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ABSTRACT Future gas turbine engine control systems will be based on a distributed architecture in which
the sensors and actuators will be connected to the controllers via a communication network. The performance
of the distributed engine control (DEC) system is dependent on the network performance. The network-
induced time delay may degrade the performance of the closed-loop systems and even destabilize the
systems if the controllers are designed without considering the effects of the delay. This paper introduces
a new method to estimate the maximum tolerance of the time delay for analysis of the stability of the
GE T700 turboshaft engine DEC system. The sufficient conditions for stability are derived and dynamic
output feedback controllers for the turboshaft engine are applied. Hardware-in-the-loop simulation illustrates
the effectiveness of the presented method.

INDEX TERMS Distributed engine control, networked control system, time delay, stability, gas turbine.

I. INTRODUCTION
With the increasing development of sophisticated electron-
ics in gas turbine engine control systems, the increased
performance, more convenient operation, and reduction of
design and maintenance costs require a more effective archi-
tecture for the control systems; hence, the development of
the distributed engine control (DEC) architecture [1]. The
sensors and controllers are connected through communica-
tion networks [2]. For example, the GE T700 turboshaft
engine is a two-spool engine consisting of a gas generator
and a free power turbine [3]–[5], and the whole turboshaft
engine system, combined with the control systems, can be
viewed as a cascade control system (CCS) [6], [7]. In the
DCS control structure, the GE T700 turboshaft engine
DEC architecture can be viewed as a networked cascade
control system (NCCS), and NCCS is a special case of a
networked control system (NCS).

The main advantages of a NCS control structure are its
modularity, simplified wiring, low cost, reduced weight,
decentralization of control, integrated diagnosis, simple
installation, quick and easy maintenance [8].

However, compared with the traditional point-to-point
feedback closed-loop control system, the NCS may have
a series of problems that are network-induced time delays

and packet dropouts, network bandwidth, and security that
will degrade the performance of the whole system or even
destabilize the closed-loop system. Therefore, the stability of
the NCS is the first and most important issue in this research
field.

During the past few decades, extensive studies on network-
induced imperfections have been carried out by both the con-
trol and the communication communities assuming different
scenarios, and various methodologies have been proposed on
how to deal with the imperfections [9]–[17].

Liu provided a method to guarantee the stability of time
delay in NCSs by estimating the stability bound of the delay
decay rate α and upper bound delay time τ , and based on
the Lyapunov–Krasovskii method and linear matrix inequal-
ity (LMI), derived exponential stability [18]. Based on a
switched linear systems approach, Donkers et al. proposed
a new procedure to obtain a convex over-approximation in
the form of a polytopic system with norm-bounded additive
uncertainty [19]. To obtain far fewer conservative stability
conditions, for the uncertain networked NCS, Wei et al.
analyzed α-stability constraints subject to disturbance inputs.
The sufficient condition for feasibility was presented in term
of Lyapunov stability theory and a set of LMIs [20]. More-
over, most results in [21] were derived for the constant-delay
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case.
Despite the manymethods to analyze the stability of a NCS

presented in the literature, the less-conservative methods are
still a problem in stability analysis for NCCSs [22], [23].
In this paper, a new stability analysis approach is presented
and applied to a typical turboshaft DEC system. The method
can be used as an approach for stability analysis and as
DEC design guide. The paper gives a description of the
proposed method for estimating the maximum time delay for
a NCCS. The proposed method takes both time delays from
sensor to controller and from controller to the plant input
into consideration. Hardware-in-the-loop (HIL) simulation is
illustrated and the results are compared with those proposed
in the literature published previously. The rest of the paper
is organized as follows: the architecture of the DEC system
is thoroughly described in the next section. A NCCS model
of a GE T700 turboshaft engine is established and the new
stability analysis tool is provided based on Lyapunov stability
theory in the following section. HIL simulation example is
presented to illustrate the effectiveness of the approach in
simulation results section. The conclusion is drawn in the
final section.

II. DISTRIBUTED ARCHITECTURE OF THE GE T700
TURBOSHAFT ENGINE
A. ENGINE DESCRIPTION
This study utilized a GE T700 turboshaft engine.
Figs 1 and 2 show simplified diagrams and Table 1 presents
the abbreviations of the engine parameters.

FIGURE 1. Block diagram of open-loop gas generator and rotor
system.

B. MODEL DESCRIPTION
The controller design process begins with a linearized, state-
space model of the system. Fig. 2 shows the simplified model
in this case.

1) PRIMARY PLANT
The state-space representation of the rotor system is provided
by the following equation:{

ẋ1(t) = A1x1(t)+ B1y2(t)

y1(t) = C1x1(t)
(1)

where x1 =
[
NP NMR QMR

]T , and y1 = NP are the
state vector and the output of the rotor system, respectively.

TABLE 1. Symbols of the GE T700 turboshaft engine.

FIGURE 2. Block diagram of the simplified linearized gas generator and
rotor system [7].

Here y2 = QS is the gas generator output. The matrices A1,
B1, and C1 are provided as follows:

A1 =



0 0 −
1
JT

0 −
DAM
JMR

1
JMR

KMR
DMR · DAM

JMR
− KMR −

DMR
JT
−
DMR
JMR


,

B1 =


2
JT
0

2 · DMR
JT

 , C1 =
[
1 0 0

]
.
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2) SECONDARY PLANT
The continuous-time linear model of the gas generator is
shown as follows:{

ẋ2(t) = A2x2(t)+ B2u(t)
y2(t) = C2x2(t)

(2)

where x2 =
[
NG QS T45 PS3 NP

]T , y2 = QS are the state
and output vectors, and u(t) = WF is the gas generator input.
The matrices A2, B2, and C2 are presented as follows:

A2 =



1
JG
·
δQG
δNG

0 0 0 0

2·DMR
JT
·
δQP
δNG

0 0 0
2 · DMR
JT

·
δQP
δNP

δT45
δNG

0 0 0 0

δPS3
δNG

0 0 0 0

2
JT
·
δQP
δNG

−
1
JT

0 0 2
JT
·
δQP
δNP


,

B2 =



1
JG
·
δQG
δWF

2 · DMR
JT

·
δQP
δWF

δT45
δWF
δPS3
δWF

2
JT
·
δQP
δWF


, C2 =

[
0 1 0 0 0

]
.

III. STABILITY ANALYSIS
Fig. 3 shows the NCCS architecture.

FIGURE 3. Block diagram of the engine NCCS model.

As the figure shows, the networked-induced system param-
eters are {

ẋ1 = A1x1 + B1ŷ2
y1 = C1x1

(3){
ẋ2 = A2x2 + B2û
y2 = C2x2

(4)

The dynamic controllers are given by{
ẋC1 = AC1xC1 + BC1 ŷ1
u1 = CC1xC1 + DC1 ŷ1

(5){
ẋC2 = AC2xC2 + BC2 û
u = CC2xC2 + DC2 û

(6)

where û = û1 − ŷ2, and xC1 , xC2 , u1, and u are the states
and outputs of the controllers respectively. Here (AC1 , BC1 ,

CC1 ,DC1 ) and (AC2 , BC2 ,CC2 ,DC2 ) are real constant matrices
with corresponding dimensions.

It is assumed that the non-networked closed feedback sys-
tem presented by (7), as shown at the top of the next page, is
globally exponentially stable.

Thus, there exists a P11 such that

AT11P11 + P11A11 = −I (8)

Walsh et al. [8] provided two scheduling meth-
ods, try-once-discard (TOD) and token-ring-type static
scheduling, and under the maximum allowable transfer
interval (MATI) [21] constraint, the result is given in the
following theorem for bothmethods that preserve the stability
of the closed-loop system.
Theorem 1 (Walsh et al. [8]): Given a NCCS (as shown in

Eqs (1) and (2)) with p sensor nodes under a static scheduling,
define λ1 = λmin(P11), λ2 = λmax(P11), and a MATI, τm,
which satisfies (9), as shown at the top of the next page,
then the NCCS is globally exponentially stable, where Acl is
showed in (10), as shown at the top of the next page, and

ey1 = y1 − ŷ1
ey2 = y2 − ŷ2
eu1 = u1 − û1
eu = u− û

(11)

However, numerical examples show that by using
Theorem 1, the bound of the MATI is very conservative to
guarantee the stable behavior [17].

To reduce this conservation and meanwhile guarantee the
stable behavior, this study proposes a method for estimating
the less-conservative bound of MATI. The proposed method
takes both time delays from sensor to controller and from
controller to the plant input into consideration. Suppose that
the control signals are connected to the control plant through
a kind of network, so the time delay from the controller
output to the plant (τcp) is inevitably involved in the feedback
loop. In addition, there is time delay between the measured
feedback signals to the controller input (τsc). Fig. 4 shows a
high-level description for a network modeled as time delay.

FIGURE 4. The network effect modeled as pure time delay [17].

Therefore, the total time delay of the closed-loop system
can be calculated using

τ = τcp + τsc (12)

and making the following assumptions that are partially taken
from [22].
• Sensors are time driven and controllers are event trigged.
• The data are transmitted as a single packet.
• All the states are available for measurements and for
transmission.
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ẋ1
ẋ2
ẋC1

ẋC2


︸ ︷︷ ︸

ẋ

=


A1 B1C2 0 0

B2DC2DC1C1 A2 − B2DC2C2 B2DC2CC1 B2CC2

BC1C1 0 AC1 0
BC2DC1C1 −BC2C2 BC2CC1 AC2


︸ ︷︷ ︸

A11


x1
x2
xC1

xC2


︸ ︷︷ ︸

x

(7)

τm < min

 ln(2)
p‖Acl‖

,
1

8‖Acl‖(
√
λ2
λ1
+ 1)

∑p
i=1 i

,
1

16λ2
√
λ2
λ1
‖Acl‖2(

√
λ2
λ1
+ 1)

∑p
i=1 i

 (9)



ẋ1
ẋ2
ẋC1

ẋC2

ėy1
ėy2
ėu1
ėu


=



A1 B1C2 0 0 0 − B1 0 0
B2DC2DC1C1 A2 − B2DC2C2 B2DC2CC1 B2CC2 − B2DC2DC1 B2DC2 − B2DC2 0

BC1C1 0 AC1 0 − BC1 0 0 0
BC2DC1C1 − BC2C2 BC2CC1 AC2 − BC2DC1 BC2 − BC2 0
C1A1 C1B1C2 0 0 0 − C1B1 0 0

C2B2DC2DC1C1 C2A2 − C2B2C2 C2B2DC2CC1 C2B2CC2 − C2B2DC1 C2B2 − C2B2DC2 − C2B2
CC1BC1C1 0 CC1AC1 0 − CC1BC1 0 0 0
DC2DC1C1 − DC2C2 DC2CC1 CC2 − DC2DC1 DC2 − DC2 0


︸ ︷︷ ︸

Acl

×



x1
x2
xC1

xC2

ey1
ey2
eu1
eu


(10)


ẋ1
ẋ2
ẋC1

ẋC2


︸ ︷︷ ︸

ẋ

=


A1 0 0 0
0 A2 B2DC2CC1 B2CC2

0 0 AC1 0
0 0 BC2CC1 AC2


︸ ︷︷ ︸

A


x1
x2
xC1

xC2


︸ ︷︷ ︸

x

+


0 D1C2 0 0

B2DC2DC1C1 B2DC2C2 − B2C2 0 0
BC1C1 0 0 0
BC2DC1 −BC2C2 0 0


︸ ︷︷ ︸

B


x1(t − τsc)
x2(t − τsc)
xC1 (t − τsc)
xC2 (t − τsc)


︸ ︷︷ ︸

x(t−τsc)

(13)

First, a simplified analysis is discussed here by consid-
ering only the sensors-to-controllers time delay, τsc. In this
model, all the delays and dropouts are lumped between
the sensors and controllers. Applying the dynamic con-
trollers proposed in (5) and (6) to the systems (3) and (4),
and rewriting the systems showed in (13), as shown at the top
of this page.
where ŷ1 = C1x1(t−τsc), ŷ2 = C2x2(t−τsc), û1 = CC1xC1+

DC1C1x1(t−τsc), and û = CC2xC2+DC2 û1−DC2C2x2(t−τsc).
Theorem 2: For both systems (3) and (4) with the dynamic

controllers proposed in (5) and (6), the closed-loop sys-
tem is globally asymptotically stable if λi(8) ∈ C−, for
i = 1, 2, . . . , n and all the state variables’ second-order
reminders are small enough for the given value of τsc,
where 8 is showed in (14), as shown at the top of the next
page.
Proof: The Taylor expression for x(t − τsc) is

x(t − τsc) = x(t)− τscẋ(t)+ R2(x, τsc) (15)

where R2(x, τsc) is all the state variables’ second-order
reminders, and depends on the time delay, τsc, and the higher-
order derivatives of x(t). If τsc is small enough, thenR2(x, τsc)
is small enough to be ignored. Then (15) can be rewritten as

x(t − τsc)− x(t) ∼= −τscẋ(t) (16)

Substituting (16) into (13), the closed-loop system can be
derived as

ẋ(t) ∼= (A+ B)x(t)− τscBẋ(t) (17)

where (17) can be rewitten in (18), as shown at the top of the
next page.

The closed-loop system will be globally asymptotically
stable if

λi(8) ∈ C−, for i = 1, 2, . . . , n (19)

Then, the controllers to the plant time delay, τcp, is
taken into consideration. Applying the dynamic controllers
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8 =


A1 D1C2 0 0

B2DC2DC1C1 A2 + B2DC2C2 − B2C2 B2DC2CC1 B2CC2

BC1C1 0 AC1 0

BC2DC1 −BC2C2 BC2CC1 AC2



I + τsc


0 D1C2 0 0

B2DC2DC1C1 B2DC2C2 − B2C2 0 0

BC1C1 0 0 0
BC2DC1 −BC2C2 0 0


(14)

ẋ(t) ∼=
A+ B
I + τscB

x(t)

=


A1 D1C2 0 0

B2DC2DC1C1 A2 + B2DC2C2 − B2C2 B2DC2CC1 B2CC2

BC1C1 0 AC1 0
BC2DC1 −BC2C2 BC2CC1 AC2



I + τsc


0 D1C2 0 0

B2DC2DC1C1 B2DC2C2 − B2C2 0 0
BC1C1 0 0 0
BC2DC1 −BC2C2 0 0


︸ ︷︷ ︸

8

x(t) (18)



ẋ1 = A1x1 + D1C2x2(t − τsc − τcp)
ẋ2 = A2x2 + B2C2xC2 (t − τcp)+ B2DC2CC1xC1 (t − τcp)

+B2DC2DC1C1x1(t − τsc − τcp)+ B2DC2C2x2(t − τsc − τcp)
−B2C2x2(t − τsc − τcp)

ẋC1 = AC1xC1 + BC1C1x1(t − τsc)
ẋC2 = AC2xC2 + BC2CC1xC1 + BC2DC1x1(t − τsc)− BC2C2x2(t − τsc)

(20)

9 =


A1 D1C2 0 0

B2DC2DC1C1 A2 + B2DC2C2 − B2C2 B2DC2CC1 B2CC2

BC1C1 0 AC1 0
BC2DC1 −BC2C2 BC2CC1 AC2



I +


0 (τsc + τcp)D1C2 0 0

(τsc + τcp)B2DC2DC1C1 (τsc + τcp)B2DC2C2 − τcpB2C2 0 0
τscBC1C1 0 0 0
τscBC2DC1 −τscBC2C2 0 0


(21)

proposed in (5) and (6) to the systems (3) and (4), and
rewriting the systems as in (20), as shown at the top
this page.
Theorem 3: For the systems (3) and (4) with the dynamic

controllers proposed in (5) and (6), the closed-loop sys-
tem is globally asymptotically stable if λi(9) ∈ C−, for
i = 1, 2, . . . , n and all the state variables’ second-order
reminders are small enough for the given values of τsc
and τcp, where 9 is shown in (21), as shown at the top this
page.

Proof: Straightforward as in Theorem 2.

IV. SIMULATION RESULTS
This section presents the effectiveness evaluation of the pro-
posed analysismethod under hardware-in the-loop simulation
in the GE T700 turboshaft gas turbine engine DEC control

systems, and the coefficient matrices of rotor system are
provided as follows:

A1 =

 0 0 −285.7143
0 −0.4533 9.0662

5.2650 −5.2131 −42.5958

,
B1 =

571.42860
82.5714

.
and the corresponding dynamic output feedback
controller is:

AC1 =

0 0 0
0 0 0
0 0 0

, BC1 =

00
0

,
CC1 =

[
0 0 0

]
, DC1 = −2.3760× 10−13.
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FIGURE 5. Hardware-in the-loop system: monitors, gas generator, and
rotor system models.

FIGURE 6. Hardware-in the-loop system: DEC system.

FIGURE 7. Hardware-in the-loop system: actuator and fuel supply system.

The coefficient matrices of gas generator model are given
as:

A2 =


−126.8 27.04 12.36 22.17 16.72
54.67 57.21 −77.02 −76.21 50.81
−336.6 223.3 −130.7 −83.32 172.1
161.2 2.459 −21.8 −63.09 1.799
62.42 −73.55 −104.2 −91.44 −102.3

,

B2 =


−11.7
44.24
53.56
17.45
59.35

.
and the corresponding dynamic output feedback controller is:

AC2 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, BC2 =


0
0
0
0
0

,
CC2 =

[
0 0 0 0 0

]
, DC2 = −6.4524× 10−9.

The DEC system in this simulation was tested by using a
HIL simulation testbed in Figs 5, 6, and 7 [7].

First, from several simulations, the unstable MATI of
the closed-loop system is τm > 0.0461 s, as shown
in Figs. 8 and 9.

FIGURE 8. Unstable behavior of the closed-loop system for
τm > 0.0461 s (x).

FIGURE 9. Unstable behavior of the closed-loop system for
τm > 0.0461 s (y ).

FIGURE 10. Stable behavior of the closed-loop system for
τm < 0.0454 s (x).

When using Theorem 1, the bound of MATI can be calcu-
lated as τm = 0.3614 × 10−5 s, which is very conservative
to guarantee the stable behavior of the closed-loop system.
However, when using Theorem 3, τm = 0.0454 s, which is
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FIGURE 11. Stable behavior of the closed-loop system for
τm < 0.0454 s (y ).

very close to the actual bound of stability (τm < 0.0461 s).
The stable behaviors of the closed-loop system are shown
in Figs. 10 and 11.

As Figs. 10 and 11 show, when MATI is less than
0.00454 s, the closed-loop system can be globally asymptot-
ically stable. That is, the method provided in this study gives
less-conservative results than those in the literature published
previously.

V. CONCLUSION
In this study, a new method has been derived for estimating
the maximum time delay in a DEC system for an output
feedback control architecture. A partially DCS architecture
of a typical turboshaft engine has also been described. This
distributed architecture can be transformed into a NCCS.
The proposed method is simple for analyzing the stability of
the networked control structure, and its advantages include
using less computation time and producing less-conservative
results. Hardware-in-the-loop simulation examples have been
provided to show the effectiveness of the approach.
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