, G. B. Kamga, and M. Tazi, ‘‘Trust support for SDN
controllers and virtualized network applications,’’ in Proc. 1st IEEE Conf.
Netw. Softw. (NetSoft), Apr. 2015, pp. 1–5.

[139] A. Kamisiński and C. Fung, ‘‘Flowmon: Detecting malicious switches in
software-defined networks,’’ in Proc. Workshop Autom. Decision Making
Active Cyber Defense, 2015, pp. 39–45.

[140] J. H. Cox, R. J. Clark, and H. L. Owen, ‘‘Leveraging SDN to improve the
security of DHCP,’’ in Proc. SDNNFVSEC, 2016, pp. 1–4.

[141] J. H. Cox, R. J. Clark, and H. L. Owen, ‘‘Leveraging SDN for ARP
security,’’ in Proc. SoutheastCon, 2016, pp. 1–8.

[142] J. H. Cox, R. J. Clark, and H. L. Owen, ‘‘Leveraging SDN and WebRTC
for rogue access point security,’’ IEEE Trans. Netw. Service Manage.,
vol. 14, no. 3, pp. 756–770, Sep. 2017.

[143] J. H. Jafarian, E. Al-Shaer, and Q. Duan, ‘‘OpenFlow random host
mutation: Transparent moving target defense using software defined
networking,’’ in Proc. 1st Workshop Hot Topics Softw. Defined Netw.,
2012, pp. 127–132.

[144] J. Zheng and A. S. Namin, ‘‘The impact of address changes and host
diversity on the effectiveness of moving target defense strategy,’’ in
Proc. IEEE 40th Annu. Comput. Softw. Appl. Conf. (COMPSAC), vol. 2.
Jun. 2016, pp. 553–558.

[145] HP. HP’s SDN App Store. Accessed: Mar. 10, 2016. [Online]. Available:
https://goolgl/2vtdHH

VOLUME 5, 2017 25523

J. H. Cox et al.: Advancing SDNs: A Survey

[146] J. Qadir and O. Hasan, ‘‘Applying formal methods to networking: Theory,
techniques, and applications,’’ IEEE Commun. Surveys Tuts., vol. 17,
no. 1, pp. 256–291, 1st Quart., 2015.

[147] N. Katta, H. Zhang, M. Freedman, and J. Rexford, ‘‘Ravana: Controller
fault-tolerance in software-defined networking,’’ in Proc. 1st ACM
SIGCOMM Symp. Softw. Defined Netw. Res., 2015, p. 4.

[148] M. Pease, R. Shostak, and L. Lamport, ‘‘Reaching agreement in
the presence of faults,’’ J. ACM, vol. 27, no. 2, pp. 228–234,
1980.

[149] C. Scott et al., ‘‘Troubleshooting Blackbox SDN control software with
minimal causal sequences,’’ ACM SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 4, pp. 395–406, 2015.

[150] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, ‘‘On scalability of
software-defined networking,’’ IEEE Commun. Mag., vol. 51, no. 2,
pp. 136–141, Feb. 2013.

[151] H. Xie et al., Use Cases for ALTO With Software Defined
Networks Working Draft, IETF Secretariat, Internet-Draft
Draft-Xie-Alto-SDN-Extension-use-Cases-01. Txt, 2012.

[152] R. Sherwood and K. Yap. (Nov. 2014). Cbench Controller
Benchmarker. [Online]. Available: https://github.com/andi-bigswitch/
oflops/tree/master/cbench

[153] M. Jarschel, C.Metter, T. Zinner, S. Gebert, and P. Tran-Gia, ‘‘OFCProbe:
A platform-independent tool for OpenFlow controller analysis,’’ in
Proc. IEEE 15th Int. Conf. Commun. Electron. (ICCE), Aug. 2014,
pp. 182–187.

[154] Mininet Team. Mininet: An Instant Virtual Network on your Laptop
(or Other PC). Accessed: Oct. 18, 2017. [Online]. Available:
http://mininet.org/

[155] G. Gee. MiniEdit 2.2.0.1, Tech and Trains. Accessed: Oct. 18, 2017.
[Online]. Available:https://techandtrains.com/category/miniedit/

[156] J. Cheng et al., ‘‘Towards a detailed OpenFlow emulator,’’ in Proc.
17th Asia–Pacific Netw. Oper. Manage. Symp. (APNOMS), Aug. 2015,
pp. 127–132.

[157] P. Danielis et al., ‘‘Emulation of SDN-supported automation networks,’’
in Proc. IEEE 20th Conf. Emerg. Technol. Factory Autom. (ETFA),
Sep. 2015, pp. 1–8.

[158] V. Antonenko and R. Smelyanskiy, ‘‘Global network modeling based
on mininet approach,’’ in Proc. 2nd ACM SIGCOMM Workshop
Hot Topics Softw. Defined Netw., New York, NY, USA, 2013,
pp. 145–146.

[159] M.-C. Chan, C. Chen, J.-X. Huang, T. Kuo, L.-H. Yen, and C.-C. Tseng,
‘‘OpenNet: A simulator for software-defined wireless local area
network,’’ in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC),
Apr. 2014, pp. 3332–3336.

[160] NS-3. What is NS-3. Accessed: Oct. 18, 2017. [Online]. Available:
https://www.nsnam.org/overview/what-is-ns-3/

[161] R. R. Fontes, S. Afzal, S. H. B. Brito, M. A. S. Santos, and
C. E. Rothenberg, ‘‘Mininet-WiFi: Emulating software-defined wireless
networks,’’ in Proc. 11th Int. Conf. Netw. Service Manage. (CNSM),
Nov. 2015, pp. 384–389.

[162] S.-Y. Wang, C.-L. Chou, and C.-M. Yang, ‘‘EstiNet openflow network
simulator and emulator,’’ IEEE Commun. Mag., vol. 51, no. 9,
pp. 110–117, Sep. 2013.

[163] S. Y. Wang, ‘‘Comparison of SDN OpenFlow network simulator
and emulators: EstiNet vs. mininet,’’ in Proc. IEEE Symp. Comput.
Commun. (ISCC), Jun. 2014, pp. 1–6.

[164] J. Sommers, R. Bowden, B. Eriksson, P. Barford, M. Roughan, and
N. Duffield, ‘‘Efficient network-wide flow record generation,’’ in Proc.
IEEE INFOCOM, Apr. 2011, pp. 2363–2371.

[165] M. Gupta, J. Sommers, and P. Barford, ‘‘Fast, Accurate Simulation for
SDN Prototyping,’’ in Proc. 2nd ACM SIGCOMM Workshop Hot Topics
Softw. Defined Netw., New York, NY, USA, 2013, pp. 31–36.

[166] A. R. Roy, M. F. Bari, M. F. Zhani, R. Ahmed, and R. Boutaba, ‘‘Design
and management of DOT: A distributed OpenFlow testbed,’’ in Proc.
Netw. Oper. Manage. Symp. (NOMS), May 2014, pp. 1–9.

[167] B. Hurd. (2011). OpenFlow Switch Support-Model Library. [Online].
Available: https://www.nsnam.org/docs/models/html/openflow-switch.
html

[168] L. J. Chaves, I. C. Garcia, and E. R. M. Madeira, ‘‘OFSwitch13:
Enhancing NS-3 with OpenFlow 1.3 support,’’ in Proc. Workshop Ns-3,
2016, pp. 33–40.

[169] E. L. Fernandes and C. E. Rothenberg, ‘‘OpenFlow 1.3 software switch,’’
Proc. SBRC, 2014, pp. 1021–1028.

[170] J. Ivey et al., ‘‘Comparing a scalable SDN simulation framework built on
NS-3 and DCE with existing SDN simulators and emulators,’’ in Proc.
Annu. ACM Conf. SIGSIM Principles Adv. Discrete Simulation, 2016,
pp. 153–164.

[171] B. White et al., ‘‘An integrated experimental environment for distributed
systems and networks,’’ in Proc. 15th Symp. Oper. Syst. Design
Implement., Boston, MA, USA, Dec. 2002, pp. 255–270.

[172] A. Bavier et al., ‘‘Operating system support for planetary-scale network
services,’’ in Proc. 1st Conf. Symp. Netw. Syst. Design Implement., vol. 1.
Berkeley, CA, USA, 2004, p. 19.

[173] M. Berman et al., ‘‘GENI: A federated testbed for innovative
network experiments,’’ Comput. Netw., vol. 61, pp. 5–23,
Mar. 2014.

[174] A. C. Risdianto, T. Na, and J. Kim, ‘‘Running lifecycle experiments over
SDN-enabled ofTEIN testbed,’’ in Proc. IEEE 15th Int. Conf. Commun.
Electron. (ICCE), Jul. 2014, pp. 194–198.

[175] M. Suñé et al., ‘‘Design and implementation of the OFELIA FP7 facility:
The european OpenFlow testbed,’’ Comput. Netw., vol. 61, pp. 132–150,
Jan. 2014.

[176] Y. Kanaumi, ‘‘RISE: A wide-area hybrid OpenFlow network testbed,’’
IEICE Trans. Commun., vol. 96, no. 1, pp. 108–118, Jan. 2013.

[177] W.C. Chung et al., ‘‘TaiwanUniCloud: A cloud testbedwith collaborative
cloud services,’’ in Proc. IEEE Int. Conf. Cloud Eng., Mar. 2014,
pp. 107–116.

[178] J. Kang, Software-Defined Infrastructure and the SAVI Testbed. Cham,
Switzerland: Springer, 2014, pp. 3–13.

[179] T. Huang, F. R. Yu, C. Zhang, J. Liu, J. Zhang, and Y. Liu, ‘‘A survey on
large-scale software defined networking (SDN) testbeds: Approaches and
challenges,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 891–917,
2nd Quart., 2016.

[180] D. Levin, M. Canini, S. Schmid, and A. Feldmann, ‘‘Toward transitional
SDN deployment in enterprise networks,’’ in Proc. Open Netw.
Summit (ONS), 2013, pp. 1–2.

[181] D. Levin et al., ‘‘Panopticon: Reaping the benefits of incremental SDN
deployment in enterprise networks,’’ in Proc. USENIX ATC, 2014,
pp. 333–345.

[182] S. Vissicchio, L. Vanbever, and O. Bonaventure, ‘‘Opportunities and
research challenges of hybrid software defined networks,’’ ACM
SIGCOMM Comput. Commun. Rev., vol. 44, no. 2, pp. 70–75, 2014.

[183] C. E. Rothenberg et al., ‘‘Hybrid networking towards a software defined
era,’’ in Network Innovation through OpenFlow and SDN: Principles and
Design. Boca Raton, FL, USA: CRC Press, 2014.

[184] Google Inc. (2012). Inter-Data Center WAN With Centralized TE Using
SDN and OpenFlow. [Online]. Available: https://www.opennetworking.
org/images/stories/downloads/sdn-resources/customer-case-studies/cs-
googlesdn.pdf

[185] N. Feamster. (Jun. 2015). Interview With Bryan Larish. [Online].
Available: https://www.youtube.com/watch?v=gdnyIiQR0Eg

[186] R. Clark. (2015). The Software Defined Exchange—GEC 23.
[Online]. Available: http://groups.geni.net/geni/attachment/wiki/
GEC23Agenda/SDX/GT-SDX-GEC23.pdf

[187] J. Mambretti, J.-J. Chen, and F. Yeh, ‘‘Software-defined network
exchanges (SDXs) and infrastructure (SDI): Emerging innovations in
SDN and SDI interdomain multi-layer services and capabilities,’’ in Proc.
1st Int. Sci. Technol. Conf. Modern Netw. Technol. (MoNeTeC), 2014,
pp. 1–6.

[188] J. Chung et al., ‘‘AtlanticWave-SDX: An international SDX to support
science data applications,’’ in Proc. Int. Conf. High Perform. Comput.,
Netw., Storage, Anal., 2015, pp. 1–7.

[189] iCAIR. (Sep. 2016). IRNC: RXP: StarLight SDX A Software
Defined Networking Exchange for Global Science Research
and Education, Pacific Research Platform Workshop, Miami,
FL, USA. Accessed: Oct. 18, 2017. [Online]. Available:
https://www.glif.is/meetings/2016/glif-am/mambretti-starlight-sdx.pdf

[190] J. Stringer et al., ‘‘Cardigan: SDN distributed routing fabric going live at
an Internet exchange,’’ in Proc. IEEE Symp. Comput. Commun. (ISCC),
Jun. 2014, pp. 1–7.

[191] I. Monga. (2014). Software Defined Exchanges: The new SDN?. [Online].
Available: http://www.ieice.org/ nv/nvs2014/nvs2014-05-monga.pdf

[192] R. Ricci and N. Feamster, Eds., Report of the NSF Workshop on Software
Defined Infrastructures and Software Defined Exchanges. Washington,
DC, USA: SDI/SDX Workshop, Feb. 2016. [Online]. Available:
http://www.flux.utah.edu/beyond-internet-workshops/sdi/sdi-workshop-
report.pdf

25524 VOLUME 5, 2017

J. H. Cox et al.: Advancing SDNs: A Survey

[193] J. Chung, R. Clark, and H. Owen, ‘‘SDX architectures: A qualitative
analysis,’’ in Proc. IEEE SoutheastCon, Mar. 2016, pp. 1–8.

[194] B. Ager et al., ‘‘Anatomy of a Large European IXP,’’ in Proc. ACM
SIGCOMM Conf. Appl., Technol., Archit., Protocols Comput. Commun.,
2012, pp. 163–174.

[195] J. Ibarra et al., ‘‘Benefits brought by the use of OpenFlow/SDN on the
AmLight intercontinental research and education network,’’ in Proc. MI,
May 2015, pp. 942–947.

[196] NSF. International Research Network Connections (IRNC). [Online].
Available: http://www.nsf.gov/pubs/2014/nsf14554/nsf14554.htm

[197] X. Yang and T. Lehman, ‘‘Software defined services: Exchange points
(SDX) and sciencedmzs (SD-SDMZ),’’ presented at the Internet Technol.
Exchange, 2016.

[198] J. Mambretti, J. Chen, and F. Yeh, ‘‘Software-defined network
exchanges (SDXS): Architecture, services, capabilities, and foundation
technologies,’’ in Proc. 26th Int. Teletraffic Congr. (ITC), 2014, pp. 1–6.

[199] I. Baldine et al., ‘‘An advanced international distributed
programmable environment for experimental network research:
‘Slice around the world’ demonstration,’’ in Proc. Global
LambdaGrid Workshop, 2012, pp. 1–9. [Online]. Available:
http://dspace.icsy.de:12000/dspace/bitstream/123456789/418/1/
20121011-Slice-Around-the-World-Demo-GLIF.pdf

[200] A. Gupta et al., ‘‘An industrial-scale software defined internet
exchange point,’’ in Proc. 13th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2016, pp. 1–14.

[201] P. Lin et al., ‘‘A west-east bridge based SDN inter-domain testbed,’’ IEEE
Commun. Mag., vol. 53, no. 2, pp. 190–197, Feb. 2015.

[202] K. Pentikousis. (2015). Software Defined Infrastructure: The FELIX
Architecture Blueprint and Implementation Experience. [Online].
Available: http://sdn.ieee.org/images/files/pdf/Software_Defined_
Infrastructure-IEEE-SDN-Initiative.pdf

[203] S. Donovan, J. Chung, M. Sanders, and R. Clark, ‘‘MetroSDX: A resilient
edge network for the smart community,’’ in Proc. SmartEdge, Mar. 2017,
pp. 575–580.

[204] J. Griffioen, T. Wolf, and K. L. Calvert, ‘‘A coin-operated
software-defined exchange,’’ in Proc. 25th Int. Conf. Comput. Commun.
Netw. (ICCCN), Aug. 2016, pp. 1–8.

[205] R. di Lallo, M. Gradillo, G. Lospoto, C. Pisa, and M. Rimondini, ‘‘On the
practical applicability of SDN research,’’ in Proc. IEEE/IFIP Netw. Oper.
Manage. Symp. (NOMS), Apr. 2016, pp. 1–9.

[206] T. Hinrichs, N. Gude, M. Casado, J. Mitchell, and S. Shenker, Expressing
and Enforcing Flow-Based Network Security Policies, Citeseer, 2009.

[207] R. Soulé, S. Basu, R. Kleinberg, E. G. Sirer, and N. Foster, ‘‘Managing
the network with merlin,’’ in Proc. 12 ACM Workshop Hot Topics Netw.,
2013, p. 24.

[208] A. Khurshid et al., ‘‘VeriFlow: Verifying network-wide invariants in
real time,’’ presented at the 10th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2013, pp. 15–27.

[209] M. Reitblatt, M. Canini, A. Guha, and N. Foster, ‘‘FatTire: Declarative
fault tolerance for software-defined networks,’’ in Proc. 2nd ACM
SIGCOMM Workshop Hot Topics Softw. Defined Netw., 2013,
pp. 109–114.

[210] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu,
‘‘A security enforcement kernel for OpenFlow networks,’’ in Proc. 1st
Workshop Hot Topics Softw. Defined Netw., 2012, pp. 121–126.

[211] P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, ‘‘Real time network policy checking using header space
analysis,’’ presented at the 10th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), 2013, pp. 99–111.

[212] F. A. Maldonado-Lopez, E. Calle, and Y. Donoso, ‘‘Checking
multi-domain policies in SDN,’’ Int. J. Comput. Commun. Control,
vol. 11, no. 3, pp. 428–440, 2016.

[213] N. Bizanis and F. A. Kuipers, ‘‘SDN and virtualization solutions for the
Internet of Things: A survey,’’ IEEE Access, vol. 4, pp. 5591–5606, 2016.

[214] M. R. Palattella et al., ‘‘Internet of Things in the 5G era: Enablers,
architecture, and business models,’’ IEEE J. Sel. Areas Commun., vol. 34,
no. 3, pp. 510–527, Mar. 2016.

[215] S. Jontz, ‘‘Security concerns rising in the age of IoT,’’ Signal, pp. 25–28,
Mar. 2017.

[216] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and
B. Koldehofe, ‘‘Mobile Fog: A programming model for large-scale
applications on the Internet of Things,’’ in Proc. 2nd ACM SIGCOMM
Workshop Mobile Cloud Comput., 2013, pp. 15–20.

[217] A. M. Alberti and D. Singh, ‘‘Internet of Things: Perspectives, challenges
and opportunities,’’ in Proc. Int. Workshop Telecommun. (IWT), 2013,
pp. 1–6.

[218] C. P. Kruger, A. Abu-Mahfouz, and G. Hancke, ‘‘Rapid prototyping
of a wireless sensor network gateway for the Internet of Things using
off-the-shelf components,’’ in Proc. IEEE Int. Conf. Ind. Technol. (ICIT),
Mar. 2015, pp. 1926–1931.

[219] A. Mahmud, R. Rahmani, and T. Kanter, ‘‘Deployment of flow-sensors
in Internet of Things’ virtualization via OpenFlow,’’ in Proc. 3rd FTRA
Int. Conf. Mobile, Ubiquitous, Intell. Comput. (MUSIC), Jun. 2012,
pp. 195–200.

[220] D. Wu, D. I. Arkhipov, E. Asmare, Z. Qin, and J. A. McCann, ‘‘UbiFlow:
Mobility management in urban-scale software defined IoT,’’ in Proc.
IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2015, pp. 208–216.

[221] I. Ku, Y. Lu, M. Lu, F. Ongaro, R. L. Gomes, and E. Cerqueira,
‘‘Towards software-defined VANET: Architecture and services,’’ in Proc.
13th Annu. Mediterranean Ad Hoc Netw. Workshop (MED-HOC-NET),
Jun. 2014, pp. 103–110.

[222] S. Hong, R. Baykov, L. Xu, S. Nadimpalli, and G. Gu, ‘‘Towards
SDN-defined programmable BYOD (bring your own device) security,’’
in Proc. Netw. Distrib. Syst. Secur. Symp. (NDSS), Feb. 2016, pp. 1–15.

[223] D. Syrivelis et al., ‘‘Pursuing a software defined information-centric
network,’’ in Proc. Eur. Workshop Softw. Defined Netw. (EWSDN),
Oct. 2012, pp. 103–108.

[224] S. Salsano, N. Blefari-Melazzi, A. Detti, G. Morabito, and L. Veltri,
‘‘Information centric networking over SDN and OpenFlow: Architectural
aspects and experiments on the OFELIA testbed,’’Comput. Netw., vol. 57,
no. 16, pp. 3207–3221, 2013.

[225] J. Ren et al., ‘‘VICN: A versatile deployment framework for
information-centric networks,’’ IEEE Netw., vol. 28, no. 3, pp. 26–34,
May/Jun. 2014.

[226] C. Liang, F. R. Yu, and X. Zhang, ‘‘Information-centric network function
virtualization over 5G mobile wireless networks,’’ IEEE Netw., vol. 29,
no. 3, pp. 68–74, May/Jun. 2015.

[227] Y. Zhang and Y. Wang, ‘‘SDN based ICN architecture for the future
integration network,’’ in Proc. 16th Int. Symp. Commun. Inf. Technol.
(ISCIT), Sep. 2016, pp. 474–478.

[228] J. F. Monserrat, G. Mange, V. Braun, H. Tullberg, G. Zimmermann,
and Ö. Bulakci, ‘‘METIS research advances towards the 5G mobile
and wireless system definition,’’ EURASIP J. Wireless Commun. Netw.,
vol. 2015, no. 1, p. 53, 2015.

[229] D. Sahinel, C. Akpolat, M. A. Khan, F. Sivrikaya, and S. Albayrak,
‘‘Beyond 5G vision for IOLITE community,’’ IEEE Commun. Mag.,
vol. 55, no. 1, pp. 41–47, Jan. 2017.

[230] J. Erfanian and B. Daly, ‘‘5G white paper-executive version,’’ NGMN
Alliance, Frankfurt, Germany, White Paper, Dec. 2014.

[231] E. Hossain and M. Hasan, ‘‘5G cellular: Key enabling technologies
and research challenges,’’ IEEE Instrum. Meas. Mag., vol. 18, no. 3,
pp. 11–21, Jun. 2015.

[232] I. F. Akyildiz, P. Wang, and S.-C. Lin, ‘‘SoftAir: A software defined
networking architecture for 5G wireless systems,’’ Comput. Netw.,
vol. 85, pp. 1–18, Jul. 2015.

[233] N. Bhushan et al., ‘‘Network densification: The dominant theme for
wireless evolution into 5G,’’ IEEE Commun. Mag., vol. 52, no. 2,
pp. 82–89, Feb. 2014.

[234] A. M. Akhtar, X. Wang, and L. Hanzo, ‘‘Synergistic spectrum sharing
in 5G HetNets: A harmonized SDN-enabled approach,’’ IEEE Commun.
Mag., vol. 54, no. 1, pp. 40–47, Jan. 2016.

[235] X. Duan and X. Wang, ‘‘Authentication handover and privacy protection
in 5G HetNets using software-defined networking,’’ IEEE Commun.
Mag., vol. 53, no. 4, pp. 28–35, Apr. 2015.

[236] C. Chaudet and Y. Haddad, ‘‘Wireless software defined networks:
Challenges and opportunities,’’ in Proc. IEEE Int. Conf. Microw.,
Commun., Antennas Electron. Syst. (COMCAS), Oct. 2013, pp. 1–5.

[237] A. Hakiri, A. Gokhale, P. Gokhale, D. C. Schmidt, and T. Gayraud,
‘‘Software-defined networking: Challenges and research opportunities
for future Internet,’’ Comput. Netw., vol. 75, pp. 453–471, Dec. 2014.

[238] B. Schlinker. An Extension Layer That Makes it Easier to Build Complex
Networks in Mininet. Accessed: Jul. 6, 2017. [Online]. Available:
https://github.com/USC-NSL/miniNExT

[239] A. Gudipati, D. Perry, L. E. Li, and S. Katti, ‘‘SoftRAN: Software defined
radio access network,’’ in Proc. 2nd ACM SIGCOMM Workshop Hot
Topics Softw. Defined Netw., 2013, pp. 25–30.

VOLUME 5, 2017 25525

J. H. Cox et al.: Advancing SDNs: A Survey

[240] Y. Cai, F. R. Yu, C. Liang, B. Sun, and Q. Yan, ‘‘Software-defined
device-to-device (D2D) communications in virtual wireless networks
with imperfect network state information (NSI),’’ IEEE Trans. Veh.
Technol., vol. 65, no. 9, pp. 7349–7360, Sep. 2016.

JACOB H. COX, JR., received the B.S.E.E.
degree from Clemson University, SC, in 2002,
the M.S.E.C.E. degree from Duke University, NC,
in 2010, and the Ph.D. degree in ECE from the
Georgia Institute of Technology in 2017. As an
Army officer, he has served as a Cyber officer, a
Telecom Engineer, and a Signal Officer. His recent
assignments include Company Command at Fort
Gordon, GA, an Assistant Professor with USMA,
West Point, NY, and the Enterprise Operations

Chief at the South West Asia Cyber Center, Kuwait. In 2017, he joined
Soar Technology, Inc., as a Research Scientist. His research interests include
software-defined networking, network control platforms, and network
security.

JOAQUIN CHUNG received the B.S. degree
in electrics and communications engineering
and the M.S. degree in communication systems
engineering with emphasis in data networks
from the University of Panama, Panama, in
2007 and 2013, respectively. He is currently
pursuing the Ph.D. degree in electrical and
computer engineering with the Georgia Institute
of Technology, GA, under the supervision of Dr.
H. Owen and Dr. R. Clark. He is also a Fulbright

Scholar with the Georgia Institute of Technology. His research interests
include software-defined networking and network security.

SEAN DONOVAN received the B.S. degree in
computer science from the Worcester Polytechnic
Institute in 2006 and the M.S. degree in computer
science from the Georgia Institute of Technology
in 2016. He is currently a Research Scientist with
Georgia TechRNOC focusing on software-defined
networking, software-defined exchanges, and
information and communications technology in
smart cities. His previous experience includes
software engineering for networking and network

protocols.

JARED IVEY received the B.S. degree in
biomedical engineering from the Georgia Institute
of Technology in 2009, the M.S.E. degree in
software engineering from Mercer University in
2012, and the Ph.D. degree in electrical and
computer engineering from the Georgia Institute
of Technology in 2017. He is currently a Technical
Lead Engineer for software development and
maintenance of the Joint STARS platform at
Robins AFB, GA. His research interests focus on

providing scalable and reliable solutions for network simulation in SDN.

RUSSELL J. CLARK received the B.S. degree
in mathematics and computer science from
Vanderbilt University in 1987, and the M.S.
and Ph.D. degrees in information and computer
science from the Georgia Institute of Technology
in 1992 and 1995, respectively. From 1997 to
2000, he was a Senior Scientist with Empire
Technologies, a network management software
company. He is currently a Senior Research
Scientist with the Georgia Tech’s School of

Computer Science, where he engages hundreds of students each semester
in mobile development, networking, and the Internet of Things.

GEORGE RILEY received the B.S.E.E. degree
from the University of Alabama in 1972, the
M.S.C.S. degree from Florida Tech in 1996, and
the Ph.D. degree from the Georgia Tech College
of Computing in 2001. He joined the Faculty of
ECE at that time. Prior to enrolling at Tech in 1996,
he was the President and the CEO of Infoware,
Inc., andCocoaBeach Florida. From 1987 to 1996,
Infoware provided software and system design
services to the United States Air Force at Patrick

Air Force Base, FL. During that time, Infoware designed, implemented, and
deployed numerous systems in support of the missile launch activities at
Cape Canaveral Air Force Station, including a communications front-end
processor for real-time data gathering and a real-time distributed flight safety
display system. Concurrently, from 1984 to 2000, he was a Vice-President
and a Co-Owner of CAM Systems Inc., Atlanta, GA. CAM systems
developed, under his direction, a suite of PC-based software tools for
residential property management.

HENRY L. OWEN, III, received the B.S.E.E.,
M.S.E.E., and Ph.D. degrees in electrical
engineering from the Georgia Institute of
Technology in 1980, 1983, and 1989, respectively.
He joined the research faculty of the Georgia Tech
Research Institute in 1980. After completing his
Ph.D. in 1989, he joined the academic faculty.
In 1990, he took a one-year leave of absence to
conduct on site research for Alcatel, Stuttgart,
Germany. In 2000, he was involved in an Internet

security start up on a half-time basis. In 2015, he was on Sabbatical at
TU Berlin in the Internet Networking Architectures Research Group of
Dr. A. Feldmann.

25526 VOLUME 5, 2017

