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ABSTRACT A twin support vector machine (TWSVM) is an effective classifier, especially for binary data,
which is defined by squared l2-norm distance in the objective function. Since squared l2-norm distance is
susceptible to outliers, it is desirable to develop a revised TWSVM. In this paper, a new robust TWSVM
via l2,p-norm formulations was proposed, because it suppress the influence of outliers better than l1-norm
or squared l2-norm minimizations. However, the resulted objective is challenging to solve, because it is
non-smooth and non-convex. As an important work, we systematically derive an efficient iterative algorithm
to minimize the pth order of l2-norm distances. Theoretical support shows that the iterative algorithm is
effective in the resolution to improve TWSVM via l2,p-norm instead of squared l2-norm distances. A large
number of experiments show that l2,p-norm distances twin support vector machine can treat the noise data
effectively and has a better accuracy.

INDEX TERMS TWSVM, L2P-norm, robustness.

I. INTRODUCTION
In many applications in data mining and pattern recogni-
tion, support vector machine (SVM) [1]–[3] has been a vital
method for classification over the past decade. It has been
successfully applied to a broad range of fields [4]–[10]. For
the standard SVM, the main idea is to get an optimal sepa-
rating hyper plane to maximize the margin between the two
types of data sets [3], [11], [12]. An advantage of SVM is
regulating the trade-off between structural complexity and
empirical risk.

However, SVMmay not constantly satisfy real world appli-
cations. Due to the need to solve the quadratic programming
problems (QPPs) [13], the computational complexity would
be a problem. Also, SVM is not acceptable while dealing
with some special datasets, such as binary datasets [14]–[17],
imbalanced datasets [18]–[21], SVM is not acceptable. As a
result, SVM derived a set of variants.

In 2001, G. Fungand et al. proposed an algorithm
PSVM [22], two parallel planes are pushed apart as far as pos-
sible to classify points. Instead of figuring out a quadratic or a
linear equation, PSVM only need to solve a single system of
linear equations. The formulation of PSVM makes the solu-
tion of SVM fast and effectual. In 2006, O. L. Mangasarian
and E. W. Wild proposed a nonparallel plane classifier via
generalized eigenvalue (GEPSVM) [23]. The novel approach

for classification problems cuts down the requisite that
the bounding generated by SVMs is parallel in the input
space.

Different from PSVM and GEPSVM, a new nonparallel
plane classifier Twin Support Vector Machine (TWSVM)
was proposed by Jayadeva in 2007 [16]. It solves a pair of
quadratic programming problems. Each of the two quadratic
programming problems has the expression of a typical SVM,
except that not all data points are used in the constraints of
either problem at the same time.

Nevertheless, the above related works are based on squared
l2−norm distance metric, which is sensitive to outliers.
To develop a robust method, l1−norm distance metric has
been introduced in many papers [24]–[29]. The l1−norm
is more robust and sparse than l2−norm and it is the opti-
mal convex approximation of the l0−norm. l1−norm is
more suitable to optimize than l0−norm because l0−norm
is an NP-hard optimization problem [30], [31]. Particu-
larly, Newton Method for Linear Programming Twin Sup-
port Vector Machines (NLPTSVM) [38]–[40] is one such
extension. NLPTSVM uses l1−norm to improve the robust-
ness and obtains the solution by Newton–Armijo algorithm.
Instead of solving a pair of quadratic programming problems,
NLPTSVM solves just two linear equations. Consequently,
this algorithm is not only robust, but also simple and fast.
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Extensive studies have shown that l1−norm minimiza-
tions and not-squared l2−norm (l2,p−norm, 0 < p ≤ 2) min-
imizations can provide robustness for the objectives. The
l2,p−norm can better tolerate the biases caused by the outly-
ing data, especially the outliers are far from the normal data.
Also, not only l1−norm, l2,p−norm also has a better sparsity
than squared l2−norm [34]. This will allow the algorithm to
have fewer support vector points. Thus, many researches have
improved the various models through l2,p−norm distances
[33], [34]. Inspired by the above, we are immersed in the
problem of robust TWSVM on data set with outlier data
samples in this paper. In classical TWSVM, it is willing to
minimize the distance with the squared l2−norm distance.
As we know, squared l2−norm distance can expand the error
distance of samples.

Based on this recognition, we proposed a new TWSVM
objective based on l2,p−norm distance, termed as pTWSVM,
as a robust SVM classifier. The new method solves a pair of
quadratic programming problems, both of which are formu-
lated using the l2,p−norm. It is interesting from a number of
perspectives as follows:

1) The resulted objective is based on the p− th order of the
l2−norm distance, which is more comprehensive than con-
ventional TWSVM. The conventional TWSVM is a special
case of this new method when p = 2.
2) Compared with TWSVM, our new method is more

robust against outlier data samples. It provides a robust alter-
native to TWSVM.

3) The resulted objective of the proposed pTWSVM is
difficult for us to solve, because the formulation is non-
smooth and non-convex. To solve this problem, we present
an efficient and simple iterative algorithm, which is proved
to find a local optimal solution.

4) Extensive empirical evaluations demonstrate the new
method outperforms related state-of-art methods on various
data sets.

The remaining content of this paper is organized as
follows.

In Section II, we briefly introduce the related work.
In Section III, we dwell on our theoretical work for the
new method in detail, including the improvement and related
proof. Section IV is about the extension of nonlinear kernel.
The experimental results are presented in Section V. Finally,
Section VI summarizes this paper.

II. RELATED WORK
In this paper, the vectors are all column vectors. A row vector
will be defined by transposing a column vector via a prime
superscript T . Suppose there arem data points belongs to two
classes. Let the positive class patterns to be denoted by a set of
m1 row vectors Ai (i = 1, 2 . . .m1) in the n-dimensional real
space Rn. Also, the negative class patterns are denoted by row
vectors Bi (i = 1, 2 . . .m2). The n denotes the dimension of
the data. For any matrix M , the i− th row, j− th column are
denoted by mi, mj respectively. The squared l2−norm of this

matrix is defined as :

‖M‖2 =
n∑
i=1

√√√√ m∑
j=1

m2
ij =

n∑
i=1

∥∥∥mi∥∥∥1
2

Therefore, the widely used squared l2−norm can be
defined as:

‖M‖22 =
n∑
i=1

m∑
j=1

m2
ij =

n∑
i=1

∥∥∥mi∥∥∥2
2

The l2−norm can be generalized to the p− th order
l2−norm (l2,p−norm)

‖M‖p2 =
n∑
i=1

m∑
j=1

mpij =
n∑
i=1

∥∥∥mi∥∥∥p
2

However, when 0 < p < 1, the l2,p−norm is not a valid
matrix norm because it does not satisfy the triangle inequality
for norms. Still, we call it norms for convenience in this paper.
In addition, e1 and e2 are vectors of ones of appropri-

ate dimension. I denotes the identity matrix of arbitrary
dimension.

A. GEPSVM
The proximal support vector machine via generalized eigen-
values(GEPSVM) [23] is a great classifier for binary classi-
fication problems, which is based on the squared l2− norm
distance metric. The goal of GEPSVM classifier is to obtain
two nonparallel planes

xw1
+ b1 = 0 and xw2

+ b2 = 0. (1)

so as to minimize the Euclidean distance of the planes from
two type data points respectively. In order to minimize the
Euclidean distance for each plane, we need to solve the
following optimization problem:

min
w1,b16=0

∥∥Aw1
+ e1b1

∥∥2∥∥Bw1 + e2b1
∥∥2 (2)

where w1, b1 6= 0 and the ‖·‖ denotes the l2−norm. To get
a stable solution and to avoid singular, we always introduce
a regularization term. This formulation can be converted to
Rayleigh Quotient problem as follows:

min
z 6=0

zTGz
zTHz

(3)

where G and H are symmetric matrices in real space
R(n+1)×(n+1) and z presents the classification plane. The G,
H and z are defined as:

G = [Ae]T × [Ae]

H = [Be]T × [Be]

z = [w1, b1]T (4)
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The solution of formulation (3) is obtained by solving
the generalized eigenvalue problem via the properties of
Rayleigh Quotient [23], [35].

Gz = µHz, z 6= 0. (5)

It’s easy to get the minimum objective value of formulation
(2) when z is the value of the eigenvector corresponding to
the smallest eigenvalue µ. Therefore, we can obtain the plane
xw1
+b1 = 0, which is close to patterns of positive class and

far away from patterns of negative class. And vice versa, we
can get another one by the same method.

B. TWSVM
Suppose we have data points of n-dimensional belonging to
two classes represented by matrices A and B respectively.
TWSVM [16] devotes to obtaining two nonparallel hyper
planes, each plane is as close as possible to one type points
and as far as possible to the rest.

The result of TWSVM can be obtained by solving the
following pairs of quadratic programming problems such
that:

min
w1,b1,q

1
2

∥∥∥Aw1
+ e1b1

∥∥∥2 + c1eT2q

subjectto −
(
Bw1
+ e2b1

)
+ q ≥ e2, q ≥ 0 (6)

min
w2,b2,q

1
2

∥∥∥Bw2
+ e2b2

∥∥∥2 + c2eT1q

subjectto −
(
Aw2
+ e1b2

)
+ q ≥ e1, q ≥ 0 (7)

where c1, c2 > 0 are parameters. The two nonparallel planes
are obtained by w1, b1,w2, b2:

XTw1
+ b1 = 0 and XTw2

+ b2 = 0 (8)

We can classify a new data point by comparing its geometrical
margin to the two planes respectively.

III. P-ORDER TWIN SUPPORT VECTOR MACHINE
A. OPTIMIZATION ALGORITHM TO THE
PROPOSED METHOD
It clearly demonstrates that the squared l2−norm distance in
the formulation of TWSVM. However, the squared l2−norm
distance may be not satisfied for the problem. The result
we obtained could be affected by the outliers pronouncedly.
That is, p − th order l2−norm is a proficient method to
replace squared l2−norm distance. If we can find appropriate
value of p, the algorithm will emphasize normal data points
and repress outlier data points best. Assuming the squared
distance is a benchmark, if p < 2, the distance between data
points will be shortened and the influence of outlier data
samples will be alleviated. The paper holds the notion that
the best value of p is determined by the percentage of outlier
data points. In fact, smaller p value means sparser representa-
tion, and using l2,p−norm can find sparse solutions than the
widely used squared l2−norm [33]. The experimental results

in [42] have demonstrated that l2,p−norm does obtain sparser
solutions than squared l2−norm and l2,1−norm.

Thus, the exact formulation of p − th order l2−norm
TWSVM is

min
w1,b1,q

1
2

∥∥∥Aw1
+ e1b1

∥∥∥p + c1eT2q

subject to −
(
Bw1
+ e2b1

)
+ q ≥ e2, q ≥ 0 (9)

min
w2,b2,q

1
2

∥∥∥Bw2
+ e2b2

∥∥∥p + c2eT1q

subject to −
(
Aw2
+ e1b2

)
+ q ≥ e1, q ≥ 0 (10)

The Lagrange corresponding to formulation (9) is given by:

L
(
w1, b1, q, α, β

)
=

1
2

∥∥∥Aw1
+ e1b1

∥∥∥p
2
+ c1e

T
2q

+αT
[
Bw1
+ e2b1−q+e2

]
− βTq

(11)

where α and β are the vectors of Lagrange multipliers.
Obviously, the formulation (11) involves l2,p−norm regu-

larization. Hence it is hard to derive the solution directly. To
address this issue, we make a good idea, which is splitting the
distance

∥∥Aw1
+ e1b1

∥∥p
2 to squared and (p− 2)th order:∥∥∥Aw1

+ e1b1
∥∥∥p
2
=

∥∥∥Aw1
+ e1b1

∥∥∥p−2
2

∥∥∥Aw1
+ e1b1

∥∥∥2
2

(12)

We use S to denote the (p− 2) th order term such that

S =
∥∥∥Aw1

+ e1b1
∥∥∥p−2
2

. (13)

The corresponding Lagrange function can be written as:

L
(
w1, b1, q, α, β

)
=

1
2
S
∥∥∥Aw1

+ e1b1
∥∥∥2
2
+ c1eT2q

+αT
[
Bw1
+ e2b1 − q+ e2

]
− βTq

(14)

The Karush-Kuhn-Tucker (K.K.T) [13] necessary and suffi-
cient optimality conditions for the problem are given by

∂L

∂w1 = SAT
(
Aw1
+ e1b1

)
+ BTα = 0 (15)

∂L

∂b1
= SeT1

(
Aw1
+ e1b1

)
+ eT2α = 0 (16)

∂L
∂q
= c1e2 − α − β = 0 (17)

∂L
∂α
= −

(
Bw1
+ e2b1

)
+ q− e2 ≥ 0 (18)

∂L

∂β
= q ≥ 0 (19)

αT
(
Bw1
+ e2b1−q+e2

)
= 0 (20)

βTq = 0 (21)

α ≥ 0, β ≥ 0 (22)
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According to α ≥ 0, β ≥ 0, c1e2−α − β = 0, we have

0 ≤ α ≤ c1 (23)

We define

H = [Ae1] , G = [Be2] , u = [w1, b1]
T

(24)

With these notations, (13) may be rewritten as

S = ‖Hu‖p−22 . (25)

Combining (15) and (16) leads to

S
[
AT eT1

]
[A e1]

[
w1, b1

]T
+

[
BT eT2

]
α = 0. (26)

For convenience, we can rewrite (26) as following:

SHTHu+ GTα = 0, (27)

i.e.,

u = −
(
1
S
HTH

)−1
Gα. (28)

Although SHTH is always positive semi-definite, it is pos-
sible that it may not be well conditioned in some situations.
So the problem can be regularized by introducing a regular-
ization term as follows:

u = −
(
1
S
HTH+ εI

)−1
Gα, (29)

where ε > 0 and I is an identity matrix of appropriate dimen-
sions.

Using the Lagrange function and the K.K.T. conditions
above, we obtain the Wolfe dual of l2,p−norm TWSVM as
follows:

min
α

1
2
αTG

(
1
S
HTH

)−1
GTα − eT2α

0 ≤ α ≤ c1 (30)

Similarly, another dual is obtained as:

min
γ

1
2
γ TP

(
1
S
QTQ

)−1
PTγ − eT1γ

0 ≤ γ ≤ c2 (31)

We can obtain the optimal u via an iterative algorithm.
S is calculated with the current calculated α. The iteration
is started with an initialized u and repeated until the objective
converges. The u and S are re-changed adaptively during each
iteration.

Anther one is similarly like the process above.
Before performing the experiments, we first analyze the

difference between our new algorithm and TWSVM and
NLPTSVM. It is clear to see that when p = 2, pTWSVM
is equivalent to TWSVM. That is, TWSVM is actually a
special case of pTWSVM. When p = 1, pTWSVM is
TWSVM based on l1−norm. However, it is not the same
as Newton Method for Linear Programming Twin Support
Vector Machines (NLPTSVM) because of the objectives.

Algorithm 1 The Algorithm to Solve the Problem

Input : Training data A ∈ Rm1×n,B ∈ Rm2×n, parameter
p, c1, c2.
Give out H ∈ Rm1×(n+1)G ∈ Rm2×(n+1)I ∈ R(n+1)×(n+1).
Initialize u ∈ R(n+1)×1.
Until objective converges, do

1. Calculate S =
∥∥HuT∥∥p−22 ;

2. Calculate α via dual function;
3. Update u, add regularization term if necessary;

End
Output u ∈ R(n+1)×1.

NLPTSVM introduces the regularization terms in the objec-
tive to alleviate over-fitting problem. Besides, although both
pTWSVM and NLPTSVM are iterative algorithms, their
processes are different. Different from NLPTSVM, whose
solution is obtained by solving a pair of dual exterior
penalty problems as unconstrained minimization problems
using Newton–Armijo algorithm, pTWSVM solves a pair of
quadratic programming problems.

B. CONVERGENCE ANALYSIS
To prove the convergence of the new algorithm, we need the
following useful lemma which has been proved in [34]:
Lemma 1: For any nonzero vectors u, v, when 0 < p ≤ 2,

the following inequality holds:

‖u‖p2 −
p
2
‖v‖p−22 ‖u‖22 ≤ ‖v‖

p
2 −

p
2
‖v‖p−22 ‖u‖22 (32)

Theorem 1: This algorithm can monotonically decrease the
objective of the problem (9) in each iteration and make the
objective function value converge to a local optimum.

Proof: Recall the formulation of our new method

J (u) = min
w1,b1,q

1
2
‖Hu‖p + c1eT2q

subject to − (Gu)+ q ≥ e2, q ≥ 0. (33)

Formulation (33) is equivalent to formulation (9) and let J
represent the objective value. Suppose ũ is the solution of the
(t + 1)th iteration of the algorithm:

ũ = arg min
w1,b1,q

1
2
‖Hu‖p + c1eT2q

= arg min
w1,b1,q

1
2
S ‖Hu‖2 + c1eT2q.

Note that S = ‖Hu‖p−22 , so we have

1
2
‖Hu‖p−22 ‖Hũ‖

2
+ c1eT2q ≤

1
2
‖Hu‖p−22 ‖Hu‖

2
+ c1eT2q

H⇒
1
2
‖Hu‖p−22 ‖Hũ‖

2
≤

1
2
‖Hu‖p−22 ‖Hu‖

2

H⇒
p
2
‖Hu‖p−22 ‖Hũ‖

2
≤

p
2
‖Hu‖p−22 ‖Hu‖

2
(34)

According to Lemma 1, we have

‖Hũ‖p2 −
p
2
‖Hu‖p−22 ‖Hũ‖22 ≤ ‖Hu‖

p
2−

p
2
‖Hu‖p−22 ‖u‖22 .

(35)
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Combining (34) and (35) leads to

‖Hũ‖p2 ≤ ‖Hu‖
p
2

H⇒
1
2
‖Hũ‖p2 + c1eT2q ≤

1
2
‖Hu‖p2 + c1eT2q

H⇒ J(ũ) ≤ J(u). (36)

Thus, in each iteration, the algorithm decrements the objec-
tive function monotonically until the algorithm converges.

C. TIME COMPLEXITY
To optimize the objective function of pTWSVM, the most
time consuming operation is to solve the pair of quadratic pro-
gramming problems. In general, each QPP of the PTWSVM
focuses on only about half of the data compared to traditional
support vector machines. This is the same as conventional
TWSVM. Thus, the complexity of each iteration is about
(m/2)3. The next section has experimentally demonstrated
that the pTWSVM only needs to iterate three or four times
to converge. Therefore, the full pTWSVM complexity will
not be more than 4×

(
2× (m/2)3

)
= m3. It is comparable to

the traditional SVM.

IV. THE NONLINEAR KERNEL CLASSIFIER
In order to extend our method to nonlinear classifiers, we
modify the new algorithm by the kernel method [36], [37].
We consider the kernel-generated surfaces for TWSVM
instead of planes as follows:

K
(
xT,CT

)
u1 + b1 = 0, and K

(
xT,CT

)
u2 + b2 = 0

(37)

where CT
= [A B]T and K is an appropriately chosen kernel.

Note that if the K is a linear kernel like K
(
xT,CT

)
= xTC,

it will degenerate into an ordinary plane.
We construct an optimization objective KPTWSVM as

follows:

min
w1,b1,q

1
2

∥∥∥K (A,CT
)
w1
+ e1b1

∥∥∥p + c1eT2q

subject to −
(
K
(
B,CT

)
w1
+ e2b1

)
+ q ≥ e2, q ≥ 0

(38)

where c1 > 0 is a parameter. Next, we define a Lagrange
function L corresponding to the above:

L
(
w1, b1, q, α, β

)
=

1
2

∥∥∥K (A,CT
)
w1
+ e1b1

∥∥∥p
2
+ c1e

T
2q

+αT
[
K
(
B,CT

)
w1
+ e2b1−q+e2

]
−βTq (39)

To solve the problem, we split the distance into two parts such
that:∥∥∥K (A,CT

)
w1
+ e1b1

∥∥∥p
2

=

∥∥∥K (A,CT
)
w1
+ e1b1

∥∥∥p−2
2
·

∥∥∥K (A,CT
)
w1
+ e1b1

∥∥∥2
2

(40)

In formulation (40),
∥∥K (A,CT

)
w1
+ e1b1

∥∥p−2
2 can be repre-

sented by S. The Lagrange function is updated as follows:

L
(
w1, b1, q, α, β

)
=

1
2
S
∥∥∥K (A,CT

)
w1
+e1b1

∥∥∥2
2
+ c1eT2q

+α
[
K
(
B,CT

)
w1
+ e2b1−q+e2

]
−βq (41)

We obtain the following K.K.T. conditions for KPTWSVM
as follows:

∂L

∂w1 = SK
(
A,CT

)T [
K
(
A,CT

)
w1
+ e1b1

]
+K(B,CT)

T
α = 0 (42)

∂L

∂b1
= SeT1

[
K(A,CT)w1

+ e1b1
]
+ eT2α = 0 (43)

∂L

∂q
= c1e2 − α − β = 0 (44)

∂L

∂α
= −

[
K
(
B,CT

)
w1
+ e2b1

]
+ q− e2 ≥ 0 (45)

∂L

∂β
= q ≥ 0 (46)

αT
[
K(B,CT)w1

+ e2b1 − q+ e2
]
= 0 (47)

βTq = 0 (48)

α ≥ 0, β ≥ 0 (49)

Combining (42) and (43), we arrive at

S

[
K
(
A,CT

)T
eT1

] [
K
(
A,CT

)
e1
] [

w1, b1
]T

+

[
K(B,CT)

T
eT2
]
α = 0 (50)

Let

E =
[
K(A,CT)

T
eT1
]
, R =

[
K(B,CT)

T
eT2
]

(51)

and the augmented vector u =
[
w1, b1

]T
. Then the formula-

tion can be rewritten as:

SETEu+RTα = 0 (52)

i.e.

u = −
1
S
(ETE)

−1
RTα (53)

The Wolfe dual of KPTWSVM is given by

min
α

1
2
·
1
S
αTR

(
HTH

)−1
RTα + eT2α

0 ≤ α ≤ c1 (54)

In a similar manner, another KPTWSVM kernel-generated
surface can be obtained by solving a new dual function.

Once the two KPTWSVM problems are solved, a new data
point can be classified in a manner similar to the linear case.

In the actual experiments, if the number of patterns is
large, then the rectangular kernel technique can be used to
reduce the dimensionality of KPTWSVM. In the linear case,
a regularization term is always being useful.
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V. EXPERIMENTAL RESULTS
In this section, experiments are conducted to evaluate the per-
formance of our new method. We first compare the conven-
tional TWSVM and pTWSVM on the artificial data set. Then
we compare the pTWSVM with four widely used classifiers
on several diverse public data sets. We also study the effect
of the change in the value of p on the experimental results.
And following this, experiments on robustness are displayed.
Finally, analysis of iteration is reported.

A. BINARY DATA
In this subsection, a toy experiment is presented to show
the difference between the traditional TWSVM and our new
method. A simple data set was constructed by several points
distributed on y = x and y = −x+ 10 respectively. The two
classes of points are strictly binary data. In a two-dimensional
Cartesian coordinate system, each of them need two lines
perpendicular. The data set is strictly distributed on the two
lines and has no noise. Although pTWSVM is committed
to improving the robustness of TWSVM, it should have the
same accuracy as TWSVM in the case of no noise. Moreover,
since there is no noise, the algorithm only need to iterate once
to achieve the final convergence results. Recovered images
of Fig.1 show the classification surfaces of TWSVM and
pTWSVM, respectively. Also, the binary dataset has been
displayed as points in the images.

FIGURE 1. Binary data experiments pictures.

It is suggested that the two algorithms have a good classifi-
cation effect on binary data sets and the classification surfaces
are almost the same in Fig.1, and the result is in line with our
expectations conjecture.

In order to introduce the outliers, we simulate some of the
data points that shifted their original distribution, and mark
these points with boxes. Afterwards, the same experiments
will be carried out again to observe the difference between
the obtained classification. The new data set and the classifi-
cation surfaces of two methods are displayed in Fig.2.

From the Fig.2 we can find that the classification sur-
faces of TWSVM and pTWSVM are similar in terms of
structure, and pTWSVMprovides a better classification. This
proves that pTWSVM ismuch less susceptible to outliers than
TWSVM, and has good robustness.

FIGURE 2. Binary data with noise experiments pictures.

TABLE 1. Data sets descriptions.

B. COMPARISON OF ACCURACY
In this subsection, several diverse public data sets are col-
lected to compare the performance of different classifica-
tion algorithms. The descriptions of the datasets are given
in table 1. All the data sets are selected from the UCI
Repository [41].

For fairness, a linear kernel is used in every comparison
algorithm. We compare our algorithms with some of the
widely used algorithms, including original TWSVM, SVM,
GEPSVM, L1GEPSVM [28] and the latest NLPTSVM.
To check the statistical significance of the new method,
we perform the paired t-tests comparing these methods to
our new method. The significant difference from pTWSVM
based on p-value < 0.05. The p-value<0.05 indicates a
great difference between two classification accuracy values
appears. The 10-fold method was used to obtain the best
parameters for each algorithm and the p value for pTWSVM.
And all the parameters except p value are obtained over
the range

(
2i|i = −7,−6, . . .+ 7

)
. We present the average

accuracy, time and the standard deviation in TABLE 2. The
best performance on different datasets is shown in bold.

Form table2 we can find that pTWSVM performs best
on the vast majority of data sets compared to several other
algorithms. Comparing pTWSVM with TWSVM alone, we
know that pTWSVM is always more accurate than TWSVM
classification, although it is not on a very individual data
set, with only a difference of less than 0.1%, which can be
ignored. This situation can be explained that TWSVM is
a special case of pTWSVM. When the parameter p of the
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TABLE 2. Test set accuracy with a linear kernel (average ± standard deviation).

pTWSVM is fixed to 2, the pTWSVM is transformed into
TWSVM. Results from our toy experiment show that when
p = 2, the hyper-planes obtained by pTWSVM are the same
as that of TWSVM, and only loop once. In theory, when
p is not fixed in 2, the pTWSVM provides more parameter
selections to optimize the algorithm. In addition, from the
table2, we can find the standard deviation of the new method
is always smaller than the standard deviation of othermethods
for most data sets. This implies that our proposed newmethod
has better robustness and our algorithm has higher stability,
which is in line with our expectations.

Clearly, the many corresponding p-values in Table2 are
less than 0.05, i.e., the accuracies of pTWSVM are obvi-
ously greater than those of the other classifiers on most
datasets. For example, the p-values of the tests comparing
pTWSVMwith NLPTSVM on ionodata and monk3 data sets

are 0.0121 and 0.0240 respectively, leading us to conclude
that pTWSVM is significantly better than TWSVM on the
two data sets. This also appears in SVM. Besides, we observe
that in some data sets, pTWSVM does not have the highest
accuracy. For example, the accuracy of L1GEP on australian
and cancer. However, the p-values of the t-tests comparing
pTWSVM with them on these data sets are, respectively,
0.6857 and 0.6237, which leads us to conclude that there
is not a great difference between them in statistically sig-
nificant. The p-values of t-tests also prove that there are
significant differences between pTWSVM and NLPTSVM
on four data sets.

When concerning the computational cost shown in Table 2,
it is to be noted that NLPTSVM is always faster than
pTWSVM. This can be explained from their formula-
tions. Although they are both iterative algorithms based on
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traditional TWSVM, but pTWSVM solves the quadratic pro-
gramming problems (QPPs), NLPTSVM solves the linear
programming problems (LPPs).

The experimental results indicate that pTWSVM is not
only effective, but also can be a better choice for most
data sets.

C. STUDY THE p VALUE OF THE NEW PROPOSED METHOD
The new method arises a problem of value of p. Considering
the objective function, we hold the notion that the p value
is under the influence of outliers. In order to get a higher
accuracy, the greater proportion of noise, the smaller value
of p, and vice versa. Formula (9) perspicuously indicates that
p value directly affects the result of the objective. Splitting the
formulation into two parts: the functional margin of outlier
data points and the functional margin of normal data points.
The role of p value is to emphasize the proportion of the
two parts. In summary, we hold the notion that the parameter
p value can directly affect experiment accuracy.

We experiment on australian, sonar, spect and several other
benchmark data sets as examples. In order to measure the
effect of p on accuracy, we set the remaining parameters
to a specific value c1 = c2 = 1. Then we record the
accuracy of the different p values. We vary p of the proposed
objective in the range of 0.1 to 2 to study its impacts to the
classification performance. Through the experimental data,
we simulate the corresponding correct rate curve. All the
records are presented in Fig.3.

FIGURE 3. Accuracy with different p value.

Fig. 3 shows that the determination of p is strongly related
to the specific dataset. We can find two conclusions in
the figure 3: one is, when the p value is too small, the

classification accuracy is not very stable; another is, when the
p value is between 1.0 to 1.2, pTWSVM always have a very
good performance. Above mentioned can be explained from
three aspects. Firstly, when p is small, the value of S could be
so extremely big that the value of the objective function is not
accurate. Next, the regularization is set to 1e−7, it may have
an effect on the calculation results for singularity problems.
Lastly, the data distribution and numerical size of the data set
can affect the calculation process. However,When the p value
is a little larger, these problems will be greatly alleviated and
the classification performance will rise and stabilize.

In order to have a better accuracy, we have adopted
a strategy that the most appropriate p is selected from
{0.1, 0.2 . . . 2.0} through 10-fold cross validation.

D. CONVERGENCE STUDY OF SOLUTION ALGORITHM
As the proposed algorithm is an iterative algorithm, an impor-
tant issue is the convergence property of our new method.
In the previous chapter, we have rigorously proved its conver-
gence in theory, and now we study its convergence from the
experiment empirically. We experiment on several data sets
and the p value is fixed. The objective values of our proposed
algorithm on the four data sets in each iteration are plotted in
the Fig. 4.

FIGURE 4. Number of iterations vs. the objective value difference.

Fig.4 shows that the objective values of our new proposed
algorithm keep to decrease along with the iterative processes.
Moreover, the algorithm typically converges to the asymptote
within five times for each data set, which means that the algo-
rithm is computationally and temporally feasible. Upon these
experimental results, we set a stopping threshold of 10−5 in
our experiments, which is sufficient to achieve satisfactory
results in terms of convergence.
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TABLE 3. Test set accuracy with 20% noise (average ± standard deviation).

E. ROBUSTNESS AGAINST NOISE SAMPLES
Since the main advantage of the new proposed pTWSVM
algorithm dedicated to process noisy samples, we will focus
on the processing of the data sets with outliers in the following
experiments.

To emulate the outlier data samples, given the input data
set X = [x1, . . . , xn] ∈ Rm×n, we corrupt it by a noise
matrix X̃ ∈ Rd×n whose elements are i.i.d. standard Gaussian
variables. Then we carry out the same learning and clustering
procedures on X + σ X̃ as those on the original data, where
δ = nf ‖X‖F∥∥∥X̃∥∥∥

F

and nf is the given noise factor. In all our experi-

ments, we set nf = 0.1. We compare our new method against
other methods as before and report the classification results
in Table3.

As is shown in Table3, in the case of adding the same noise,
the new proposed pTWSVM demonstrates its strong robust-
ness. pTWSVM exhibits the highest classification accuracy
on different data sets. Comparing with the classification
results when no noise is added, it is also suggested that
the pTWSVM classification accuracy is reduced in each
algorithm. Also, we note that in these five data sets, which
pTWSVM does not have the best accuracies, the correspond-
ing p-values are 3.41e-5, 0.1662, 0.5161, 0.5593, 0.0920
respectively. The five p-values have only one less than 0.05,
which means that the other four do not show any significant
difference in statistical significance.

The differences in the accuracy of each algorithm will be
obtained by contrasting with the performances of the original

data and contaminated data. To get a deep association, we
take a different η value in experiments. The following pictures
summarizes the performance of different algorithms on some
benchmark datasets with different values of η.

FIGURE 5. Accuracy with different noise factor value.

From the Fig.5, we can get the following points:
Firstly, the proposed pTWSVM method is consistently

better than the TWSVM method on the experimental data
sets, which demonstrate that the proposed method is able to
effectively improve the clustering accuracy on noisy data with
outlier data samples. This also shows that the new pTWSVM
method in the practical application can achieve better results.

Secondly, no matter what the noise factor value is,
the accuracy of pTWSVM is always higher than that of
TWSVM. Although the improvements by the pTWSVM
method over the comparative methods on the original
benchmark data sets without noise are mediocre as shown
in Table2, the improvements by our new method of the
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contaminated data with outlier data samples are consider-
ably larger. For example, on the heart data set with out-
liers, the average pTWSVM accuracy of different η value
is 0.7481, and TWSVM accuracy is 0.6633. So our pro-
posed method improves the clustering accuracy over the
TWSVM method by 12.78% = (0.7481− 0.6633)/0.6633.
In contrast, the improvement of clustering accuracy on
the same data set under the noiseless condition is about
4.47% = (0.8667− 0.8296)/0.8296. The same situation can
be seen on all the other experimental data sets, which show
that the proposed method has better capability to cluster on
contaminated data.

Finally, the pictures show that the change in accuracy
of pTWSVM is flat and does not change much, which
clearly indicates that the new proposed pTWSVM method is
faster and easier to stabilize than original TWSVM method.
The feature confirms pTWSVM method’s robustness against
outlier data samples.

VI. CONCLUSIONS
We have proposed a robust TWSVM based on the l2,p−norm
distance, which formulated a non-smooth and non-convex
minimization problem. Comparing to the squared l2−norm
distance, the l2,p−norm TWSVM has better accuracy and
it is very robust against outlying data samples. The new
method takes much more challenging optimization problem
than that in the traditional TWSVM. To solve the problem,
we introduced an efficient iterative algorithm and provided
the rigorous theoretical analysis of the convergence of our
algorithm.

There are still several directions to investigate in the
future. First, the problem of dealing with the singularity.
It is addressed by regularization in our study. Second, during
each iteration, if the p value is too small, such as 0.1,0.2,
then the S value will become very large. This would lead
to not accurate. Finally, deciding the values of parameters is
still an open problem, whereas, has not been solved in many
algorithms as well.
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