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ABSTRACT The corpus callosum (CC) is a set of neural fibers in the cerebral cortex, responsible for
facilitating inter-hemispheric communication. The CC structural characteristics appear as an essential
element for studying healthy subjects and patients diagnosed with neurodegenerative diseases. Due to its
size, the CC is usually divided into smaller regions, also known as parcellation. Since there are no visible
landmarks inside the structure indicating its division, CC parcellation is a challenging task and methods
proposed in the literature are geometric or atlas-based. This paper proposed an automatic data-driven CC
parcellation method, based on diffusion data extracted from diffusion tensor imaging that uses theWatershed
transform. Experiments compared parcellation results of the proposed method with results of three other
parcellationmethods on a data set containing 150 images. Quantitative comparison using the Dice coefficient
showed that the CC parcels given by the proposedmethod has amean overlap higher than 0,9 for some parcels
and lower than 0,6 for other parcels. Poor overlap results were confirmed by the statistically significant
differences obtained for diffusion metrics values in each parcel, when using different parcellation methods.
The proposed method was also validated by using the CC tractography and was the only study that proposed
a non-geometric approach for the CC parcellation, based only on the diffusion data of each subject analyzed.

INDEX TERMS Diffusion tensor imaging, image processing, image segmentation, magnetic resonance
imaging.

I. INTRODUCTION
The corpus callosum (CC), also known as the callosal com-
missure, with the largest amount of white matter in the brain,
is a set of neural fibers in the cerebral cortex, responsible
for connecting both brain hemispheres and improving inter-
hemispheric communication [1]. The CC has topographic
fibers organization related to the brain cortex regions [2].

The CC structural characteristics appear as important ele-
ments for studying not only aging, gender differences [3]
and laterality [4], but also diseases such as autism [5],
depression [6], and obesity [7]. The CC analysis is
also recurrent step in neurodegenerative diseases studies,
such as Alzheimer’s [8], schizophrenia [9], epilepsy [10],
dyslexia [11] and multiple sclerosis [12].

Due to its size, the CC is usually divided into smaller
regions according to its fibers organization. Each region may
be associated with a particular area of the cortex, which is

related to specific brain functions. The region containing the
CC splenium and body includes fibers of the prefrontal cor-
tex (F) (Fig. 1a). The CC genu is a narrow region including the
motor (M), somatosensory (Ss) and auditory (A) cortex. The
area between the CC isthmus and the rostrum contains fibers
that connect the parietal lobe with the perisylvian zone (P/T),
related to language processes. While the CC posterior part is
located the rostrum, which contains the fibers of the visual
and parietal lobe (V), responsible for the spatial information
interpretation [13].

The callosal fibers that interconnect the primary sensori-
motor regions (III) are large and stronglymyelinated, whereas
the callosal fibers that interconnect associative areas are small
and not myelinated (I) (Fig. 1b). The highest density of the
large fibers is found in the CC body of (III and IV), for the
motor, somatosensory and auditory cortices, and CC poste-
rior splenius (V) for the visual cortex. However, the highest
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FIGURE 1. CC scheme divisions, identifying different regions for: (a) brain
cortical area connections in the anteroposterior direction, with F: frontal,
M: motor, Ss: somatosensory, A: auditory, P / T: temporal parietal and
V: visual; (b) Distribution of the CC axial fibers according to their
diameter: (I) rostrum, (II) genu, (III) body, (IV) isthmus and (V) splenium.
Adapted from [13].

fibers density is found in the CC genu and anterior splenius
(I, II), associated with temporoparietal and prefrontal brain
areas [14].

Between its functions, the CC facilitates interactions for
perceptual and cognitive information, being essential for per-
forming visual and tactile tasks. The fibers that cross the CC
anterior portion are necessary for the realization of manual
movements. While the fibers that cross the CC posterior
portion have an important role in the brain visuospatial and
visual integration, besides being important in social, attention
and emotional functions [14].

This CC subdivision into smaller fractions is called parcel-
lation. As there are no visible landmarks that allow the CC
subdivision in the midsagittal plane, geometrical parcellation
methods have already been proposed, taking into account
postmortem analyzes, based on the study of cerebral histol-
ogy [15]. Subsequently, studies with brain fiber composition
analyzed in microscope were done, revealing a pattern capa-
ble of differentiating the CC regions [1].

The CC parcellation using medical imaging analysis is
also relevant since it is a necessary step to CC area and size
studies [3], [16], [17], and because it helps to analyze internal
CC properties [18]–[20], as well as human cerebral connec-
tivity [21], [22]. However, existing CC parcellation methods
can be classifed as geometric approaches, as they propose the
CC parcellation obeying specific proportions, in relation to
the CC length, applied in the same way to all dataset, not
taking into account the variability among subjects.

One of themost relevant visualization and analysis tool that
supports the study of the cerebral anatomy is the Magnetic
Resonance Imaging (MRI). It is often used for brain struc-
tures analysis, offering a better contrast between soft tissues
when compared to other medical images [23]. One modality
of MRI is the diffusion tensor imaging (DTI), known to be

sensitive to the randommotion of water molecules, and being
able to quantify the water diffusion in biological tissues [24].
Since the CC presents well-oriented fibers perpendicular to
the midsagittal plane, DTI generates good contrast between
CC and other cerebral structures [1].

However, automatic image-based CC parcellation is chal-
lenging even for specialists since there are no visible land-
marks indicating where it should be subdivided. Moreover,
since there is no gold standard nor evaluation metrics, it is
very difficult to verify the quality of methods already estab-
lished. and to validate new methods.

TABLE 1. Existing CC parcellation methods.

There are in the literature seven automatic image-
based CC parcellation approaches (Table 1), all based on
DTI [19], [25]–[30], and one based on a postmortem brain
study. Six works use the tractography to parcellate, which
is a method of representing the fibers of the cerebral cortex
trough diffusion data [31]. None of these studies present com-
parisons between proposed methods or quantitative results.

The objective of this work is to propose an automatic
CC parcellation method using diffusion properties extracted
from DTI. The CC parcellation proposed is based on the
previously developed method by Rittner [29], which uses the
Fractional Anisotropy (FA) map and theWatershed transform
from markers. Among all seven image-based CC parcellation
methods, the Rittner approach was the only study that pro-
posed a non-geometric analysis for the CC parcels, based only
on the diffusion data of each subject analyzed. It presented
good initial results, however it was tested on a small dataset
and was not compared against other methods.

II. CC PARCELLATION METHODS
A geometric CC parcellation method was proposed by
Witelson [15], based on postmortem connectivity analyses
in primates and humans. Though, geometric approaches only
divide the CC structure with the same proportion between all
subjects, not considering the individual brain characteristics
among different subjects.

Huang et al. [25] combined the tractography and the cere-
bral connectivity analysis, using the CC fibers connecting the
brain cortex to define CC parcellation regions. Six specific
image planes were set as regions of interest (ROI), mapping
the fibers that pass through the CC structure, performing the
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FIGURE 2. CC parcellation with divisions identifying the resulting five regions: (a) Witelson method; (b) Hofer method; (c) Rittner method, with
its four main steps: input data selection, midsagittal slice selection, CC segmentation and final parcellation.

tractography to determine the fibers crossing each ROI and
also the CC section.

Cook [26] proposed a parcellation method with cerebral
connectivity in DTI using an atlas segmentation model to
label the cortex and find distinct sub-regions in the CC
according to their fibers connection. In the work of Park [19],
the determination of the ROI for tractography was even more
specific, by choosing 47 cerebral cortex sub-regions. How-
ever, between DTI studies based on tractography, the CC
parcellation performed by Hofer [27] was the only work that
proposed a scheme for the CC subdivision from an average
behavior observed through tractography in a population. The
work proposed by Lebel [28] also used tractography to sub-
divide the CC into distinct regions, but it is based on target
areas for the analysis of aging variation in the cerebral cortex
of seven CC regions.

Unlike the CC parcellation methods that use the analysis
of the cerebral connectivity by tractography, Rittner [29]
proposed a data-driven method, using the specific informa-
tion contained in the diffusion images of each subject. The
CC parcellation method proposed by Rittner was applied
in the brain midsagittal plane and performed through the
Watershed algorithm, finding five distinct regions. Finally,
the work performed by Chao [30] computes the CC parcella-
tion according to the topography of its structure through the
connection of the CC fibers made in a probabilistic way. It
was based on an analyzed population, using the high angular
resolution diffusion images (HARDI), where the anatomi-
cal tractography is estimated and incorporated into the final
CC parcellation.

We compared our proposed data driven CC parcella-
tion method with the methods proposed by Witelson [15],
Hofer [27] and Rittner [29], since they all presented five
CC parcels as result, making possible to quantitatively and
qualitative compare them.

A. WITELSON PARCELLATION
The Witelson CC parcellation method [15] is based on
the brain histological analysis in postmortem studies. The
Witelson parcellation method proposes to divide the CC into
five vertical sections, with borders perpendicular to the axis
that connects the CC in horizontal limits, at the anteroposte-
rior section (Fig. 2a).

In this CC parcellation scheme, the region I corresponds
to the anterior third and contains fibers that are projected
in the prefrontal and pre-motor areas of the cortex. The
region II , composed by the remaining CC anterior half,
contains motor fibers. The initial part of the CC posterior
half, region III , has projections of the somatosensory and
posterior parietal areas. While the isthmus, which is equiv-
alent to the region IV , has projections of the upper tempo-
ral and posterior parietal part. The region V corresponds to
the projections for the inferior occipital and temporal cortex
(Table 2).

However, since it is based entirely on postmortem data,
dependent on the brain conservation process, the proposed
CC parcellation scheme presents some significant differences
when anatomically analyzed the structure, not reflecting the
internal CC organization [27].
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B. HOFER PARCELLATION
The Hofer CC parcellation scheme [27] uses brain connec-
tivity, as tractography, to define all regions connected to
distinct brain areas by CC fibers. The geometric parcellation
proportion came from the average result analyzed in a study
population of 8 subjects. ROI selected using tractography
were also chosen in the cortex, representing significant areas
connected to the CC structure. Therefore, five vertical sec-
tions of the CC were delimited from the tractography study
based on all CC connections (Fig. 2b).

The region I, which corresponds to the first sixth, con-
tains fibers projected in the prefrontal region. The remaining
CC anterior half, region II , contains fibers projecting into
the motor-premotor and motor areas of the cerebral cor-
tex. Together, these fibers combine the largest CC region
and are located in the back section of the structure. The
region III is defined as the posterior half minus the poste-
rior third, containing fibers that are projected in the primary
motor cortex. However, this parcellation scheme is in conflict
with the Witelson method, which assumes that all primary
motor fibers cross the CC anterior half. The region IV ,
the posterior third minus the posterior quarter, refers to the
primary sensory fibers. Finally, the parietal, temporal and
visual fibers cross the CC region V , which is defined as
the CC posterior quarter. Unlike the Witelson approach, the
Hofer CC parcellation study showed that motor fibers cross
the CC structure in the posterior part of the central region
(Table 2).

TABLE 2. Anatomical labels attributed to the CC parcellated regions,
according to their fibers in relation to the cortical areas as proposed
by Witelson and Hofer.

C. RITTNER PARCELLATION
Different from other methods, Rittner CC parcellation
method [29] takes into account only the input DTI data for
the parcellation analysis, using theWatershed algorithm. It is,
therefore, a data-driven method, different from geometric
parcellation approaches. The method can be described in four
steps.

The first step is the weighting of the fractional anisotropy,
which is the difference measure between the axes lengths
of an ellipsoid [32], by the projection of the eigenvector in
the main direction FAe1x . The second step is the selection
of the brain midsagittal plane through the inter-hemispheric
fissure, followed by the CC segmentation by Watershed and
its parcellation with fixed markers (Fig. 2c).

1) INPUT DATA
Since the CC is a white matter structure with highly organized
fibers connecting the two brain hemispheres, it has high
FA values, and the diffusion in its fibers occurs mainly in
the right-left direction. The FA map is combined with the
principal eigenvector component in the right-left direction
FAe1x to emphasize and facilitate the CC segmentation.
After defining the scalar map FAe1x to the CC segmenta-

tion, the external morphological gradient is calculated. Since
the CC is a very thin structure, combined with the DTI low
resolution, the external gradient highlights the CC edges and
helps the Watershed transform segment the desired structure.

2) MIDSAGITTAL PLANE SELECTION
After selecting the input data, the most representative CC
central slice is chosen through its diffusion properties by the
FA map, taking into account the inter-hemispheric area of
the brain. The central portion of the brain is identified by the
diffusion properties observed in the inter-hemispheric fissure:
large areas corresponding to the cerebrospinal fluid, which
has low FA values. Initially, the FA average is calculated for
each slice, discarding those slices whose FA average value
is above a threshold. The central slice of the brain is the one
that has the lowest FA average value, determining the brain
midsagittal plane selection.

3) CC SEGMENTATION
The Watershed transform using markers is used to perform
the CC segmentation. A hierarchical approach is employed
to obtain the most significant regions of the image: the local
minimum hierarchy is constructed from the volume dynam-
ics, and the local minimums with higher extinction values are
used as markers in theWatershed transform [33]. The number
of markers chosen need to be sufficient to capture the edges
of the CC. After the Watershed transform is performed, an
additional step is needed to automatically cluster the resulting
regions, deciding which ones correspond to the CC andwhich
are part of the background. The weighted map average for
each of the regions is used to generate the final CC segmen-
tation, since the regions that have a higher average than the
others are generally part of the CC.

4) CC PARCELLATION
After segmenting the CC, its parcellation is performed again
using the Watershed transform [33]. However, different from
the segmentation, fixed markers are positioned along the
CC central line as the algorithm markers to perform the
final parcellation. The positioning of theWatershed transform
markers along the parameterized CC central line were set at
the [25, 80, 115, 140, 170] position, based on an analysis of
diffusion properties of fifteen subjects along the CC center
line.

After the parcellation markers were selected, the method is
initialized with the weighted map FAe1x . The inner edges of
the structure are detected by using themorphological gradient
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only for the voxels within the CC. The parcellation is found
by the Watershed transform, which obtains the final division
of the structure.

III. PROPOSED DATA DRIVEN CC PARCELLATION
METHOD
We propose a CC parcellation method based on Rittner [29]
method, making important changes in order to overcome its
limitations and sensitivity to parameters selection. The orig-
inal method presents four steps described in the last section:
input data selection, midsagittal plane selection, CC segmen-
tation and CC parcellation. Almost all steps were replaced
with exception of the first step, leading to a more robust and
data-driven method.

A. MIDSAGITTAL SLICE SELECTION
The proper analysis of the CC structure in 2D requires the
determination of the slice that best defines it [34]–[37].
Rittner’s midsagittal plane selection through the inter-
hemispheric approach does not take into account the CC
specifically, but rather the whole brain. In addition, the inter-
hemispheric method ignores cases where the subject’s head
was misaligned relatively to the MRI acquisition plane.

A method to find a callosal fibers convergence
plane (CFCP) was previously proposed [38], taking into
account the high organization of the fibers within the CC
structure. This plane is computed directly in the diffusion
images and specific for 2D CC studies. The CFCP is calcu-
lated through divergent maps and finds the plane of greatest
convergence of fibers within the structure.

The CFCP computation has threemain steps: the automatic
identification of the CC, the calculation of the divergent map
and the adjustment of the plane (Fig. 3).

FIGURE 3. Execution steps of the midsagittal slice selection by the
callosal convergence plane method.

1) CC IDENTIFICATION
Initially, the CC identification is done through the structure
segmentation by using the Watershed transform method [29].
Based on the average point of the segmented CC, a volume
of interest of (36× 90× 18), after interpolation in the z axis,
is selected for all subjects. The dimensions of the volume are
based on previous knowledge of the CC structure size.

2) DIVERGENCE MAP COMPUTATION
After the identification of the CC structure, the divergent map
is computed by converting the DTI tensor field to a vector
field oriented in a direction of analysis, as implemented by
Pinheiro [39]. The application of the concept of divergence to
vectors fields allows the extraction of information about the
CC fibers behavior. Positive divergence values are associated
with fiber dispersion, while negative values are related to the
convergence of the fibers to a point. In addition, parallel fibers
tend to have the value of the divergence map close to zero.
The CC, due to its shape, has points with maximum absolute
divergence located in the maximum convergence plane when
the direction of analysis belongs to the CC sagittal plane.

3) PLANE FITTING
In order to establish the plane of maximum convergence
of the fiber, which is the CFCP, directions of analysis are
applied while searching for a plane in which the vector is
perpendicular to these directions.

After converting the data to a vector field-oriented study,
calculating the divergence map and excluding points of low
diverge values (< 0.4), a single plane is defined, that best
describes the remaining points (high diverge values). The
plane is computed by using a least square method iteractively,
discarding 2% of the points most distant from the calculated
plane in each iteration. These steps are performed for a range
of temptative directions. Finally, the chosen plane is the one
in which the direction of the analysis is closer to being
perpendicular to the normal plane vector.

FIGURE 4. (a) Comparison between the CC midsagittal plane found by the
divergent (blue) and inter-hemispheric (red) method for the axial view
in T1; and (b) coronal view in T1.

When compared to the inter-hemispheric approach, the
CFCP may coincide or not (Fig. 4a-b). It depends on weather
the CC is misaligned in relation to the acquisition plane or
the CC is anatomically aligned with the inter-hemispheric
fissure.
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B. CC SEGMENTATION
The next step is the CC segmentation. The CC segmentation,
as proposed by Rittner, was evaluated in one hundred and fifty
subjects. Among these patients, there were ten cases whose
segmentation did not work properly including cases in which
regions not belonging to the CC were added to the final result
and also, cases in which areas belonging to the structure were
omitted.

The original CC segmentation is performed by computing
an external morphological gradient on the input image to
obtain the CC boundaries through the watershed transform
from markers. However, in cases where the final CC segmen-
tation failed, it was observed that the morphological gradient
had flaws (Fig. 5a).

FIGURE 5. (a) CC segmentation steps by Rittner with the input image
morphological gradient, Watershed segmentation markers, remaining
FA regions and final segmentation; (b) Result of the proposed CC
segmentation, with the addition of a Gaussian filter in the input image
morphological gradient.

In order to get better CC boundaries after the external
morphological gradient computation, a Gaussian filter was
applied to the input image (Fig. 5b). The Gaussian filter
emphasizes the CC contours and, consequently, facilitates the
final CC segmentation.

C. CC PARCELLATION
The final step, namely the CC parcellation by Watershed,
proposed by Rittner, places markers in the same position for
all subjects, making it non-specific for each subject (not data-
driven). The position of each marker was chosen empirically
based on the study of a population constituted of fifteen
subjects, being defined as [25, 80, 115, 140, 170] along the
CC center line.

In order to generalize the CC parcellation method, a
new approach to find individual markers for each subject
was proposed. After the CC central line is found (Fig. 6a),
a k-means algorithm is used to cluster the two hundred points
within this line, based on its FA values. The number of
clusters was selected as k = 5, since it is the number of the
desired CC parcels.

FIGURE 6. (a) Brain midsagittal slice with the CC center line in red with
FA values used as the k-means algorithm input; (b) k-means output with
five clusters and final centroids used as markers to the CC Watershed
parcellation.

The k-means algorithm is an unsupervised clustering
method, which finds the similarity of a data group and labels
them in clusters. It also enables the centroid calculation of
each resulting cluster. The points located in the centroids of
each parcel resulting from the k-means are then used as the
new markers for the Watershed parcellation (Fig. 6b).

IV. QUANTITATIVE AND QUALITATIVE COMPARISON
BETWEEN CC PARCELLATION METHODS
We quantitatively and qualitatively compared the proposed
parcellation method with related methods presented in the
literature. Moreover, first we compared the Rittner approach
with the two other methods that divide the CC into five
regions: Witelson [15] and Hofer [27]. By doing so, we are
able to evaluate if the proposed data-driven CC parcellation
method actually improved the results obtained by Rittner.

It is expected that the CC parcels given by Rittner might
be closer to the Hofer parcels, than Witelson, since both
are based on the CC connectivity with the cortex. The same
behavior is expected from the proposed method.

A. DATASET
All methods were evaluated using the same dataset, com-
posed by one hundred and fifty subjects, from the Hospital
das ClÃnicas of the StateUniversity of Campinas. The dataset
was acquired on a Philips AchievaMagnetic Resonance scan-
ner. The images present a slice thickness of 2mm, resolution
of 1mm × 1mm, 2mm between each slice, dimensions of
(256 × 256 × 70), interpolated by the MR machine from a
image of (128×128×70). The DWI was acquired in 32 spin
echo directions DwiSE sequence, with b of 1000s/mm2,
TR = 8.5s, TE = 61ms and one more volume with b = 0.
All data were processed using the FSL tool [40] correcting
eddy currents, registering the DWIs volumes and generating
the tensors (eigenvalues and eigenvectors). All subjects were
informed in advance and signed a consent term.
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FIGURE 7. CC parcellation result in two distinct subjects (columns) with
three distinct parcellation methods (rows): Rittner, Hofer and Witelson.

B. VISUAL COMPARISON
The Rittner CC parcellation method presents an apparent
variation in the positioning of the CC parcels for each subject.
This happens since this method is only based on the input
data and does not follow any atlas or any a priori knowledge
(Fig. 7). The same behavior can be observed on the parcel-
lation results from the proposed method (Fig. 8), while both
Hofer and Witelson parcellation methods do not change their
CC parcels proportion when varying the subjects, since they
are geometric approaches.

FIGURE 8. CC parcellation result in two distinct subjects (columns) with
three distinct parcellation methods (rows): proposed CC parcellation,
Hofer and Witelson.

It is also possible to observe that the CC parcellation by
the proposed method is similar to the Hofer results as they
are based on the connections of the cortical fibers to find the
CC parcellation. However, the same does not occur for the
Witelson method that is only based on the histological post-
mortem study. The largest differences between the proposed
and Witelson methods are observed in the parcels I and II .
The similarity between the CC parcellation using the pro-

posed method and the geometric result of Hofer is even more
evident when comparing both parcels results (Fig. 9a). It is
possible to observe that the CC parcel IV from the pro-
posed Watershed method is within the limitations of Hofer’s
scheme. While the CC parcels I , III and IV , although con-
tained in the delimitations proposed by Hofer, extend to the
nearby parcels. The CC parcel II is the one that most differs
from the geometric approach, being displaced on both sides
between distinct subjects. These changes are expected since
the proposed CC parcellation by Watershed is data-driven,
and generic among subjects.

C. PARCELS OVERLAP
The quantitative comparison between CC parcellation meth-
ods was also performed by using an overlap measure, the
Dice coefficient [41]. It evaluates the agreement between the
results achieved by different CC parcellation methods.

Results showed that the proposed CC parcellation method
presented similar Dice coefficient related to the Hofer and
Witelson approach on the CC parcels I and III (Fig. 9b).
However, when analyzing CC parcels II and V , the Dice
values obtained for the comparisonwith the proposed CC par-
cellation versus the Hoffer parcellation were higher, meaning
that they are more similar for these CC parcels. When com-
paring the proposedCC parcellation to the Rittner’s approach,
both methods seems very different since Dice coefficients
were the lowest among all CC parcels, when compared with
other methods.

D. MEAN FA VALUES COMPARISON
A typical clinical study, which uses CC parcellation in DTI,
is usually interested in comparing diffusion characteristics,
such as FA, between different CC parcels. Thus, the mean
FA value of each CC parcel was chosen to study the effect
that different parcellation methods might have on FA-based
studies.

In order to evaluate the difference in themeasuredmean FA
value from the CC parcels, the analysis of variance (ANOVA)
for repeated results was performed, with a complete factorial
model, repeated contrast, comparing principal effects through
Bonferroni, and measuring p versus the same dependent vari-
able as the evaluated measures [42]. The ANOVA analyzed
was implemented using the IBM SPSS Statistics software,
available at goo.gl/JTwVbF.

The CC parcellation mean FA results by Rittner have very
close median values when compared to the other parcellation
methods (Fig. 10a). It is possible to visualize that the CC
parcels III and IV are very similar in all methods. However,
when the CC parcels I , II and V are observed, the Witelson
method differs from the others, while the Rittner’s approach
is close to Hofer‘s CC geometric proportion.

These results were evaluated through the analysis of vari-
ance in order to verify if the difference between CC parcels
measures are statistically significant. The p values derived
from the ANOVA by repetition below 0.05 are considered
significant. Results above this threshold are not considered to
conclude statistical significance between FA values (Table 3).

The parcels I and V demonstrated statistical significance
in relation to the other parcels. This behavior can be observed
in the FA measurements for Rittner parcellation compared to
Witelson and Hofer methods.

The comparison of the mean FA values of the parcels
obtained by the proposed method with results from Hofer
and Witelson, showed that the CC parcel IV was the one
that presented the most variation between the CC parcellation
methods (Fig. 10b). On the other hand, CC parcels II and
III presented the greatest similarity between all methods.
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FIGURE 9. Quantitative comparison between CC parcellation methods: (a) Visualization of the proposed CC parcellation in two distinct subjects
shown over the geometric proportions defined by Hofer in the anterior-posterior direction; (b) Dice result for each CC parcel, between the
proposed and the Hofer, Witelson and Rittner methods.

TABLE 3. ANOVA test by repetition results evaluated for each CC parcel
result, with values below p = 0.05 considered as statistically significant,
among three CC parcellation methods.

The Witelson approach is the most distinctive method in all
CC regions.

For the repeated ANOVA, when inspecting the study
between the proposed CC parcellation with the Witelson
approach, the parcels I , IV and V showed statistical signif-
icance (Table 4). Considering that the Witelson method was
based only on the histological brain analysis, while the CC
parcellation by Watershed is data driven, such variations are
expected.

When analyzing the statistical differences between the pro-
posed CC parcellation and Hofer method, only one CC par-
cel presented statistical difference between all the analyzed
dataset (Fig. 9b). The similarity of the other CC parcel is
given because bothmethods present fundamental similarities:
both aim to find the CC parcellation according to its connec-
tions, through the callosal fibers to the brain cortex regions.
The proportions of the resulting CC parcels, as shown in the
qualitative analysis, are visually very similar. However, due
to the data driven characteristic that the proposed method

TABLE 4. ANOVA test by repetition, among the three CC parcellation
approaches: proposed Watershed, Witelson and Hofer methods,
evaluated for each CC parcel result.

has, there is a disagreement between both Watershed and
geometric Hofer parcellation for the CC parcel IV .

The CC parcel IV is the smallest CC region found by the
proposed parcellation, and also the smallest portion of the
geometric approaches. Thus, the subject variation that only
the proposed method has provided presented the statistical
significance when compared with the Rittner approach and
Hofer geometric CC parcellation.

It is not possible to know the correct CC parcellation since
this is a problemwithout a gold standard. Therefore, the exist-
ing analyzes only allow verifying the similarity between the
resulting CC parcels, or which present statistical differences
between methods of the literature.

Through the qualitative analysis, it is possible to verify the
data driven behavior of the proposed method, since the given
CC parcels varies according to the subject. The quantitative
analysis given by the Dice coefficient showed that the both
methods that uses the Watershed transform present different
CC parcellation results. Thus, the improvements applied to
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FIGURE 10. Quantitative evaluation by measuring the mean FA for each CC parcel resulted from 150 subjects, between three parcellation
methods: (a) Rittner, Hofer and Witelson; (b) Proposed method, Hofer and Witelson. Different values on (a) and (b) for Hofer and Witelson
results are due to changes in the midsagittal slice computation and in the CC segmentation step.

the Rittner method in order to make it more robust and less
sensitive to parameter selection generated a new method, that
presented different results among the experimented 150 sub-
jects, more similar to the Hofer CC parcellation proportion.

E. VISUAL INSPECTION THROUGH TRACTOGRAPHY
In DTI, it was showed that the tensor principal eigenvector is
parallel to the white matter fiber local orientation [43]. Using
this assumption, the tractography is a method to reconstruct
the trajectories of the white matter main fiber bundles through
the DTI orientation information, generating three dimen-
sional representations of these bundles. The most recent trac-
tography methods can estimate the regions of multiple fiber
bundles [31]. Thus diffusion tensor tractography provides a
rough estimate of the location in which the brain fiber bundles
cross the cerebral cortex of a subject.

Using the CC parcels obtained by the proposed method as
tractography seeds, the tractography was generated using the
DSI Studio, a free tractography tool available at http://dsi-
studio.labsolver.org/, to design the brain fibers that leave
the CC towards the cerebral cortex. It is possible to verify
a coherence of the obtained CC parcels by verifying the
organization of the fibers coming from the five CC parcels
through the tractography (Fig. 11a-c).

Besides coherence verification of the fibers coming from
the five CC parcels, the tractography was also used to recon-
struct all CC tracks using as seeds the five CC parcels
resulted from the proposed data driven parcellation. Then it
is possible to verify that each CC parcel is connected to the
expected cortical brain region by studying the reconstructed
CC tracks. A specialist manually segmented all cortical areas
to validate the CC parcel association to distinct brain regions

(Fig. 11d-h). Since the parcellation method does not rely on
any information from cortical areas, the coherence between
them and the resulted CC parcels should be further investi-
gated to verify if this correlation is also statistically observed
in a large dataset.

V. DISCUSSION
After quantitatively and qualitatively compare the proposed
CC parcellation with the methods proposed by Hofer, and
Witelson, it was noted that all CC parcels were distinct
among different methods. This conclusion can be particu-
larly confirmed by evaluating the Dice coefficient. If any
of the methods were the same, this overlap measurement
would have maximum value (equal to one), what was not the
achieved result. The most relevant difference between these
CC parcellation approaches was related with the data driven
behavior presented by the proposed method. While the Hofer
and Witelson CC parcellation methods had geometric CC
parcels proportion, not varying their results among different
subjects throughout the experimented dataset.

Even thought none of the methods presented the same
results, some presented interesting similarities. The proposed
CC parcellation method was proved to be more closer to
the Hofer approach, mainly on CC parcels I , II , III , and V ,
while the Witelson approach presented significant statistical
difference on the CC parcels I , IV and V . When compar-
ing both approaches based on the Watershed transform, our
proposed method and the one proposed by Rittner, it was
observed that the proposed method presented better gener-
alization capacity and became a fully data driven method,
using no fixed markers to run the Watershed transform. The
midsagittal plane selection through the callosal plane also
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FIGURE 11. Tractography obtained using the resulting parcels as seeds. The five CC parcels are shown in different colors, positioned over T1 with distinct
views: (a) sagittal; (b) coronal; and (c) axial. CC parcellation result along with brain cortical areas referring to the (d) first CC parcel in blue; (e) second CC
parcel in red; (f) third CC parcel in yellow; (g) fourth CC parcel in purple; and (h) all CC parcels including the sixth region in green.

improved the method by making it invariant to misaligned
CC in relation to the acquisition plane. This improvements
were obtained by changing the main steps of the Rittner
methods: modifying the brain midsagittal plane selection, the
CC segmentation and the CC parcellation. None of the one
hundred and fifty subject within the experimented dataset
presented errors during the proposedmethod execution, while
the method proposed by Rittner failed in ten subjects during
the CC segmentation step.

Since there is no gold standard to evaluate the meth-
ods, and considering that all CC parcellation methods pre-
sented different approaches and achieved results, we com-
pared the similarities and differences between them. Among
the evaluated methods, the proposed one is the only one
that is completely data driven and also present no failure
while running a large dataset containing 150 subjects. Since
brain structures slightly change its size and absolute loca-
tion among subjects, and that there are lots of applications
to study the CC in patients presenting pathologies, a data
driven method may be the best automatic CC parcellation
solution.

VI. CONCLUSION
Although there are in the literature seven image-based CC
parcellationmethods, the Rittner approach was the only study
that proposed a non-invasive and non-geometric analysis for
the CC parcels, based only on the diffusion data of each
subject analyzed. The evaluation and improvement of this
non-geometric CC parcellation led to the proposal of a new
CC parcellation method.

This work proposed an automatic and data-driven method
of CC parcellation using diffusion properties extracted from
DTI. The improvements made in the original Watershed
based method aimed to overcome limitations mainly related
with the generalization capacity and parameters sensitivity.

In order to validate the proposed method, it was presented
qualitative and quantitative comparisons between the exist-
ing CC parcellation methods and the proposed one using
statistical analysis of FA mean values and parcels overlap
measurements through Dice coefficient.

Quantitative comparisons using the Dice coefficient
between the proposed method, Rittner, Witelson and Hofer
showed that the CC parcels given by the proposed method are
different from the parcels given by Rittner, even though both
methods use the Watershed transform. The proposed method
presented more similar results with Hofer than the Rittner’s.

The proposed method was also validated by using the CC
tractography. It verified the coherence of the fibers coming
from the five given CC parcels, and that each CC parcel is
actually connected to an expected cortical brain region.
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