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ABSTRACT Malaria is a leading cause of death in Africa. Many organizations, NGO’s, and government
agencies are collaborating to prevent, control, and eliminate malaria. In order to succeed in these shared
goals, an integrated, consistent knowledge source to empower informed decision-making is required.
Malaria surveillance is currently performed using dynamic, interconnected, systems which require rapid
data exchange between different platforms. An important challenge these systems must overcome is the
occurrence of dynamic changes in one or more interacting components, which can lead to inconsistencies
and mismatches between components of the infrastructure. In this paper, we present our efforts toward the
design and development of the semantic interoperability and evolution for malaria analytics platform, with
the goal of improving data and semantic interoperability for dynamic malaria surveillance and to support the
integration of data across multiple scales. The long term target is to deliver transparent and scalable tools
for decision making for malaria elimination. Our analysis is focused on sentinel sites in selected African
countries, including Uganda and Gabon.

INDEX TERMS Interoperability, change management, malaria surveillance, graph transformation, web
services, semantics.

I. INTRODUCTION
Malaria is an infectious disease and one of the top causes
of death in low-income developing countries (LIDCs) [1].
According to a 2016 WHO World Malaria Report [2],
combining data from reports from 91 endemic countries,
there were 212 million new cases of malaria in 2015, and
an estimated 429,000 malaria deaths, worldwide. African
countries accounted for almost 90% of global cases of
malaria and 92% of malaria deaths (mostly young children in
Sub-Saharan Africa). The malaria transmission season gen-
erally coincides with the planting and/or harvesting season
in African countries when even a short period of ailment
imposes a tremendous cost burden on the world’s most
economically challenged countries [3]. It is estimated that
in highly endemic countries, malaria is responsible for a
decrease in economic growth by more than 1% per year [3].

Malaria is caused by parasitic micro-organisms of the
Plasmodium species (e.g. Plasmodium falciparum and

Plasmodium vivax). The parasite is transmitted person-to-
person, through an intermediate host/vector. The mosquito
species Anopheles gambiae is the vector that is primarily
responsible for malaria proliferation in Africa [4]. Many
factors contribute to and influence the way malaria is trans-
mitted. These include a range of environmental factors
such as the location of mosquito vectors (vector ecology),
weather cycles and climate change, deforestation, interna-
tional travel [5], population growth, human movements,
overuse of malaria drugs, housing, urbanization and several
socioeconomic aspects [6] (e.g. poverty and the deterioration
of public health infrastructures) [7].

In recent years, there have been growing investments
in malaria control and research programs; the total fund-
ing for malaria control and elimination in 2015 was esti-
mated to be $2.9 billion. However, this is still short of the
$6.4 billion annual stipulated by the WHO Global Technical
Strategy (GTS) for malaria [2], a target set to be achieved
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by 2020. The goals of the GTS are, (i) to achieve a 90% reduc-
tion in malaria incidence and mortality rates compared with
2015, (ii) the elimination of malaria from at least 35 high-
transmission malaria countries (mostly low-income devel-
oping countries), and (iii) the prevention of recurrence of
malaria in all countries that are currently malaria-free [2]. All
of these targets are to be achieved by 2030 and several orga-
nizations, partners, and stakeholders at national, regional,
continental and global levels must work together to make the
malaria elimination and eradication agenda a success.

In order to make timely decisions about where to locate
malaria vectors and parasites and how to prevent the reoccur-
rence ofmalaria, an integrated real-time surveillance program
is required [8]. This must be performed by a dedicated dig-
ital infrastructure using core information retrieval, data and
knowledge management methodologies designed to address
the unique challenges specific to global population health
and epidemiology. These challenges include the following
obstacles, (i) malaria data today are scattered across different
countries, laboratories, and organizations in different het-
erogeneous data formats and repositories, (ii) a diversity of
access methodologies make it difficult to retrieve all relevant
data in a timely manner (iii) the absence of rich metadata
on existing data and repositories limits the discoverability
and reusability of data. Overall the current processes for
discovering, accessing, and reusing the malaria specific data
are inefficient, labour-intensive and error prone.

Furthermore, data about malaria must be integrated and
interpreted in the context of existing knowledge models
that describe the biology of malaria. Typically the knowl-
edge models, also known as ontologies, have to be built in
consultation with subject matter experts who have to man-
age multiple versions since their underlying knowledge and
understanding of malaria is constantly changing. This further
complicates interpretations and inferences that can be derived
from surveillance data.

Likewise, malaria transmission and prevention are
dynamic processes, therefore requiring formal mathematical
malaria transmission models, which are necessarily quite
complex [6], [9]. These mathematical models are often com-
posed of several interacting elements, some even hidden,
represented in dynamic inter-connected complex systems.
Part of this complexity is due to topographical and climatic
variations as well as human mobility [9].

Overall our knowledge about malaria and appropriate
preventive measures becomes more comprehensive and
therefore we expect many changes in existing malaria data
management systems, data collection standards, and data
stewardship over the next several years. Specifically, data and
knowledge integration often result in changes such as exten-
sion, specialization, or adaptation in one ormore data sources.
Collectively these changes will make it more difficult to
perform accurate data analytics or achieve reliable estimates
of important metrics, such as infection rates.

Consequently, there is a critical need to rapidly assess
the integrity of data and knowledge infrastructures that are

depended on to support surveillance tasks. Reactive mecha-
nisms to facilitate updates, fix errors, reclassify taxonomies,
add/remove concepts, attributes, relations, and instances are
required. Surveillance infrastructures currently in place today
have yet to adequately address the core issues of ontol-
ogy evolution, system interoperability, and semantic data
integration.

A. RESEARCH STRATEGY
We present our efforts toward the development of the
Semantic Interoperability & Evolution for Malaria Analyt-
ics (SIEMA) framework. Our objectives are to introduce a
framework in which access to distributed data repositories
containingmalaria-related data is robust and consistent and to
facilitate uninterrupted dynamic surveillance queries across
multiple resources. Essential features of the infrastructure
are; semantic interoperability among distributed resources,
dynamic ad-hoc query access and a framework in which the
multiple components of a surveillance infrastructure can be
monitored for changes that make data access unreliable. Core
contributions of our design lie in the use of:

1) Domain ontologies to capture knowledge for malaria
control programming and to align, merge and integrate
different models;

2) Semantic web services to ensure discoverability and
interoperability of data retrieval and data transforma-
tion resources;

3) A series of software agents to monitor and report
changes and evolution in distributed data resources,
service descriptions, ontologies, and registries;

4) Graph Transformation rules to describe, verify and
manage evolution and changes in the existing data
sources and ontologies.

B. STATE-OF-THE-ART OF MALARIA SURVEILLANCE
SYSTEMS AND DATA SOURCES
Malaria surveillance systems aim to assist public health prac-
titioners and decision makers to (i) identify the regions or
populations affected bymalaria; (ii) identify trends in malaria
morbidity and mortality and (iii) evaluate preventive or ther-
apeutic malaria interventions and programs [10].

Malaria data is currently stored in distributed databases in
different levels, locally and globally, and in various levels of
granularities. Recent advances in knowledge and technology
allow researchers to collect data from intelligent diseasemon-
itoring systems worldwide. The Scalable Data Integration for
Disease Surveillance (SDIDS) [11] is an example of an appli-
cation that enables the integration and analysis of malaria
data across multiple scales to support global health decision-
making. Africa Health Observatory (AHO) and real-time
Strategic Information System (rSIS) [12] are other examples
of surveillance systems that together aim at (i) monitoring
and facilitating the prediction of events and early-warning
systems (ii) sustaining the monitoring and evaluation of
health reforms and priority health programs, (iii) enabling the
generation and sharing of evidence for policy and decision-
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making, and (iv) establishing and maintaining networks and
communities of practice for the translation and application of
evidence and knowledge sharing [12].

In Tanzania, an integrated mobile health system com-
bining Coconut Surveillance [13] and Zanzibar’s Malaria
Case Notification (MCN) System [14] provide analysis of
the geo-location of malaria cases and generates reports to
health practitioners through SMS. The Swaziland national
malaria surveillance program [15] is another example.
Guintran et al. [16] and Ohrt et al. [17] provide non-
exhaustive lists of different African malaria surveillance
programs and systems.

There are several malaria data sources (e.g. databases
and ontologies) and systems that we analyze and use in
our project. The list of resources is as follows; Mapping
Malaria Risk in Africa (MARA) [18], [19], is an open-access
Web-based platform designed to extract and display raw
malariometric data, with an emphasis on prevalence data.
MARA represents data related to decades of malaria research
in Africa; VecNet [20], provides an interface to model the
impact of interventions on malaria transmission which is
supported by a repository of integrated data from disparate
sources; Global Malaria Mapper [21], [22], is a free plat-
form that allows various stakeholders to create maps showing
a range of themes (e.g. epidemiological profiles for coun-
tries and regions, reported cases, mortalities, and scale-up of
interventions within a given geographical area); the Malaria
Atlas Project [23], [24], maps the current parasite preva-
lence dataset provided by the USAID-funded MEASURE
Demographic and Health Surveys (MEASURE DHS) repos-
itory [25]; VectorBase [26], [27], is an integrated database
of vector information; Zambia’s District Health Information
Software 2 (DHIS2) [28], is an open source software platform
for reporting, analysis, and dissemination of data for different
health conditions, health programmonitoring, and evaluation.
Additionally there are ontologies such as the Ontology for
Vector Surveillance and Management (VSMO) [29], Malaria
Ontology (IDOMAL) [30], [31], Mosquito Insecticide Resis-
tance Ontology (MIRO) [32], [33], HealthMap [34], [35], and
other regional/local databases for malaria and health metrics
across the region.

Our proposed platform aims to provide a mechanism to
manage the evolution of these and other similar data sources
and improve the interoperability of the malaria surveillance
systems.

II. THE SIEMA ARCHITECTURE
The SIEMA architecture follows a standard multi-tier infor-
mation system design. Fig. 1 shows SIEMA’s main compo-
nents which are a presentation tier, a query tier, a service
tier and a data access tier. Within the architecture there
is considerable use of, and adherence to, data and knowl-
edge management standards recommended by the World
Wide Web Consortium (W3C) [36], for different tasks; for
example HTTP [37] for the server side HTTP request to
establish communication channels between the components,

Resource Description Framework (RDF) [38] graphs for
representation of the data in a relational database, Web
Ontology Language (OWL) [39] for representing the compo-
nents in ontologies and SPARQL [40] for querying purposes.
Additionally, we use the Semantic Automatic Discovery and
Integration (SADI) [41] design patterns for modeling the web
services I/O.

A. PRESENTATION TIER
The presentation tier aims to provide resources for users to
view global infrastructure changes and allow users to respond
using an interactive environment. This tier comprises two
main elements: a reporting tool in the form of a dashboard,
and a semantic query interface. The first element, the dash-
board presents a collection of widgets. Each widget presents
the status of some predefined metrics in the form of numbers
or textual information. Specifically, the following infrastruc-
ture components are monitored for changes that are dis-
played in the dashboard widgets; domain ontologies, service
ontologies, and databases. Additionally, dependencies among
the system components are monitored constantly to analyze
changes occurring in one component (e.g. a data source) and
the potential effects they might have on the rest of the system.
The dashboard also allows users to explore the metrics further
to pinpoint the reasons behind the failure of an operational
service.

The second element, the query interface is a graphical
query gateway that permits users to construct queries using
domain specific keywords and generate a semantic graph of
nodes and edges. The graph is translated into the query lan-
guage SPARQL used by the query engine in the Query Tier.
This type of query composition process allows non-technical
users to compose queries without learning the syntax and
complexity of the SPARQL and still define complex queries
to search for relevant malaria data and information.

B. QUERY TIER
The query tier leverages a query engine designed to receive
a query in SPARQL syntax. The query engine matches
predicates in the SPARQL query to predicates that describe
the functionality of deployed SADI semantic web services,
hosted in a registry. Given that complex queries must recruit
multiple services to deliver the requested data the engine also
performs query planning, designing and running a bespoke
workflow for each query. The query engine can be used to
query multiple distributed sources of data and return the out-
puts, as if the user had queried a single database. Two existing
query engines operate on SADI services, SHARE [42] and
HYDRA [43], [44].

C. SERVICE TIER
The service tier comprises two components (i) one or more
registries for hosting of service descriptors (ii) the service
descriptors in the form of service ontologies that represent
descriptions of expected Web service inputs, and the provi-
sional outputs. HYDRA and SHARE are able to discover and
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FIGURE 1. A diagram representing the architecture of the SIEMA Infrastructure.

interpret service ontologies deployed in a registry. A brief
description of each of the registry and services is given below.

1) SERVICE REGISTRY
Every deployed SADI semantic web service is hosted in a
registry. Each service has a unique endpoint which responds
to HTTP GET with a service interface document containing
the input and output definitions expressed in OWL classes
with object and/or data properties restriction. Services are
discovered based on the properties and the types of input.
Invocation of a service is performed through plain HTTP
POST of RDF data to the service endpoint. For each service,
the registry also contains auxiliary information such as the
description of the service’s functionality, information about
its creator, and a unique name, all of which are based on
the myGrid ontology [45] for describing functions of web
services and their parameters.

2) SERVICE ONTOLOGIES
Input and output of each service are defined in the ser-
vice ontology as an OWL class expression along with the

related data/object property restrictions. The input RDF data
is classified against the input OWL class. After the service is
executed, this RDF data is enriched with properties attached
to instances or literals such that the enrichment is classified
against the output OWL class. This enrichment preserves the
SADI principle that the URI of the input OWL class instance
is the same as the URI of the output OWL class instance,
having a common node as root.

D. DATA ACCESS TIER
This tier provides access to data using SemanticWeb services.
Each service is built based on the SADI framework. SADI
services only consume and produce data modeled in RDF
format. As a result, each service must read input values from
RDF data and write the results into RDF data, before and
after executing the services, respectively. Just like a typical
database query service, a SADI servicemay include database-
specific SQL queries.

This tier also includes mapping rules, which are expres-
sive rules to map relational database schemas to the
domain ontologies. Expressive rule languages such as
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TABLE 1. A snapshot of the table species bionomics in VecNet.

Rule Interchange Format (RIF) [46], and Positional-Slotted
Object-Applicative (PSOA) [47] are used for this purpose.

E. ROLE OF AGENTS IN SIEMA
1) CHANGE CAPTURE AGENT (CCA)
The CCA checks various data sources in order to detect and
identify changes. It does so by using two different mecha-
nisms:

a) The CCA keeps track of queries used and compares
their answers over time. If the same query gives dif-
ferent answers at different times, it indicates that some
part of the data has been modified.

b) The CCA also looks at change logs that are created
by tools like RacerPro [48] or Protégé [49] used for
ontology reasoning and editing. When a new entry is
made in a change log, the CCA flags that some change
has occurred.

2) CONSISTENCY MANAGEMENT AGENT (CMA)
The role of the CMA is to keep an eye on the consistency
of the system. It sends and receives information to and from
the CCA to know the status of the services. Based on the
output generated by the CCA, if the CMA determines that
one or more services in the Data Access Tier are prone to
malfunction, it sends a signal to the SMA, which then prompts
to rebuild the affected service with updated information.

3) SERVICE MANAGEMENT AGENT (SMA)
The task of the SMA is to build SADI services. Currently,
query services can be built automatically [50]. The SMA will
build a SADI service only if the Action signal is transmitted
from the CMA.

III. GRAPH AND TRANSFORMATIONS
In this section, we introduce the underlying formalism that
we use to represent the malaria resources (e.g. ontologies,
databases), the related data and their evolution. Simply put,
a graph is composed of a set of nodes that represent indi-
vidual elements that we aim to represent, and of a set of
edges, that represent the relationships between the individ-
uals. Graph transformations allow creating a new graph from
an existing one by applying rules. Graph transformations
can take several forms, the most popular being the algebraic
approach [51], [52] and algorithmic methods that make use
of actions. In this paper, we choose a more algorithmic
approach [53], [54].

A. DATA REPRESENTATION
One of the most important problems SIEMA is trying to
address is the interoperability between various data sources
with different lexicons, semantics, and languages. The inter-
operability is achieved operationally by using semantic web
services along with an abstract formal language. The abstract
language enables the users to ignore the specifics of each
source language and concentrate on the information they
contain.

We follow the standards to represent data (RDF) and
ontologies (OWL). Even for sources that do not typically
follow the RDF standard (for instance, databases), the con-
version to graph representation [55] is always an option.
Example 1 shows the translation of data coming from a table
in VecNet database into a graph. The abstraction of the data as
a graph is only used as an intermediate device on which it is
easier to reason. It is easier to define an action on the graph,
say find the ages of all patients, than to define the specific
action required for each source.
Example 1: Table 1 is a snapshot at a table in VecNet.

Fig. 2 contains some of the information of Table 1 rep-
resented as a graph. There are many ways to interpret
a table depending on the language that is used. In this
case, we assume that circles are ontological concepts (e.g.
1 is the instance of the concept ANOPHELES corresponding

FIGURE 2. A graph representation of part of the table Species Bionomics
in VecNet.
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to the row with id 1 while Dom is the instance Dominant
of the concept VECTORSTATUS) while rectangles are data val-
ues, that is to say represent actual values not concepts
(e.g. 87 represents the integer 87). Edges represent rela-
tions between nodes. For instance, plain arrows represent
the relation HasVectorStatus, double-headed arrows repre-
sentHasForm, dashed arrows representHasLarvalSurvival-
RateMinimum and dotted arrows represent HasLarvalSur-
vivalRateMaximum. The edge between 2 and Dom is thus
interpreted as HasVectorStatus(2, Dom) which is the same
information that can be found in the table at the intersection
of the Row 2 and the column Vector Status.
The formal definition we use slightly differs from the

popular, and less expressive, definition. In addition to the sets
of nodes and edges, we define functions that label nodes and
edges with attributes. These attributes are formulae from a
logic. This is why we call them logically decorated graphs.
For the rest of this paper, graphs should be interpreted as
logically decorated graph.
Definition 2 (Logically Decorated Graph): Let L be a

logic (set of formulae). A graph alphabet is a pair (C, R)
of sets of elements of L, that is C ⊆ L and R ⊆ L. C is
the set of node formulae or concepts andR is the set of edge
formulae or roles. Subsets of C and R, respectively named
C0 and R0, contain basic (propositional) concepts and roles
respectively. A logically decorated graph G over a graph
alphabet (C, R) is a tuple (N , E, 8N , 8E , s, t) where N is
a set of nodes, E is a set of edges, 8N is the node labeling
function, 8N : N → P(C), 8E is the edge labeling function,
8E : E → P(R), s is the source function s : E → N and t is
the target function t : E → N.
First we need to define the logic we use to decorate the

graphs. Several different types of logic have been proposed
to describe graphs [56]–[59]. Generally, the choice of the
logic depends on various factors, most importantly to the
underlying representation needed for a given problem and the
types of inferences that need to be drawn. In this study, we
use first order logic, because first of all it is arguably one of
the most well-known and used types of logics and also it is
expressive enough to represent the properties that we need.

Choosing the right logic for a specific application is no
trivial task. Different applications may require to express
properties of higher order and to use highly expressive axioms
(e.g. restrictions). On the other hand, many problems in
expressive logics are undecidable, which limits their usability.
One may thus have to accept a trade-off between expressivity
and computational efficiency.

B. DATA MODIFICATION
Graphs are used to represent the data and they allow us
to work with an abstract structure that allows us to forget
about sources’ characteristics. Yet, the fact is that malaria
surveillance data sources are bound to evolve. New knowl-
edge is obtained, old data become obsolete, insects develop
new resistances to pesticides, people move, new drugs are
created and old ones are dropped, climate and socioeconomic

situations change, and so forth. In the same way, people may
decide to structure data differently or new troves of data are
created or become available or relevant.

The most common change is the addition or deletion of
data, tables or the modification of the schemas in a database
or a data-warehouse. Additions and deletions occur in ontolo-
gies as well, to keep the knowledge current.
Example 3: Fig. 3 shows a fragment of the IDOMAL ontol-

ogy in graph representation. It shows that the exact same
concept (e.g. Anophelinae) can be defined in several different
ontologies without any connection between the definitions. To
be more precise, it is possible for an element to be considered
as Anophelinae according to one definition and not the other

FIGURE 3. A graph representation of part of the ontology IDOMAL. Plain
arrows represent the relation is_a that is defined in IDOMAL; dashed
nodes represent classes defined in MIRO but not in IDOMAL; dashed
arrows represent the relation is_a that is defined in MIRO.
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despite the fact that both are expected to represent the same
concept. In this example, when integrating IDOMAL and
MIRO, since the concepts Anophelinae in both ontologies
are equivalent, they can be merged into one. On the other
hand, the class Insect in IDOMAL does not seem to have
an equivalent in MIRO. The concept Biological Material in
MIRO represents dead or live insects. It is, however, possible
to have Insects, defined in IDOMAL, that are not Biological
Materials, defined in MIRO, and vice-versa because their
definitions are not related even though the concepts they
represent are.

As we decided to model data sources as graphs, we con-
sider all the changes as being graph transformations. We
use an algorithmic representation to define graph transfor-
mations. In this research we use the algorithmic approach
defined in [60]. The most basic components of graph trans-
formation that we consider are elementary actions. These are
actions that modify a graph in a predefined way. They allow
to:
• Add (or remove) a label to (or from) a node or an edge;
• Create or delete nodes and edges;
• Redirect incoming or outgoing edges from a node to
another; or

• Clone a node or to merge two existing ones.
Based on different situations many such elemental actions

can be defined, subject to checking the theorems afterward to
see if they still hold when such elemental actions are allowed.
For the sake of brevity, here we only define a few of such
actions.
Definition 4 (Elementary action, action): An elementary

action, say a, may be of the following forms:
• a node addition addN (i) (resp. node deletion delN (i))
where i is a new node (resp. an existing node). It creates
the node i. i has no incoming nor outgoing edge and it is
not labeled with any basic concept8N (i)∩C0 = ∅ (resp.
it deletes i and all its incoming and outgoing edges).

• a concept addition addC (i, c) (resp. concept deletion
delC (i,C)) where i is a node and c is a basic concept
(a proposition name) in C0. It adds the label c to (resp.
removes the label c from) the labeling of node i.

• a role addition addR(i, j, r) (resp. role deletion
delR(i, j, r)) where i and j are nodes and r is an basic role
(edge label) in R0. It adds the label r to (resp. removes
the label r from) the labeling of the edge represented by
the pair (i, j).

• a node merging mrg(i, j) where i and j are different
nodes. It is the elementary action that merges i and j. It
redirects all edges coming from (resp. going to) j toward
i and adds the labels labeling j to the labeling of i. It also
removes j.

An action, say α, is a sequence of elementary actions of
the form α = a1; a2; . . . ; an. The result of performing α on a
graph G is written G[α]. G[a;α] = (G[a])[α] and G[ε] = G
with ε being the empty sequence.
The result of performing the elementary action α on

a graph G = (NG,EG,8G
N ,8

G
E , s

G, tG), written G[α],

produces the graph G′ = (NG′ ,EG
′

,8G′
N ,8

G′
E , s

G′ , tG
′

)
defined as:

• If α = addC (i, c) then:

– NG′
= NG

– EG
′

= EG

– 8G′
N (n) =

{
8G
N (n) ∪ c if n = i

8G
N (n) if n 6= i

– 8G′
E = 8

G
E

– sG
′

= sG

– tG
′

= tG

• If α = delC (i, c) then:

– NG′
= NG

– EG
′

= EG

– 8G′
N (n) =

{
8G
N (n)\c if n = i

8G
N (n) if n 6= i

– 8G′
E = 8

G
E

– sG
′

= sG

– tG
′

= tG

• If α = addR(i, j, r) then:

– NG′
= NG,

– 8G′
N = 8

G
N

– EG
′

= EG ∪ e where e is a new element

– 8G′
E (e′) =

{
r if e′ = e
8G
E (e
′) if e′ 6= e

– sG
′

(e′) =

{
i if e′ = e
sG(e′) if e′ 6= e

– tG
′

(e′) =

{
j if e′ = e
tG(e′) if e′ 6= e

• If α = delR(i, j, r) then:

– NG′
= NG

– 8G′
N = 8

G
N

– EG
′

= EG\{e|sG(e) = i ∧ tG(e) = j ∧8G
E (e) = r}

– 8G′
E is the restriction of 8G

E to EG
′

– sG
′

is the restriction of sG to EG
′

– tG
′

is the restriction of 8G
E to EG

′

• If α = addN (i) then

– NG′
= NG

∪ i where i is a new node

– 8G′
N (n′) =

{
∅ if n′ = n
8G
N (n
′) if n′ 6= n

– EG
′

= EG

– 8G′
E = 8

G
E

– sG
′

= sG

– tG
′

= tG

• If α = delN (i) then:

– EG
′

= EG\{e|sG(e) = i ∨ tG(e) = i}
– NG′

= NG
\i

– 8G′
N is the restriction of 8G

N to NG′

– 8G′
E is the restriction of 8G

E to EG
′

– sG
′

is the restriction of sG to EG
′

– tG
′

is the restriction of 8G
E to EG

′
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• If α = mrg(i, j) then:
– NG′

= NG
\{j}

– EG
′

= EG

– 8G′
N (n) =

{
8G
N (i) ∪8

G
N (j) if n = i

8G
N (n) otherwise

– 8G′
E (e) = 8G

E (e)

– sG
′

(e) =

{
i if sG(e) = j
sG(e) otherwise

– tG
′

(e) =

{
i if tG(e) = j
tG(e) otherwise

Elementary actions in and of themselves are not enough
to describe the complex changes that we are interested in.
In particular, all elementary actions work on nodes that need
to be provided. On the other hand, one often wants to apply
the same change to all elements of a table in a database or a
sub-taxonomy in an ontology with a given property without
having to enumerate them. For instance, one might want to
flag all patients that have had malaria in the past as possible
healthy carriers without having to actually name every single
one of them. In order to tackle this problem, we introduce
the notion of logically decorated rewriting systems. These
are extensions of graph rewriting systems defined in [53]
where graphs are attributed with formulas from a given logic.
The left-hand sides of the rules are thus logically decorated
graphs whereas the right-hand sides are defined as sequences
of elementary actions.
Definition 5 (Rule, Logically Decorated Rewriting Sys-

tem): A rule ρ is a pair (LHS,α) where LHS, called the left-
hand side, is an attributed graph with formulae as attributes
and α, called the right-hand side, is an action. Rules are
usually written LHS → α. A logically decorated rewriting
system, LDRS, is a set of rules.

The fact that the left-hand side of a rule is an attributed
graph, and that it can contain nodes labeled with formulae,
is important. Indeed, these formulae can express reachability
(closure of a program), conditions on the number of neighbors
(counting quantifiers), non-local properties (universal quan-
tifiers) and so forth depending on the chosen logic.
Example 6: Fig. 4 shows examples of rules that could be

applied to a knowledge base consistent with the IDOMAL
ontology. The first rule, ρ0, looks for a PROCESS and a DURATION

and adds the fact that the process lasts for the duration.

FIGURE 4. Examples of rules: ρ0 adds a duration to a process; ρ1 makes a
Symptom that happens_during every Process a Constant.

ρ1 looks for a SYMPTOM that happens_during every PROCESS, that
is such that every PROCESS has an incoming edge labeled with
happens_during coming from the SYMPTOM, and labels it as
CONSTANT.

Rewrite rules and logically decorated rewriting systems
offer much more flexibility than elementary actions. They
allow applying the change to elements that satisfy conditions
instead of named elements, which is to modify elements
knowing their properties and not their identities. In order to
find the elements that the left-hand side can be mapped to, we
define the notion of ‘‘Match’’.
Definition 7 (Match): A match h between a left-hand side

LHS and a graph G is a pair of functions h = (hN , hE ), with
hN : NLHS

→ NG and hE : ELHS → EG such that:

1) ∀n ∈ NLHS ,∀c ∈ 8LHS
N (n), hN (n) |H c

2) ∀e ∈ ELHS ,8G
E (h

E (e)) |H 8LHS
E (e)

3) ∀e ∈ ELHS , sG(hE (e)) = hN (sLHS (e))
4) ∀e ∈ ELHS , tG(hE (e)) = hN (tLHS (e))

The third and the fourth conditions are classical and high-
light the fact that the source and target functions and the
match have to agree. The first condition says that for every
node n of the left-hand side, the node, h(n), to which it is
associated in G has to satisfy every concept that n satisfies.
This condition clearly expresses additional negative and pos-
itive conditions, which are added to the ‘‘structural’’ pat-
tern matching. The second condition ensures that the match
respects edge labeling as well.
Definition 8 (Rule Application): A graph G rewrites to

graph G′ using a rule ρ = (LHS, α) iff there exists a match h
from LHS to G. G′ is obtained from G by performing actions
in h(α).1 Formally, G′ = G[h(α)]. We write G →ρ G′ or
G→ρ,h G′.

When considering a system of rewrite rules, it is natural to
consider the order in which the rules are applied. Confluence,
the property that indicates there is only one possible result, of
graph rewriting systems is not always easy to establish. For
instance, orthogonal graph rewrite systems2 are not always
confluent (see [53] for examples) even though orthogonal
term rewrite systems are. So we use the notion of rewrite
strategies to control the use of possible rewrite rules. Infor-
mally, a strategy specifies the application order of different
rules. It does not point to where the matches are nor does it
ensure the unicity of the reduction outcome.
Definition 9 (Strategy): Given a graph rewriting sys-

temR, a strategy is a word of the following language defined
by s:
s := ε (Empty strategy) ρ (Rule)

s; s (Composition) s⊕ s (Choice)
s∗ (Closure)

where ρ is any rule inR.
We write G ⇒S G′ when G rewrites to G′ following the

rules that are given by the strategy S.

1h(α) is obtained from α by replacing every node name, n, of LHS by h(n).
2Orthogonal graph rewrite systems are systems in which there cannot be

more than one rule that can be applied to a given subgraph at any step.
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Intuitively, the strategy ρ consists of applying the rule ρ
once. The strategy ε does nothing. The composition s0; s1
applies the strategy s0 and then the strategy s1 while the
choice s0 ⊕ s1 non-deterministically applies either s0 or s1.
The closure s∗ applies a strategy for as long as possible.
We have to mention that using the closure forces us to be

cautious while designing transformation rules. It is indeed
easy to devise strategies that are obviously non-terminating.
Even though non-terminating strategies are not forbidden per
se, they do not usually represent the changes that a surveil-
lance expert or ontology manager has in mind as one would
expect the changes we enact to have an end that is a final state.
Example 10 contains an example of such a non-terminating
strategy.
Example 10: The rules presented in Fig. 4 may seem sensi-

ble and one may want to apply the strategy ρ∗0 to give to each
PROCESS a DURATION but an application of such a strategy, pro-
vided there exist at least one PROCESS and at least one DURATION,
would never stop as ρ0 does not preclude the creation of an
already existing edge. An alternative rule, ρ′0, that would yield
a terminating strategy is given in Fig. 5. Applying the strategy
ρ′∗0 terminates, provided there is a finite number of PROCESSes,
as it can be applied, at most, once by PROCESS.

FIGURE 5. Examples of rules: ρ0 adds a duration to a process that does
not already have one.

Let us now give an example of transformation with a
slightly more complex strategy.
Example 11: One of the most common changes in ontolo-

gies is the identification of concepts defined in differ-
ent ontologies but that are equivalent. For instance, as
shown in Fig. 3, both IDOMAL and MIRO define a
concept Culicidae. Assuming that the graph we consider
describes both ontologies (and, in particular, contains a
node named MIRO:Culicidae and another node named
IDOMAL:Culicidae) and contains some data about Culi-
cidae (that is there exist a label MIRO:CULICIDAE and a label
IDOMAL:CULICIDAE), one could apply the strategy ρ0; ρ∗1 to
update the graph. Applying ρ0 merges the definitions in the
two ontologies while ρ∗1 relabels the nodes that are affected
by the change. This example is illustrated in Fig. 6.

In the following, because the transformations we use as
examples are designed to be simple and intuitive, one rule
will be sufficient most of the times. In the following, we will
define rules, and strategies when applicable, with examples.

IV. CASE STUDY
Now that graphs and their transformations have been formally
defined, we look at changes in the context of malaria data

FIGURE 6. Rules that redefine IDOMAL:Culicidae as MIRO: Culicidae and
make the appropriate changes to the knowledge base.

sources. Changes can come in many varieties affecting dif-
ferent components of a malaria surveillance infrastructure.
However, it does not mean that these changes are completely
isolated with no interaction with each other. We examine
our model by analyzing standalone restricted changes first.
In some cases, changes may affect the consistency of the
captured knowledge and in turn may threaten the validity
of the logically inferred knowledge. Example 12 presents
such a case. Here, we do not consider changes that cause
inconsistency (in such cases, the focused should be on the
repair rather than querying).
Example 12: Let us assume that our domain ontologies

contain an axiom stating that only BIOLOGICAL MATERIAL entities
have a Lifespan and an axiom stating that a GEOGRAPHICAL

LOCATION is not aBIOLOGICALMATERIAL. We also assume that in our
database there is a table that states Uganda is a GEOGRAPHICAL

LOCATION whose Capital is Kampala. If the database evolves
in a way, say by applying the rule presented in Fig. 7, that
adds the assertion that Uganda has a Lifespan, the knowl-
edge becomes inconsistent, since it is possible to infer that
Uganda is a GEOGRAPHICAL LOCATION, as this is an assertion in
the database, and that Uganda is not a GEOGRAPHICAL LOCATION,
as it has a Lifespanmaking it aBIOLOGICAL MATERIAL that cannot
be a GEOGRAPHICAL LOCATION.

FIGURE 7. A rule that adds a Lifespan to Uganda.

We classify changes by specifying what part of the knowl-
edge can be changed.

A. TARGET OF CHANGE
"Data" is the most frequently changing element in a knowl-
edge base. Some pieces of data are added to databases while
others are discarded. This is the most common change and
one that happens during the development phase as well as
during its operation.
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Example 13: Let us assume that we have a database con-
taining information about GEOGRAPHICAL LOCATION. In particular,
it keeps track of the current Weather and Temperature. In
order to do that, captors have been used to return a value
with a given periodicity. Each time a new set of measurement
is produced, the database has to be updated: the old values
are discarded and the new ones are inserted. One of the rules
that are used could be the one from Fig. 8 that updates the
Temperature of a GEOGRAPHICAL LOCATION.

FIGURE 8. A rule that updates the Temperature of a GEOGRAPHICAL
LOCATION to 35◦C.

Domain ontologies are also subject to change. Many
domain ontologies are under active development reusing
parts of existing domain ontologies and creating new ones.
When working with different interconnected domain ontolo-
gies it is not unusual to find redundancy and heterogeneity
(e.g. concepts that are represented in several domain ontolo-
gies in different ways, structurally and semantically). Improv-
ing the interoperability between these ontologies requires
changes in one or multiple components.
Example 14: Fig. 3 shows a fragment of the IDOMAL

ontology in graph representation. In order to improve the
interoperability between MIRO and IDOMAL, one could
apply the rule ρ0 of Fig. 6.

Also, database schemas change when new kinds of infor-
mation are added or deleted, for instance by creating a new
table replacing what was a column in a previous table. This
has a deep impact on the related ontologies that interpret the
data since they have to be able to represent the new informa-
tion. Thus, changes in the schema usually force changes in
the related ontologies, or at least in the rules interpreting the
database as an instance of the ontology.
Example 15: Let us assume that the data contains a table

where GEOGRAPHICAL LOCATIONs are linked to their COUNTRY, NAME,
GAULCODE and to the estimated PERCENTAGEOFHOUSEHOLDSWITH ITN
and another one whereGEOGRAPHICAL LOCATION are linked to their
COUNTRY, NAME, GAUL CODE and to the estimated PERCENTAGE OF

POPULATION PROTECTED BY IRS. There is obviously many overlaps
between the two tables. To reduce the cost of storing the
database, it makes sense to keep only one table with all the
information about GEOGRAPHICAL LOCATIONs. Applying the rule of
Fig. 9 with the strategy ρ∗ would yield that result.
After introducing a few different types of changes, we now

describe how to handle them; more specifically how to detect
the change and how to consistently manage their effects.
We focus first on the detection.

FIGURE 9. A rule that updates tables by moving the content of a column
from one to the other.

B. CHANGE DETECTION
Before being able to update the infrastructure to handle the
changes, it is crucial to actually detect such changes. This task
is performed by the Change Capture Agent. How to detect
those changes depends mostly on what has changed. In the
case of a change in the data, a change is detected when a query
returns a result that differs from the one it used to return.
In order to detect that kind of change, one has to store the
result of previous queries and check whether the new result
is the same or not. The infrastructure is thus extended by the
addition of a triple-store that contains a query, its timestamp,
and its result. This allows tracking the evolution of data in the
infrastructure.
Example 16: Assume that the data contains a table with

various Ugandan cities and their population. We query by
asking for the list of all cities with more than 200,000 inhab-
itants. The result, in 2011, is only Kampala. This result
is stored in the triple-store as {Cities with a population
greater than 200,000, 2011, (Kampala)}. The query is run
again in 2014 and the result is now (Kampala, Nansana,
Kira). A new triple is added, namely {Cities with a popu-
lation greater than 200,000, 2014, (Kampala, Nansana,
Kira))}. It is then compared to the previous one. The set of
answers has changed and thus a change has occurred.

Changes in the domain ontology can also be detected
using the stored triples. It is, however, much less efficient as
modifications of the domain ontologies affect services more
than their results. This means a service may return the same
result even though the data changed but the service did not
notice the change.
Example 17: Assume that a query has been produced that

returns the names of all CULICIDAE from IDOMAL, a domain
ontology. IDOMAL is modified by adding the fact that the
concept CULICINAE, defined in the domain ontology VectorBase
CV [61], is a subconcept of CULICIDAE. This means all CULICINAEs
are also CULICIDAEs. If the same query as before is used, even
assuming that there exists a service that lists the names of
all CULICINAEs, they will not be considered because the query
engine does not know how to use the service.

Moreover, the impact of the change is more profound
when the domain ontologies change. Indeed, as the domain
ontology is used to create the services, if the domain ontol-
ogy changes, the language and axioms used in the query
may no longer represent valid knowledge; thus the query
completely fails because it no longer conveys a meaning.
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In that case, the Consistency Management Agent (CMA)
detects the inconsistencies and requests an update to resolve
it. CMA also indicates whether a change has occurred in the
domain ontology or in the database schema. After detecting
the changes we need to be able to identify and classify them
as well. To do so, we use change logs that keep track of the
changes. The change logs stored historical data expressed in a
uniform language, which is the same for all kind of changes.
This makes it possible to parse the logs and update the service
ontologies, the web services, the queries and, possibly, the
translation rules accordingly.

C. HANDLING CHANGE
Once a change has been detected and identified, it is possible
to update the infrastructure to cope with the change using
the Service Management Agent. The magnitude and scope of
change and its target location determine how it is handled. If it
only affects the data, e.g. new pieces of information are added
or deleted, without changing the database schema, the change
management will be relatively easy, as it only changes the
results of the queries. On the other hand, when the underlying
domain ontologies used by web services are modified, the
services become inconsistent with the ontologies. Therefore,
the service ontologies need to be rebuilt to be once again
consistent with the domain ontologies.
Example 18: Let us consider IDOMAL as our domain

ontology. We are interested in the Names of all CULICIDAE

and that there exists a service that takes as input an
IDOMAL:CULICIDAE and outputs its Name. At that point,
we realize that some tables are interpreted as being
MIRO:CULICIDAE and we decide that they represent the same
concept and thus merge them. A new service may have to be
created that takes as input a MIRO:CULICIDAE and outputs its
Name. Both services are then used to answer the query.

When we modify a database schema the change manage-
ment process becomes more challenging, as one has to rede-
fine the translation rules between the schema and the domain
ontologies. This is not easy to automate as some changes may
be interpreted in different ways and the modified element in
the database (e.g. a column) can either correspond to several
different concepts defined in the domain ontologies or none.
Example 19: Let us assume that the database has a

table containing information about CULICIDAE. A new column
exhibitsTrait is added whose value is a string.
Assuming data is added to the current knowledge, there

may be no specific term in the domain ontologies that rep-
resent that new relation or concept or they may be many
different terms, such as synonyms. This makes the auto-
matic interpretation very difficult, therefore requires a partial
human supervision and guidance to interpret andmanage new
pieces of data semi-automatically.
Example 20: Let us assume that we add the following

elements: Anopheles Merus is EXOPHILIC, Anopheles
Melas is a SALTWATER SPECIES, Anopheles Funestus is
STRONGLY ANTHROPOPHILIC and Anopheles Kerteszia is
living in bromeliads. The first one is rather easy

to interpret as IDOMAL contains a concept for EXOPHILY. The
second one requires more thinking as SALINE LAKE, SALINE WATER

and SALINE WEDGE ESTUARY are imported from the Environment
Ontology [62]. A solution would be to consider the addition
of Anopheles Melas lives_in place where place
belongs to one of the three salty concepts instead of adding a
concept assertion about Anopheles Melas. The third is
still harder. The concept ANTHROPOPHILIC could be used. However,
it is a qualitative concept compared to the quantitative STRONGLY

ANTHROPOPHILIC. Finally, the last one corresponds to no known
concept in any domain ontology we use and is thus impossible
to accurately interpret.

D. UTILIZING CHANGE
Up to this point, a change was considered as some sort of
obstacle. It is, however, possible to consider change as a
natural and integral part of any live and dynamic data source.
Indeed, as we store previous results of queries, we can times-
tamp and store different versions of domain ontologies or
databases and use them for ad-hoc and agile querying.
Example 21: Assume we store in the triple-store the result

of multiple queries of the form: ‘‘What is the weather like in
CITY today?’’ whereCITY covers a range of various cities. Then
we might be interested in a query that gives us the list of all
cities in which the weather has been sunny at least one-third
of the time during the past week.

This approach is not, in and of itself, much different from
the querying of distributed sources. The main problem is that
the size of queried data is much bigger.

E. CHANGE CLASSIFICATION
It is possible to classify changes according to their impact on
changing the definition of services and mapping rules. The
table in Table 2 lists examples in both categories. Simply put,
when the change only affects the data, by adding or removing
elements, the change is non-critical and the infrastructure is
left unchanged. On the other hand, when the structure of the
data source is modified, be it in the domain ontologies or
the database schema, the change is critical. The classification
presupposes that the concepts and relations used in the non-
critical cases existed before the change. If new concepts and
relations are introduced, the change is always critical.

TABLE 2. A classification of the examples presented in this paper
depending on whether they are critical or not.

F. USE CASE SCENARIO
We now walk through an example to demonstrate how the
various components in the SIEMA infrastructure act together

VOLUME 5, 2017 21615



J. H. Brenas et al.: A Malaria Analytics Framework to Support Evolution and Interoperability

FIGURE 10. A SPARQL query that returns the indoor feeding rates and the
names of all culicidae.

to detect identify, classify changes and consistently update
the data sources accordingly and to facilitate their interoper-
ability. In our example, we run the SPARQL query shown
in Fig. 10 before any change occurs. It returns the list of
the Culicidae species and their indoor feeding rate. It is run
against the vector base table shown in Table 1. We consider
IDOMAL as our domain ontology.We assume that there exist
rules that map each row in the table to a Culicidae. Two
services are defined to make this query possible:

1) One takes a Culicidae (represented by its Id) as input
and returns its species (e.g. if the input is 2, it will return
An. Funestus)

2) The other takes a Culicidae as input and returns an
indoor feeding rate (e.g. if the input is 5, it will
return 40).

In both cases, the input is a Culicidae as defined by
IDOMAL.

Assume now that the change presented in Example 11 is
applied, and the rows of the table are now interpreted as
Culicidae according to the definition of MIRO instead of the
one of the IDOMAL. The architecture goes through several
steps to handle this change.

1) When the query is run again, it returns no result at
all as there no longer is any Culicidae according to
IDOMAL’s definition, all the elements in the table
being interpreted as Culicidae according to MIRO’s
definition.

2) The Change Capture Agent detects that something
changed because the result of the query is different.

3) The Consistency Management Agent then checks the
consistency of the service ontology with the domain
ontologies. No problem is detected because the prob-
lem is not that the IDOMAL definition of Culicidae
has been removed. The definition is still part of the
ontology but it merged with the one from MIRO. The
problem is that the concept is not used in the tables
anymore.

4) By looking at the change logs, the exact modification
is detected.

5) The Service Management Agent asks for the update of
all services using the IDOMAL definition of Culicidae
to now use the definition from MIRO. The services are
now defined in the same way except that the inputs are
Culicidae as defined by MIRO.

6) When the services are updated, the query is run again
and it now returns the same result as before the change
occurred.

V. EVALUATION
As per the functional requirements, a robust surveillance sys-
tem should be capable of detecting and identifying changes
anticipated in its components. In the event of a change in the
system, it should be able to provide warnings and advisory
messages to prevent the services frommalfunctioning or even
rebuild and redeploy the services if necessary. The evaluation
of SIEMA will be focused on two important tasks: i) how
accurately the system can capture and classify the anticipated
changes? and ii) how well does the system manage these
changes and control their impacts?

The entire system should function efficiently as a sin-
gle unit and work reliably at all times and under varying
conditions.

The reliability of the system depends on the degree of inter-
operability between its individual components. The number
of system failures, as well as false alarms, and misclassifi-
cation are also good measures of the system’s reliability Our
evaluation plan for SIEMA is centered over two criteria; first,
the accuracy of identifying changes and second, the accuracy
of algorithms determining the effects of the changes. The
ability to accurately identify different types of change in the
system can be evaluated by comparing the information from
the log history with the new upcoming data. These changes
are generally anticipated in the domain ontologies as well as
in the relational databases. At this stage in our experiments,
a change can be as simple as the addition of new concepts
and/or relations or deletion of existing concepts and/or rela-
tions in domain ontologies. Changes in the database could be
in the form of a new data type, or even rearranging the order
of attributes of a table.

A unified view of these changes would be presented to
the user on multiple widgets in a dashboard window [63].
The different algorithms used by the Change Capture
Agent (CCA), Consistency Management Agent (CMA), and
Service Management Agent (SMA) together will monitor
changes and determine the impact of changes on the current
services. Therefore, the accuracy of these algorithms needs
to be evaluated to ensure that correct interpretation is made
for advisory and control decisions. In our preliminary exper-
iments, we discovered that determination of the impact can
be more complex when there is a change in the relational
database compared to the changes in the domain ontologies.
The reason is that the specifications of web services keep both
syntactic and semantic relations within the ontologies during
all stages of creation, deployment, discovery, composition,
and execution while the database is accessed only during
the execution phase. A workaround is being considered for
determining the impact of the change in a database on the
deployed services. This examines the explicit semantic map-
ping of relational databases and domain ontologies and their
relations with the semantics of the deployed services.

VI. DISCUSSION AND CONCLUSION
In this article, we have discussed the importance of change
management to maintain interoperability between different
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malaria data sources for surveillance purposes.We then intro-
duced SIEMA, a web-based platform that facilitates change
management andmaintains interoperability between different
dynamic malaria data sources.

Considering that both the data and schema evolve over
time, we proposed a formal methodology based on graph
transformation to detect, and identify changes and illus-
trated this through a series of examples. There are still
some limitations and challenges that need to be addressed.
For example, in a dynamic distributed environment it is
important to be able to manage asynchronous accesses and
changes since not all data repositories are available at all
times. A further challenge is the management of heteroge-
neous data sources consisting of data with various degrees of
granularity.

In addition, approaching change from the end-user per-
spective is far from being the only option. Particularly in the
case of structural or ontological changes, evolution is done
with a purpose and should not be considered as a hindrance.
Being able to improve ontologies and database schemaswhile
maintaining consistency is an important issue that deserves
further consideration. There are two aspects to this approach:
one is using verification of graph transformations [54] to
prove that the changes will yield a knowledge base that meets
our expectations and the other one is proposing repair [64]
solutions to solve inconsistencies when they are unavoidable.
Another important step is to establish a communication chan-
nel, for the agents presented in our infrastructure, to facilitate
dialectical change [65] management.

As future work, we will develop algorithms to express
more complex types of changes [66] as well as concurrent
changes in the system. Also, we will be providing the robust
implementation of the dashboard that will be used to detect
changes. Finally, we will expand our system to ensure lan-
guage (e.g. French and English) interoperability between dif-
ferent surveillance system implemented in different African
countries (e.g. Uganda and Gabon). Besides malaria surveil-
lance, SIEMA can be generalized to maintain interoperability
and evolution in other domains as well.
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