
Received September 6, 2017, accepted September 29, 2017, date of publication October 9, 2017,
date of current version November 7, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2760914

A Novel DAL Scheme With Shared-Locking for
Semantic Conflict Prevention in Unconstrained
Real-Time Collaborative Programming
HONGFEI FAN 1, (Member, IEEE), HONGMING ZHU1, QIN LIU1, YANG SHI 1, (Member, IEEE),
AND CHENGZHENG SUN2, (Member, IEEE)
1School of Software Engineering, Tongji University, Shanghai 201804, China
2School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798

Corresponding author: Yang Shi (shiyang@tongji.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61702374, Grant 61772371, and
Grant 61202382, in part by an Academic Research Grant MOE2015-T2-1-087 from MOE Singapore, in part by the Shanghai Sailing
Program under Grant 17YF1420500, in part by the National Key Research and Development Program of China under
Grant 2016YFB1000805, in part by the Fundamental Research Funds for the Central Universities, and in part by
the Scientific Research Foundation for the Returned Overseas Chinese Scholars. This paper is an expanded version of [7] accepted and
presented at the 2017 IEEE 21st International Conference on Computer Supported Cooperative Work in Design (CSCWD 2017),
26-28 April 2017, Wellington, New Zealand.

ABSTRACT Real-time collaborative programming allows a team of programmers to concurrently edit
the shared source code document at the same time. To support semantic conflict prevention in real-time
collaborative programming, a dependency-based automatic locking (DAL) approach was proposed in prior
work, which automatically grants locks on source code regions with dependency relationships. The prior
DAL scheme was devised under two assumptions that are not realistic, and together with other restrictions,
they become serious problems in applying the DAL approach and techniques in real-world programming
scenarios. To address the issues under the prior DAL scheme, this paper presents a novel DAL scheme with
a shared-locking approach, which ensures the responsiveness, effectiveness, and consistency of semantic
conflict prevention in unconstrained real-time collaborative programming. Under the novel DAL scheme,
programmers can perform concurrent editing operationswith overlapping locking scopes and perform editing
operations that may dynamically change the source code structure, while three types of shared-locking are
allowed under well-defined circumstances with reasonable design rationales. In addition, we have presented
major technical issues and solutions in realizing the scheme, which has been implemented in a research
prototype. Experimental evaluations have confirmed the good performance of the novel DAL scheme and
its supporting techniques.

INDEX TERMS Dependency-based automatic locking (DAL), locking state update, real-time collaborative
programming, responsiveness, semantic conflict prevention, shared-locking.

I. INTRODUCTION
Software development tasks, especially the programming
work, require sophisticated collaboration among program-
mers. In general, there are two categories of collabora-
tive programming approaches and supporting techniques [6].
Non-real-time collaborative programming is a traditional
approach that has been widely applied in the community,
which is supported by version control systems. It is consid-
ered as non-real-time collaboration because each program-
mer’s update on the source code will be kept private until the
modified source code documents are committed to the reposi-
tory and further merged into other programmers’ local source

code copies. In contrast, real-time collaborative programming
is a new approach, which supports a group of programmers
to view and edit the shared source code document at the
same time, while their concurrent updates can be instantly
propagated to each other. During the collaboration process,
each programmer can freely edit any segment of the shared
source code document, and concurrent changes made bymul-
tiple programmers can be automatically integrated. Because
of its benefits in improving the quality and productivity of
software development, this emerging technique has attracted
increasing interests from the community in the recent
years [3], [4], [8], [11], [13]–[15], [17], [18], [25], [26].

22566
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017

https://orcid.org/0000-0002-0352-9730
https://orcid.org/0000-0003-3905-2257

H. Fan et al.: Novel DAL Scheme With Shared-Locking

The generic real-time collaborative editing technique plays
an essential role in enabling real-time collaborative program-
ming. To achieve high local responsiveness of real-time col-
laborative editing over the Internet where communication
latency is unavoidable, a replicated architecture has been
commonly adopted, where the document being collabora-
tively edited is replicated at the local workspaces of all collab-
orating sites [22]. With such architecture, each local editing
operation issued by a user can be immediately executed on the
local replica without any delay (thus being responsive), and
then the operation will be instantly propagated to all other
collaborating sites for remote execution (thus achieving real-
time propagation and merging). Consequently, there arises a
fundamental requirement: all distributed copies of the doc-
ument should be identical after all editing operations have
been propagated and executed remotely. This requirement
is commonly regarded as the syntactic consistency mainte-
nance of the shared document, which is a classic problem
in the community of CSCW (computer-supported coopera-
tive work) [21]. The sophisticated operational transforma-
tion (OT) techniques have been invented, developed and
widely applied [21], [22], which are dedicated for supporting
syntactic consistency maintenance in a variety of real-time
collaborative editing systems, including the real-time collab-
orative programming environment in this study.

In contrast, there exists another category of consistency
issues, named semantic consistency, which is concerned with
whether the shared document content makes sense in specific
domains [21], [23]. Particularly, in the domain of real-time
collaborative programming, semantic consistency is con-
cerned with whether the shared and syntactically-consistent
source code content is correct with respect to problem-
solving logic. Our prior work proposed a dependency-based
automatic locking (DAL) approach for supporting semantic
consistency maintenance (also regarded as semantic conflict
prevention) in real-time collaborative programming [5], and
implemented a prototype which confirmed the feasibility of
the DAL approach [4]. However, the prior DAL scheme was
devised under two assumptions, which are not realistic in real-
world programming scenarios. Without the assumptions, the
scheme may work incorrectly under certain circumstances.
Together with other restrictions, the problems are serious
obstacles in applying the DAL approach and techniques in
real-world software development processes. In this paper,
we contribute a novel DAL scheme with a shared-locking
approach, as well as a set of supporting techniques for imple-
menting the scheme, which addresses the issues in the prior
work.

The rest of this paper is organized as follows. Firstly, we
briefly review our prior work on semantic conflict prevention
with the basic DAL scheme in Section II. Secondly, we
provide detailed analysis of the problems under the prior
DAL scheme in Section III. Thirdly, we propose a novel
shared-locking approach for addressing the issues, and dis-
cuss the design rationales in Section IV. Consequently, with
the shared-locking approach, we present major technical

issues and solutions for implementing the novel DAL scheme
in Section V. Following that, we present the prototype imple-
mentation and a comprehensive set of performance evalu-
ations in Section VI. Finally, we compare this work with
related techniques and studies in Section VII, and summarize
our contributions in Section VIII.

II. REVIEW OF PRIOR WORK ON DEPENDENCY-BASED
AUTOMATIC LOCKING (DAL)
A. FUNDAMENTALS
Based on investigations, it was observed that during a real-
time collaborative programming session, semantic conflicts
may occur when multiple programmers are performing con-
current editing operations in the same source code region
or in multiple source code regions with dependency rela-
tionships [5]. In the context of object-oriented programming
(e.g., programming with Java), a source code region refers
to a method or a field within a class, and a dependency rela-
tionship refers to a method-field-reference (i.e., a reference
from a method to a field) or a method-method-invocation
(i.e., an invocation from one method to another
method).

For example, when two programmers P1 and P2 are con-
currently editing the same Java source code document (the
Stack implementation) presented in the left part of Fig. 1,
semantic conflicts may occur if both of them are concurrently
editing the push method, which is a self-contained source
code region. In addition, even if they are editing differ-
ent source code regions, semantic conflicts may also occur
when their working regions have dependency relationships
(e.g., P1 is editing the popList method which invokes
the pop method, while P2 is exactly editing the pop
method).

For the convenience of discussion, several terms had been
defined as follows [5]:

1. Given a source code document, a basic region refers to
a piece of source code content which forms a seman-
tically meaningful and self-contained unit. In contrast,
an open area refers to a piece of source code content
outside all basic regions. For example, given the source
code document in Fig. 1, there are 9 basic regions and
8 open areas.

2. For any two basic regions A and B, if A depends on B
in terms of semantics, then there is a dependency rela-
tionship from A to B, denoted as A → B, and B is
called a depended region of A. Given two basic regions
A and B, if neither A → B nor B → A, then A and B
are independent. Dependency relationship is transitive:
given three basic regions A, B and C , if A → B and
B→ C , then A→ C .

3. A dependency graph (DG) is a directed graph, in
which: (a) a node represents a basic region in the source
code; and (b) an edge from node A to node B represents
a dependency relationship A → B. For example, the
right part of Fig. 1 illustrates the DG in accordance with
the source code.

VOLUME 5, 2017 22567

H. Fan et al.: Novel DAL Scheme With Shared-Locking

FIGURE 1. Basic regions, dependency relationships, and dependency
graph.

B. DEPENDENCY-BASED AUTOMATIC LOCKING (DAL)
It is necessary to support semantic conflict prevention in real-
time collaborative programming. For preserving maximum
collaboration concurrency while preventing semantic con-
flicts, we proposed to allow concurrent programming work
in the same source code document as long as such concurrent
work does not appear in the same basic region or in multiple
basic regions with dependency relationships [5]. With this
principle, a programmer will not be allowed to edit a source
code region until requesting and obtaining a lock on the
region to be edited (denoted as working region) and locks on
other source code regions that the working region depends on
(denoted as depended regions). Furthermore, to avoid pro-
grammers’ manual effort in requesting and releasing locks,
such locking mechanism is preferable to work automatically.

Based on abovementioned ideas, we proposed a
dependency-based automatic locking (DAL) approach in
prior work [5]: whenever a programmer attempts to issue an
editing operation on the source code document, the system
automatically detects the working region (if any) and derives
its depended regions, grants locks on the working region
and depended regions for the programmer,1 and releases the
locks after the programming work in the working region is
completed. Accordingly, under the basic DAL scheme, when-
ever a local editing operation is issued by the programmer, a
permission check procedure will be executed, which grants
or denies the editing permission according to the following
permission check conditions [5]:

1If the programmer’s editing operation falls in an open area of the source
code, no lock is required.

FIGURE 2. Simple illustration of the DAL permission check mechanism.

Definition 1: Permission Check Conditions under the Basic
DAL Scheme

Permission to a local editing operationO is granted only if:
a) O’s position falls in an open area; or
b) O’s position falls in a basic region W , and:

i) W is currently locked by this programmer as a
working region; or

ii) NeitherW norW ’s depended region is locked by
any other collaborating programmer.

Fig. 2 illustrates the permission check mechanism, where
the DG originates from Fig. 1. Initially, when programmer
P1 attempts to edit region F (which refers to the pop method
in Fig. 1), the editing is permitted because both the targeted
working region and its depended region (region C) are free
at the moment. Accordingly, a DAL locking state update
procedure is executed, which locks regions F and C for P1,
and consequently, no other programmer can edit any of them.
For example, when another programmer P2 attempts to edit
regionC , the editingwill be denied. In addition, ifP2 attempts
to edit region I , although it is not locked, the editing would
also be denied because its depended regions F and C are
currently locked forP1. Based on theDALprinciple, locks are
always granted and released as a group (covering the working
region and depended regions). In this case, P2 cannot obtain

22568 VOLUME 5, 2017

H. Fan et al.: Novel DAL Scheme With Shared-Locking

the entire group of required locks (on regions I , F and C) at
the moment, and therefore need to wait until those locks held
by P1 are released.

It is worth mentioning that the prior DAL scheme was
devised under the following two assumptions:

a) When concurrent editing operations are issued by mul-
tiple programmers, their corresponding locking scopes
never overlap on any source code region; and

b) During the programming process, the DG of the source
code remains static, i.e., editing operations never create
or delete basic regions and dependency relationships.

Obviously, the two assumptions are not realistic in practice.
Without the assumptions, locking operations may conflict
with each other, and the DAL scheme may work incorrectly
under various circumstances. Together with other restrictions,
they are serious problems and obstacles in applying the DAL
approach and techniques in real-world programming scenar-
ios. We firstly analyze the problems in Section III, and then
present the approach and solutions in Sections IV and V.

III. MAJOR PROBLEMS OF THE PRIOR DAL SCHEME
A. RESTRICTION IN SUPPORTING CONCURRENT WORK
ON INDEPENDENT WORKING REGIONS WITH
COMMON DEPENDED REGIONS
The prior DAL scheme grants exclusive locks on the work-
ing region and its depended regions with respect to a pro-
grammer’s editing operation, which is overly restrictive but
useless for semantic conflict prevention. To illustrate the
problem, consider the simple example in Fig. 3 below.2

In this case, basic regions A and B are independent of each
other, but they share common depended regions C and D.
Suppose that a programmer P1 firstly started to work in
region A, and obtained locks on the working region A and
its depended regions C and D. Consequently, another pro-
grammer P2 attempts to work in region B. According to the
general conditions of semantic conflicts [5], concurrent work
on regions A and Bwill not lead to semantic conflicts because
they are independent of each other. However, the prior
DAL scheme prohibits such concurrent work, because the
system justifies that P2 should obtain exclusive locks on the
targeted working region B and its depended regions C and D,
but part of them (C and D) are currently locked for P1.
This problem is serious in real-world programming sce-

narios, because it is common that many class fields and
utility methods can be referenced and invoked by multiple
methods, which are independent of each other. Under the
prior DAL scheme, when one programmer is editing one of
those methods, no one else will be allowed to concurrently
edit another one.

2In this paper, locks granted on source code regions are represented by
labels below the DG nodes. A lock granted to the programmer Px on a basic
region R is represented by a label Px written below the node R in the DG.
Furthermore, if there is a superscriptW placed beside Px , it indicates that R
is a working region of Px ; otherwise, it is a depended region of Px .

FIGURE 3. Restriction in supporting concurrent work on independent
working regions with common depended regions.

B. PROBLEM WITH CONCURRENT EDITING OPERATIONS
WITH OVERLAPPING LOCKING SCOPES
With the replicated architecture [5], the source code and
the DAL locking state data are replicated at each collabo-
rating site. This ensures the responsiveness of permission
check: whenever a programmer issues an editing operation,
the permission check procedure simply consults the local
locking state data only, and immediately grants or denies the
permission (without blocking the programmer). In addition,
under the prior DAL scheme, whenever a locking operation
(i.e., grant or release locks) is triggered, it will be attached
to the editing operation, propagated to remote sites, and
executed together with the editing operation for producing
consistent locking states over all sites.

However, concurrent locking operations (which are
attached to concurrent editing operations) may conflict with
each other and produce inconsistent locking states in certain
scenarios. When multiple programmers concurrently start
to edit the same non-locked region or multiple non-locked
regions with dependency relationships and/or common
depended regions, all of them can be granted the edit-
ing permissions based on their local locking state replicas,
but their locking scopes are overlapping. In other words,
the same source code region will be locked by differ-
ent programmers at different sites, leading to inconsistency
problems.

For example in Fig. 4, when two programmers P1 and P2
concurrently start to edit the same region A, both of them will
be granted the editing permissions, because each permission
check is solely based on the local locking state, and their
targeted working region and depended regions are all non-
locked at both sites at the moment of the permission check.
However, when their editing operations and the attached
locking operations arrive at the remote sites, a conflict is
produced: when P2’s editing operation (together with the
attached locking operation) arrives at P1’s site, the execution
of the locking operation fails because the targeted regions A,
B and C have already been locked for P1; similarly, when
P1’s editing operation arrives at P2’s site, the execution of
the locking operation also fails due to the same reason. Even-
tually, the locking states at the two sites are inconsistent.

Fig. 5 illustrates another example, where programmers P1
and P2 concurrently start to edit two different source code
regions Aand B with a dependency relationship A → B.
Similarly, due to the overlapping locking scopes of the two
concurrent locking operations (i.e., locking regions {A, B, C}
for P1 and locking regions {B,C} for P2), a locking operation

VOLUME 5, 2017 22569

H. Fan et al.: Novel DAL Scheme With Shared-Locking

FIGURE 4. Locking operation conflict caused by concurrent editing
operations on the same source code region.

FIGURE 5. Locking operation conflict caused by concurrent editing
operations on multiple source code regions with dependency
relationships.

conflict is produced, which results in inconsistent locking
states.

C. PROBLEM WITH DYNAMIC DG EDITING OPERATIONS
As aforementioned, the prior DAL scheme assumes that
the DG (i.e., source code structure) remains static during
the programming process, which is obviously unrealistic.
In real-world programming scenarios, editing operations on
the source code document may affect the DG from time to
time. An editing operation may create or delete a method
(e.g., see Fig. 6 (a)), create or delete amethod invocation (e.g.,
see Fig. 6 (b)), and create or delete a reference from a method
to a field (e.g., see Fig. 6 (c)). In general, there are two types
of dynamic DG changes: (a) creation or deletion of a basic
region; and (b) creation or deletion of a dependency relation-
ship. In the rest of this paper, the term dynamic DG editing
operation refers to an editing operation with an effect
of changing the DG, whereas the term static DG editing

FIGURE 6. Examples of dynamic DG editing operations.

FIGURE 7. Automatic locking scope update in the face of dynamic
DG editing operations.

operation refers to an editing operation without such
effect.

In recognizing the existence of dynamic DG editing oper-
ations, additional actions are necessary for preserving the
effectiveness of semantic conflict prevention. Following the
general principle of the DAL approach, it is necessary and
reasonable to dynamically update a programmer’s locking
scope in the face of dynamic DG editing operation, and
to ensure that the locks granted to the programmer always
correctly cover the working region and depended regions
based on the latest source code content. For example, as
illustrated in Fig. 7, when programmer P1 initially works in
regionA and later creates amethod invocation to regionC , the
DAL scheme should automatically update the programmer’s
locking scope from regions {A, B} to regions {A, B, C , D},
so as to reflect the new dependency relationship A→ C .

However, such dynamic locking scope update mechanism
may produce locking operation conflicts in certain scenarios.
For example, as illustrated in Fig. 8, two programmers P1
and P2 are initially editing regions A and C respectively, with
corresponding locks granted (i.e., locks on {A, B} granted for
P1 and locks on {C , D} granted for P2). Later, P1 creates
a new dependency relationship A → C , and based on the
abovementioned locking scope update mechanism, P1’s lock-
ing scope should be updated to {A, B, C , D}, which overlaps
with P2’s locking scope {C , D}, resulting in the failure of
the locking operation, which further leads to incorrect locking
state under the DAL scheme.

Furthermore, the scenario may become more complex
when dynamic DG editing operations coexist with concurrent
editing operations. For example in Fig. 9, in the beginning,

22570 VOLUME 5, 2017

H. Fan et al.: Novel DAL Scheme With Shared-Locking

FIGURE 8. Locking operation conflict caused by dynamic DG editing
operations.

FIGURE 9. Locking operation conflict caused by dynamic DG editing
operations in combination with concurrent editing operations.

programmer P1 is working in region A with locks granted
on {A, B}, while programmer P2 is working in an open area
with no lock needed. At one moment, P1 creates a method
invocation from region A to an intended method (which is
still incomplete at the moment), while at the same time,
P2 completes the intended method, which transforms the
open area into a valid source code region C and creates a
new dependency relationship C → D simultaneously. After
the two concurrent editing operations are propagated and
executed at remote sites, conflicts are produced: at P1’s site,
P1’s locking scope should be updated to {A, B, C , D} and

P2’s locking scope should be updated to {C , D}, resulting in
locking operation conflicts on regions C and D; while at P2’s
site, the locking scope update for P1 fails because regions C
and D have already been locked for P2.

IV. THE SHARED-LOCKING APPROACH
To address the issues under the prior DAL scheme, we pro-
pose a novel DAL scheme with a shared-locking approach
as the cornerstone, which allows several programmers to
share locks on certain source code regions under well-
defined circumstances. The shared-locking approach ensures
the responsiveness, effectiveness and consistency of semantic
conflict prevention in unconstrained real-time collaborative
programming, and the three problems under the prior DAL
scheme can be solved altogether with reasonable design ratio-
nales. Concretely, there are three types of shared-locking
allowed under the novel DAL scheme, as presented below.

A. SHARED-LOCKING ON COMMON DEPENDED REGIONS
The novel DAL scheme allows shared-locking on common
depended regions at any time. As illustrated in Fig. 10 (which
reuses the case in Fig. 3), with the shared-locking approach,
when P2 starts to edit source code region B, the programmer
will be granted the editing permission on the targeted region
(which is independent of P1’s working region A), and obtain
an exclusive-lock on the working region B and shared-locks
on depended regions C and D (which are also locked by P1
as depended regions).

FIGURE 10. Shared-locking on common depended regions.

It is worth mentioning that, according to the general con-
ditions of semantic conflicts [5], concurrent work on inde-
pendent working regions will not result in semantic conflicts,
regardless of whether they have common depended regions
or not. By allowing shared-locking on common depended
regions, we can greatly increase the concurrency of collabora-
tion without sacrificing the effectiveness of semantic conflict
prevention.

Accordingly, to support shared-locking on common
depended regions, theDAL permission check conditions have
been redefined as follows:
Definition 2: Permission Check Conditions under the

Novel DAL Scheme
Permission to a local editing operation O is granted

only if:
a) O’s position falls in an open area; or
b) O’s position falls in a basic region W , and:

i) W is currently locked by this programmer as a
working region; or

VOLUME 5, 2017 22571

H. Fan et al.: Novel DAL Scheme With Shared-Locking

FIGURE 11. Shared-locking for concurrent editing operations with
overlapping locking scopes (W-W Sharing).

ii) W is not locked by any other collaborating pro-
grammer, and none of W ’s depended regions is
locked as a working region by any other collabo-
rating programmer.

In the above definition, the condition b(ii) ensures that
during the permission check procedure, shared-locking is
allowed on depended regions only (i.e., no shared-locking on
working regions is allowed).

B. SHARED-LOCKING FOR CONCURRENT EDITING
OPERATIONS WITH OVERLAPPING
LOCKING SCOPES
The novel DAL scheme allows shared-locking on overlap-
ping locking scopes caused by concurrent editing operations.
Concretely, shared-locking is allowed on working regions3

under the following circumstances:
1. When multiple programmers concurrently start to edit

the same non-locked region, they will be granted
shared-locks on the same (overlapping) working
region, and this type of shared-locking is denoted as
W-W Sharing. For instance, Fig. 11 (which reuses the
case in Fig. 4) illustrates the shared-locks granted on
the overlapping working region A.

2. When multiple programmers concurrently start to edit
multiple non-locked regions with dependency rela-
tionships, they will be granted shared-locks on the
overlapping working/depended region, and this type
of shared-locking is denoted as W-D Sharing. For
instance, Fig. 12 (which reuses the case in Fig. 5)
illustrates the shared-locks granted on the overlapping
working/depended region B (i.e., region B is a working
region for P2 and a depended region for P1 at the same
time).

In addition, whenever a shared-lock is granted under the
above circumstances, programmers involved will receive

3Shared-locking on depended regions has been allowed and justified in
the previous subsection, and thus will not be explicitly mentioned in the rest
of the paper.

FIGURE 12. Shared-locking for concurrent editing operations with
overlapping locking scopes (W-D Sharing).

notification messages about the situation (i.e., who is/are
sharing the lock on which source code region).

C. SHARED-LOCKING FOR DYNAMIC DG EDITING
OPERATIONS
The novel DAL scheme allows shared-locking on over-
lapping locking scopes caused by dynamic DG editing
operations. Supported by the shared-locking approach, any
collaborating programmer, once obtained the initial editing
permission granted by the DAL scheme, will be able to work
continuously in the face of dynamic DG changes, without any
interruption.

For example, in the case presented in Fig. 13 (which
reuses the case in Fig. 8), programmer P1 is able to work
continuously in region A, even after P1’s locking scope has
been automatically expanded for covering the new depended
region C (which is locked for P2 as a working region at
the moment). Meanwhile, from P2’s perspective, although
P1’s new locking scope has covered region C (which is
currently a working region locked for P2), P2 can continue
to work in region C .

Similarly, in another case illustrated in Fig. 14 (which
reuses the case in Fig. 9), both programmers P1 and P2
can continuously work in regions A and C respectively, with
shared-locks on the overlapping regions C and D. This case
is more complex than the previous one because the shared-
locking is caused by a combination of concurrent editing
operations and dynamic DG editing operations. However, it is
not necessary for the programmers to differentiate the cause
of shared-locking, and the only important issue is to ensure
that programmers are aware of the shared-locking so that they
can take actions accordingly, by means of the supplementary
notification mechanism.

D. DESIGN RATIONALES
The shared-locking approach has been proposed with the
following design rationales, covering four aspects.

22572 VOLUME 5, 2017

H. Fan et al.: Novel DAL Scheme With Shared-Locking

FIGURE 13. Shared-locking for dynamic DG editing operations.

FIGURE 14. Shared-locking for dynamic DG editing operations in
combination with concurrent editing operations.

Firstly and most importantly, the shared-locking approach
is capable of achieving high responsiveness of semantic
conflict prevention while ensuring consistent locking state
maintenance over multiple collaborating sites. With the
shared-locking approach, all DAL locking mechanisms can
be completely distributed and localized. At every collabo-
rating site, whenever an editing operation is issued by the
local programmer, the DAL permission check can be quickly
performed because it is solely based on the local locking
state data, which ensures that the editing permission can be
immediately granted or deniedwithout blocking the program-
mer on the user interface. Whenever an editing permission is

granted at a local site, the same permission can be guaranteed
at all remote sites due to the adoption of shared-locking
for concurrent editing operations. The locking mechanism at
a remote site can quickly derive and grant locks based on
the arriving editing operation, without extra communication.
Consequently, there is no possibility of deadlock under the
shared-locking approach. To summarize, the fully distributed
and localized execution of permission check and locking
state update procedures imply that there incurs no need of
additional inter-site communication for any locking mech-
anism, which ensures the high responsiveness on the one
hand, and minimizes overhead on system resource and com-
munication bandwidth on the other hand. In contrast, if an
exclusive-locking approach is adopted, additional protocols
and techniques are necessary for electing awinner whenever a
locking operation conflict occurs among several sites.
In those scenarios, several rounds of communications may be
needed between distributed sites, and the local responsiveness
and user experience could be sacrificed.

Secondly, the shared-locking approach preserves
continuous work for all programmers under all circum-
stances. Concretely, if a programmer initially obtains the
editing permission on a source code region and keepsworking
in that region without switching to another region or open
area, the editing permission will never be withdrawn. With
the shared-locking for concurrent editing operations, if a
programmer initially obtains the editing permission in a
region (granted by the local permission check procedure), the
locks will not be withdrawn if the same working region or its
depended region is locked by a concurrent editing operation
issued from a remote programmer. Similarly, with the shared-
locking for dynamic DG editing operations, if a programmer
initially obtains the editing permission in a region and keeps
working in the region, the granted lockswill not bewithdrawn
even if the programmer’s locking scope has dynamically
expanded and covered a working region locked by another
programmer.

Thirdly, the shared-locking approach strictly complies with
an essential principle of the DAL approach: if a programmer
has been permitted to work in a source code region, the
DAL system must always preserve correct locks on the latest
working region and its depended regions for this programmer
under all circumstances, which ensures the correctness and
effectiveness of semantic conflict prevention.

Last but not least, in consideration of the nature of real-time
collaborative programming, the shared-locking approach
with the notificationmechanism ismost suitable in such inter-
active environment, because locks here are used to coordinate
behaviors among human users. This nature is significantly
different from that in database and distributed computing
systems, where locks are used to coordinate processes for pro-
hibiting concurrent updates on shared objects. In this study,
if we apply an exclusive-locking approach alternatively, it is
true that the system is able to elect a lock winner (based on
predefined rules and protocols) and maintain locking state
consistency when a locking operation conflict occurs. But, is

VOLUME 5, 2017 22573

H. Fan et al.: Novel DAL Scheme With Shared-Locking

FIGURE 15. DAL locking table.

such machine-decided result the best from the collaborating
programmers’ perspective? In fact, when a locking opera-
tion conflict occurs, only the involved programmers have
the knowledge for deciding the best action to take. This is
why a notification mechanism has been integrated, which
ensures the awareness. Whenever a shared-lock is granted, all
programmers involved will be notified in the user interface,
and they can negotiate and take actions accordingly: (a) if
they judge that the concurrent editing with shared-locking
is risky, they can collectively decide who should be given
the exclusive permission at the moment; and (b) they may
also continue the concurrent editing with shared-locking if
they are able to take care of the issue and manage potential
conflicts.

V. TECHNICAL ISSUES AND SOLUTIONS
With the shared-locking approach, the novel DAL scheme
can be designed and implemented accordingly. There are
two essential technical issues: (a) designing an appropriate
locking state data structure for supporting the novel DAL
scheme with shared-locking; and (b) implementing efficient
and consistent permission check and locking state update
procedures that fully comply with the shared-locking rules
under defined circumstances.

A. LOCKING STATE DATA STRUCTURE
At each collaborating site, the DAL locking state is the
essential information for supporting all locking mechanisms,
which records the locks that are currently granted on source
code regions for certain programmers. The locking state data
will be retrieved by the permission check, and be dynamically
updated whenever locks are granted or released.

For accommodating multiple locks granted on single
source code regions under the novel DAL scheme, the lock-
ing state data structure has been designed, as sketched in
Fig. 15. At every collaborating site, the source code document
is associated with a locking table, which contains a set of
D-Regions, and each D-Region corresponds to a group of
locks which are granted to multiple programmers.

Within the locking table, a D-Region refers to a basic
region (i.e., method or field) that is currently locked by one
or multiple programmers, represented as <Source Pointer,
Lock Group>, where the Source Pointer technically relates
the D-Region to the corresponding method or field in the
source code, and the Lock Group is a list that stores all
locks that are currently granted on this region. Each lock is

FIGURE 16. Instance of the DAL locking table.

represented as <Site Identifier, Locking Type>, where the
Site Identifier indicates the site (i.e., programmer) that owns
this lock, and the Locking Type indicates whether the region is
locked as a working region or depended region with respect
to the owner (indicated as W or D respectively). It is clear
that each D-Region can accommodate multiple locks, which
supports the shared-locking approach.

An instance of the DAL locking table is presented in
Fig. 16. In this case, three programmers P1, P2 and P3
are concurrently editing source code regions C , D and G
respectively in the same source code document. In particular,
regions F ,G,H and I are currently shared-locked bymultiple
programmers.

B. UTILITY FUNCTIONS
To support essential procedures of the novel DAL scheme,
the following utility functions have been designed and
implemented:

1. DetectTargetedRegion(O): to detect the targeted region
(if any) of the given editing operation O. This function
returns a Source Pointer (which refers to a particular
method or field) if O’s position is located within a
valid source code region; otherwise, it returns OA if
O’s position is located within an open area of the source
code.

2. DeriveDependedRegionSet(R): to retrieve the depended
regions (as a set) with respect to the given source code

22574 VOLUME 5, 2017

H. Fan et al.: Novel DAL Scheme With Shared-Locking

region R. In particular, if R has no depended region, an
empty set will be returned.

3. ExamineLockingState(R, P, S, T): to read the local
locking table and examine whether the specified region
R is currently locked by the programmer P (specified
as S = TRUE) or any other programmer (specified
as S = FALSE) as a working region (specified as
T = WORKING) or depended region (specified as
T = DEPENDED), or regardless of the region type
(specified as T = ANY). This function returns TRUE or
FALSE to indicate the result of examination. For exam-
ple, suppose that the local programmer’s identifier is 5,
and wemay invoke ExamineLockingState(A, 5, FALSE,
DEPENDED) to examine whether source code
region A is currently locked by others as a depended
region.

4. GrantLocks(P, W , D): to grant locks for the pro-
grammer P on the working region W and the set of
depended regions D, and update the local locking table
accordingly.

5. ReleaseLocks(P): to release locks held by the pro-
grammer P, and update the local locking table
accordingly.

TheDetectTargetedRegion(O) function firstly retrieves the
list of basic regions (i.e., fields and methods) in the source
code document, while the retrieved information contains the
starting position and length of each region. It then compares
the positional properties of O with those of each retrieved
region, and determines whether O falls in any basic region or
not. In terms of the efficiency, the complexity of this function
is O(N) where N is the amount of basic regions within the
source code document.

The DeriveDependedRegionSet(R) function starts from an
empty depended region set (denoted as DRS). If R is a field
(which has no depended region), then an empty DRS will be
returned. Otherwise, if R is a method, then the sub-elements
within the method body (i.e., sub-nodes of the AST node4 that
represents the method) will be visited, and field references
and method invocations will be retrieved. If any referenced
field or invoked method appears in the current source code
document, then it will be added into the DRS (if it has not
been added into the DRS yet). Furthermore, if the newly
added depended region is a method, then the above steps will
be repeated to further derive the depended regions of this
method. This procedure is recursively applied until no more
region can be added into theDRS. In terms of the efficiency, in
the worst case, the specified region could depend on all other
methods of the same class, and all dependency relationships
(i.e., field references and method invocations) may be visited
and analyzed. For each dependency relationship being vis-
ited, the function firstly checks whether the referenced field
or invoked method is a basic region of the current source code
document, and if so, further checks whether it already exists
in the DRS. Accordingly, the complexity of this function is

4AST: abstract syntax tree

O(NM) where N is the amount of basic regions and M is the
amount of field references and method invocations.

The ExamineLockingState(R, P, S, T) function visits the
local locking table and searches for the particular D-Region
entry that is related to the source code region R by com-
paring R with the Source Pointer of each D-Region. Once
the particular D-Region entry is found, the locks in the
Lock Group of this D-Region are further visited and exam-
ined to check the locking state with respect to the specified
conditions. In terms of the efficiency, in the worst case,
all basic regions are locked and involved in the locking
table, and they may be shared-locked by all collaborating
programmers in the session. Accordingly, the complexity
of this function is O(N + P) where N is the amount
of basic regions, and P is the amount of collaborating
programmers.

The GrantLocks(P, W , D) function inserts new entries
(i.e., locks) into the locking table for the specified working
region W and depended region set D. For processing each
region among them, the function firstly searches for the corre-
sponding D-Region in the table. If the particular D-Region is
found, a lock will be inserted into its Lock Group; otherwise,
if no corresponding D-Region exists, a new D-Region will
firstly be inserted into the locking table, and then a lock
will be inserted into the Lock Group of this new D-Region.
In terms of the efficiency, the complexity of this function is
O((1+ |D|) ∗K) where K is the amount of D-Regions within
the locking table. In the worst case, N = 1+ |D| and K = N
where N is the amount of basic regions in the source code.
Accordingly, the complexity of this function can be derived
as O(N 2).
The ReleaseLocks(P) function simply visits all locks

within the Lock Groups of all D-Regions. For each lock
being processed, the function firstly checks whether its Site
Identifier matches the specified programmer P; and if so,
this lock will be removed from the D-Region’s Lock Group.
In terms of the efficiency, in the worst case, the amount
of D-Regions equals to the amount of basic regions in the
source code (denoted as N), and the amount of locks within
the Lock Group of each D-Region equals to the amount of
collaborating programmers (denoted as P). Accordingly, the
complexity of this function is O(NP).
In addition to the preliminary complexity analysis, detailed

performance evaluations on the five utility functions will be
presented in Section VI-B.

C. PERMISSION CHECK PROCEDURE
Permission check is essential for ensuring the effectiveness
of semantic conflict prevention. According to the permission
check conditions defined in Section IV-A and the locking
state data structure designed in Section V-A, the permission
check procedure has been designed and implemented for the
novel DAL scheme. Algorithm 1 implements the procedure
CheckPermission(O, P), which determines the permission
(i.e., either PERMIT or REJECT) for an editing operation O
issued by the local programmer P.

VOLUME 5, 2017 22575

H. Fan et al.: Novel DAL Scheme With Shared-Locking

Algorithm 1 CheckPermission(O, P)

1 W := DetectTargetedRegion(O);
2 if W = OA
3 return PERMIT;
4 if ExamineLockingState(W, P, TRUE,

WORKING) = TRUE
5 return PERMIT;
6 if ExamineLockingState(W, P, FALSE,

ANY) = TRUE
7 return REJECT;
8 DRS := DeriveDependedRegionSet(W);
9 for each region D in DRS {
10 if ExamineLockingState(D, P,

FALSE, WORKING) = TRUE
11 return REJECT;
12 }
13 return PERMIT;

As presented above, the procedure invokes the DetectTar-
getedRegion, DeriveDependedRegionSet and ExamineLock-
ingState utility functions. Suppose that N is the amount of
basic regions,M is the amount of field references and method
invocations, and P is the amount of collaborating program-
mers. According to the complexity analysis of the three utility
functions presented in Section V-B, the complexity of the
CheckPermission procedure is O(N + 2(N +P)+NM +N ∗
(N +P)), which can be further derived asO(NM+N 2

+NP).
In addition, performance evaluations on this procedure will
be presented in Section VI-B.

D. LOCKING STATE UPDATE PROCEDURE
Locking state update plays an essential role in the novel
DAL scheme. It is responsible for granting and releasing
locks under predefined conditions, by updating values in the
locking table.

In recognizing dynamic DG editing operations which may
affect programmers’ locking scopes, the locking state update
procedure needs to be performed with every editing opera-
tion executed. Technically, it can be realized with two alter-
native approaches. The first approach is operation-based,
where programmers’ locking states (i.e., locking scopes)
are incrementally updated by extracting and analyzing fine-
grained DG changes embedded within each editing opera-
tion. However, based on investigations and experiments, we
observed that this approach is technically infeasible. The
second approach is state-based, where each programmer’s
locking state is derived and updated based on (a) the latest
source code content and (b) the latest editing position of
the programmer. We have adopted this approach for several
reasons. Firstly, the dependency derivation technique (as pre-
sented in prior work [5]) for deriving source code regions and
dependency relationships can be reused for supporting the
state-based update, which is efficient enough for execution
with every editing operation performed. Secondly, since the

FIGURE 17. Contextualization of editing positions.

same derivation technique will be applied at each collab-
orating site, the consistent derivation (and thus consistent
locking state update) can be technically guaranteed. Thirdly,
based on the design of the locking state data structure
(i.e., locking table), it is straight-forward and efficient to
update a programmer’s locking state by simply removing
existing recorded locks and inserting newly derived locks
with respect to the programmer.

One essential element of the above state-based approach
is the editing position of each programmer, which refers
to the programmer’s working location in the source code.
Let EP(i) be the editing position of the programmer i in
the source code document, which is an integer ranging
from 0 to (L − 1) where L is the length of the source code
document. For supporting localized execution of locking state
update, each collaborating site maintains a list of editing
positions {EP(i)|i = 1, 2, . . . ,N } for all N programmers
(i.e., N distributed sites) in the same collaboration session.
In other words, every site has the knowledge of the latest
editing positions of all sites in the session, which will be used
for locking state update, and for other purposes as well (such
as collaboration awareness).

Whenever an editing operation has been executed, a con-
textualization procedure is needed, which updates the editing
positions of all programmers based on the evolved document
content. Without contextualization, the outdated editing posi-
tions will lead to incorrect derivation of working regions and
depended regions. For illustrating the necessity of contextu-
alization, a simple example is presented in Fig. 17, where
there are four collaborating programmers P1, P2, P3 and P4
editing methods A, B, C and D respectively, and their initial
editing positions are indicated in the upper part. Suppose that
programmer P2 issues an editing operation Insert[8, ‘‘foo’’]
(which inserts a string ‘‘foo’’ at the position 8), and the source
code content evolves as presented in the lower part.

It can be intuitively observed that this editing operation not
only changes P2’s editing position, but also affects editing
positions of P3 and P4. Without contextualization, both edit-
ing positions of P3 and P4 would fall in open areas, which are
obviously wrong. In fact, an editing operation, either local
or remote, may potentially affect all programmers’ editing
positions. Thus, the contextualization procedure should be
executed following the execution of each local or remote

22576 VOLUME 5, 2017

H. Fan et al.: Novel DAL Scheme With Shared-Locking

editing operation. Algorithm 2 implements the procedure
Contextualize(O, i), which contextualizes the editing position
of programmer i (i.e., site i) with respect to the given editing
operation O.

Algorithm 2 Contextualize(O, i)

1 if O.type = INSERT
2 if O.position <= EP(i)
3 EP(i) + = O.length;
4 else if O.type = DELETE
5 if O.position < EP(i)
6 if O.position + O.length

<= EP(i)
7 EP(i) − = O.length;
8 else
9 EP(i) := O.position;

Under the prior DAL scheme, the locking state update
followed a partial derivation approach [5]: given an editing
operation, only the operation-actor’s locking state5 will be
updated. Concretely, for a local editing operation, the sys-
tem only updates the locking state of the local site, while
for a remote editing operation, the system only updates the
locking state of the remote site that generates this operation.
In contrast, under the novel DAL scheme where concurrent
and dynamic DG editing operations are possible, the partial
derivation approach will no longer be applicable. For exam-
ple, in the case illustrated by Fig. 14, at programmer P1’s
site, after the execution of the remote editing operation issued
by P2, both local and remote programmers’ locking states
have been affected. It is obvious that an editing operation
may affect both the operation-actor and non-operation-actors’
locking states under the novel DAL scheme, which requires
a full derivation approach for locking state update: for each
local or remote editing operation executed, the locking states
of all collaborating sites in the session should be fully derived
and updated based on the latest source code content and the
contextualized editing positions. Therefore, the entire locking
state update scheme can be named as a contextualization and
full derivation (CFD) scheme, which is formally defined as
follows:
Definition 3: Contextualization and Full Derivation (CFD)

Locking State Update Scheme
At each collaborating site within the real-time collabora-

tion session, whenever a local or remote editing operation has
been executed, the locking states of all collaborating sites in
the session are derived and updated as follows:

For each collaborating site i (where i = 1, 2, . . . ,N) in the
session (which contains N sites):
Step 1. All existing locks (if any) granted to site i are

released;

5The operation-actor of an editing operation refers to the site that gen-
erates the operation, whereas a non-operation-actor of an editing operation
refers to a site that receives and remotely replays the operation.

Step 2. EP(i) is contextualizedwith respect to the executed
editing operation;

Step 3. If EP(i) is within the scope of a basic region
W , then locks on the working region W and its
depended regions are granted to site i; otherwise,
no lock is granted to site i.

Algorithm 3 below implements the CFD locking state
update procedure CFD_LSU(O), which will be invoked
following the execution of the editing operation O.
In terms of the efficiency, the complexity of this procedure
is O((NP + N + NM + N 2) ∗ P), which can be further
derived as O(NP2 + NMP + N 2P), where N is the amount
of basic regions, M is the amount of field references and
method invocations, and P is the amount of collaborating
programmers. In addition, performance evaluations on this
procedure will be presented in Section VI-B.

Algorithm 3 CFD_LSU(O)

1 for each site i in the session {
2 ReleaseLocks(i);
3 Contextualize(O, i);
4 W := DetectTargetedRegion(EP(i));
5 if W != OA {
6 DRS := DeriveDependedRegionSet

(W);
7 GrantLocks(i, W, DRS);
8 }
9 }

Fig. 18 presents a case that demonstrates the fine-grained
effects of the CFD locking state update during a real-time
collaboration session. In this case, three programmers P1,
P2 and P3 are concurrently working at different locations
of the same source code document, and they issued three
editing operations during the process: P1 issues O1, which
creates a dependency relationship A → C ; P2 issues O2,
which destroys the source code region C ; and P3 issues O3,
which creates a source code region E and a dependency
relationship E → A simultaneously. At each collaborating
site, the CFD locking state update procedure is executed
immediately following the execution of each local or remote
editing operation. It can be intuitively observed that the novel
DAL scheme with the shared-locking approach preserves
continuous programming work and correct locking states at
any time during the process, and eventually produces consis-
tent locking states over all sites after all editing operations
have been propagated and remotely executed.

E. INTEGRATED PROCESSORS OF THE NOVEL
DAL SCHEME
In the previous subsections, we presented detailed design
of essential building blocks for the novel DAL scheme.
As presented in Fig. 19, together with other supporting mod-
ules for real-time collaborative programming features, the
scheme has been implemented as two integrated processors:

VOLUME 5, 2017 22577

H. Fan et al.: Novel DAL Scheme With Shared-Locking

FIGURE 18. Demonstration of the CFD locking state update.

FIGURE 19. Integrated processors of the novel DAL scheme.

(a) the local operation processor (LOP), which handles all
local editing operations issued by the local programmer; and
(b) the remote operation processor (ROP), which handles all
remote editing operations received. The two processors work
in separated and parallel threads at each collaborating site.

Whenever a local editing operation is detected by the sys-
tem, the permission check procedure will be firstly invoked.
If the editing permission is denied, the operation will not take
effect on the source code, and the programmer will be notified
in the user interface. Otherwise, if the editing permission is
granted, the editing operation will immediately take effect
on the source code, and then the CFD locking state update
procedure will be executed. Eventually, the editing operation
will be processed by the operational transformation module
for syntactic consistency maintenance issues (as discussed in
prior work [4]) and propagated to remote sites.

Whenever a remote editing operation arrives, it will be
immediately processed by the operational transformation
module and executed on the source code. There is no

FIGURE 20. A UI snapshot of the research prototype.

permission check needed, because the operation has already
been permitted by the permission check procedure at its
original site, and its permission at a remote site can always
be guaranteed under the shared-locking approach. Following
its execution, the CFD locking state update procedure will be
invoked.

VI. PROTOTYPE IMPLEMENTATION AND
PERFORMANCE EVALUATIONS
A. PROTOTYPE IMPLEMENTATION
CoEclipse is a research prototype which was initially imple-
mented in prior work [4], [5]. It runs as a plugin of the
Eclipse IDE,6 and provides real-time collaborative pro-
gramming features (including semantic conflict prevention).
Collaborating programmers can use all existing functionali-
ties provided by the Eclipse IDE as usual, and also enjoy extra
features contributed by our research.

In this study, theCoEclipse prototype has been re-designed
for the novel DAL scheme. Concretely, the prototype has
been re-implemented with the new locking state data struc-
ture (in Section V-A), the utility functions (in Section V-B),
the new permission check procedure (in Section V-C), the
CFD locking state update procedure (in Section V-D), and
the integrated LOP and ROP of the novel DAL scheme
(in Section V-E). In addition, several collaboration aware-
ness features, such as the shared-locking notification and
locking state awareness, have been integrated in the user
interface of the IDE. Fig. 20 presents a UI snapshot when
two programmers are concurrently editing the same Java
source code document (the Stack implementation) using the
CoEclipse prototype. At this moment, the local programmer
is editing the push method while the remote programmer is
editing the popList method, and their locking states (i.e., the
granted locks on working regions and depended regions) can
be intuitively observed from the colored highlights on various
source code regions.

6http://www.eclipse.org/ide

22578 VOLUME 5, 2017

H. Fan et al.: Novel DAL Scheme With Shared-Locking

TABLE 1. Performance evaluations on utility functions related to source code content.

The prototype implementation has confirmed the technical
feasibility of the novel DAL scheme with the shared-locking
approach. Based on preliminary user evaluations, there is no
blocking perceived by the programmers when issuing editing
operations in the source code editor. Each editing operation
can immediately take effect (i.e., permission granted) or be
rejected (i.e., permission denied). This indicates that the
local responsiveness of the prototype system is as good as
the single-user Eclipse IDE without the CoEclipse plugin.
Moreover, the execution of remote editing operations and the
update of locking states can also be performed efficiently
without perceived delay. In general, the DAL features have
not incurred any negative performance issue from the end-
users’ perspective.

B. PERFORMANCE EVALUATIONS
In addition to preliminary user evaluations, we have
further designed and conducted a comprehensive set of per-
formance evaluations on utility functions and essential pro-
cedures of the novel DAL scheme, which are critical to the
overall system performance. Since the DAL features have
been implemented on top of an existing system (i.e., the
Eclipse IDE), we focus on the additional cost incurred by the
DAL mechanisms.

Based on the complexity analysis of the utility functions
and essential procedures, the amount of basic regions and
dependency relationships in the source code document is
a key factor in determining the DAL system performance.
For systematically evaluating how the system performance
changes with the increase of the amount of basic regions
and dependency relationships, as well as for measuring the
system performance in extreme (unrealistic) cases, we have
implemented a utility tool that can generate Java source code
documents based on customizable parameters, such as the
amount of basic regions (i.e., fields and methods) and the
amount of dependency relationships (i.e., field references
and method invocations) in the class. With multiple groups
of source code documents as the input data, a comprehen-
sive set of performance experiments have been conducted
in a simulation-based approach. The experimental platform
is a medium-level desktop PC with a processor of Intel
Core i7-3770 @ 3.40 GHz and 4 GB of RAM.

Firstly, we have evaluated the performance of utility func-
tions DetectTargetedRegion and DeriveDependedRegionSet
(in Section V-B), which are related to the source code content.

As the performance of the two functions depends on the
amount of basic regions (denoted as N) and the amount of
field references andmethod invocations (denoted asM) in the
source code, 5 groups of experiments have been conducted
with source code documents having different N and M val-
ues, and the execution times of the two functions have been
measured. Table 1 presents the experimental results, which
have confirmed the good performance of both functions.
As presented, the average execution times of the functions
grow steadily with the increase of N and M values. Even in
the extreme case where the source code contains 800 basic
regions with 32,000 field references and method invocations
(which is unrealistic), the DetectTargetedRegion function
costs only 5.02∗10−4 ms, and theDeriveDependedRegionSet
function costs only 1.9072ms.

Secondly, we have evaluated the performance of the three
utility functions related to the locking state data structure
(i.e., locking table), namely ExamineLockingState, Grant-
Locks and ReleaseLocks (in Section V-B). In addition to the
amount of basic regions (denoted as N) and the amount of
field references and method invocations (denoted asM), their
performance also depends on the amount of collaborating
programmers (denoted as P) in the collaboration session.
Accordingly, 20 groups of experiments have been conducted
with source code documents having differentN andM values
and real-time collaboration sessions having different P val-
ues, while the execution times of the three functions have
been measured. Table 2 presents the experimental results,
which have confirmed the good performance of the three
functions. As presented, the average execution time of each
function grows steadily with the increase of N , M and P
values. Even in the worst case where the collaboration session
contains 16 collaborating programmers and the source code
contains 800 basic regions with 32,000 field references and
method invocations (which is unrealistic), the ExamineLock-
ingState function costs 8.9 ∗ 10−6 ms, while the GrantLocks
and ReleaseLocks functions cost 9.916∗10−3 ms and 6.650∗
10−3 ms respectively, which are very efficient.

Thirdly, we have evaluated the overall performance of
the two essential DAL procedures, namely CheckPermission
and CFD_LSU. The execution times of the two procedures
have been measured by 20 groups of experiments with dif-
ferent source code documents and real-time collaboration
sessions. Table 3 presents the experimental results, which
have confirmed the good performance of the two procedures.

VOLUME 5, 2017 22579

H. Fan et al.: Novel DAL Scheme With Shared-Locking

TABLE 2. Performance evaluations on utility functions related to locking state data structure.

TABLE 3. Performance evaluations on essential procedures of the novel DAL scheme.

As presented, the average execution times of both procedures
grow steadily with the increase ofN ,M and P values. Even in
the extreme case (which is unrealistic), the CheckPermission
procedure costs only 5.61 ∗ 10−4 ms, and the CFD_LSU
procedure costs only 30.665 ms.

Based on the experimental results, it can be concluded that
the DAL features, built on top of the existing single-user
programming environment, have incurred very low cost in
supporting semantic conflict prevention. The efficient execu-
tion of DALmechanisms contributes to the high local respon-
siveness of the client system and the real-time execution
of remote operations, which further contributes to the over-
all user experience of real-time collaborative programming
environments.

VII. COMPARISON WITH RELATED TECHNIQUES
AND STUDIES
Firstly, from the general perspective of locking, we compare
the DAL schemewith traditional locking schemes in database
and distributed systems. One common point is that locking is
applied for achieving mutual exclusion in all scenarios: under
the DAL scheme, locking helps to prevent potential seman-
tic conflicts by prohibiting concurrent editing on the same
source code region and multiple source code regions with
dependency relationships; and similarly, in database and dis-
tributed systems, locking ensures data integrity by prohibit-
ing concurrent updates on shared objects and resources [1].
However, compared to those traditional locking schemes, the
DAL scheme can be distinguished in the following aspects:

22580 VOLUME 5, 2017

H. Fan et al.: Novel DAL Scheme With Shared-Locking

1. Locking under the DAL scheme is used for coordinat-
ing behaviors among human users (i.e., collaborating
programmers), whereas locking in database and dis-
tributed systems is commonly used to coordinate pre-
programmed processes. As mentioned in Section IV-D,
this is one important reason why the shared-locking
approach could be appropriate for the DAL scheme.

2. Under the DAL scheme, locks are requested and
granted/denied in a non-blocking manner, because all
locking mechanisms (e.g., permission check, lock-
ing state update) are fully distributed and localized,
which ensures the client responsiveness, and more
importantly, eliminates the possibility of deadlock.
In contrast, in database and distributed systems, a pre-
programmed process requesting a lock is commonly
blocked until the decision (i.e., granted/denied) is
received, and there may exist potential risk of deadlock
under those traditional locking schemes. As mentioned
in Section IV-D, it is the shared-locking approach that
plays an important role in supporting fully distributed,
localized and responsive locking.

3. In the context of real-time collaborative program-
ming, the shared-read-permission on all source code
regions is implicitly granted to all programmers at
any time by nature. The DAL scheme only controls
the write-permission on source code regions. To edit
a source code region, a programmer must obtain the
write-permission (automatically granted byDAL) on it.
In the face of concurrent or dynamic DG editing
operations, whenever a shared-lock is granted on
an overlapping working region, it is essentially a
shared-write-permission on the region for the involved
programmers, while other programmers still have
the shared-read-permission on the region implicitly.
In contrast, in database and distributed systems, the
traditional locking schemes control both of the write-
permission and read-permission, and a shared-lock
commonly refers to a shared-read-permission on a
resource/object, while there is usually no shared-write-
permission allowed.

Secondly, from the perspective of consistency mainte-
nance in real-time collaborative editing, we compare the
DAL schemewith other consistency maintenance techniques.
As reviewed in Section I, to achieve local responsiveness, the
replicated architecture has been commonly adopted [22], and
consequently, there arises the need for syntactic consistency
maintenance of the replicated document copies. The CSCW
community has contributed a variety of approaches and tech-
niques for supporting syntactic consistency maintenance in
real-time collaborative editing, such as the operational trans-
formation (OT) techniques [2], [16], [19], [21], [24], [28],
[29] and the address space transformation (AST) techniques
[9], [10], [12], [27], [30]. The DAL scheme in this study
is significantly distinguished from the abovementioned tech-
niques, because it is purely responsible for semantic consis-
tency maintenance (or namely semantic conflict prevention),

which is another category of consistency issues (as reviewed
in Section I and discussed in prior work [5], [21], [23]).
In this study, the OT technique has been adopted for achieving
syntactic consistency maintenance in real-time collaborative
programming, while the semantic consistency maintenance is
supported by the DAL scheme.

Thirdly, from the specific perspective of semantic con-
sistency maintenance, we compare the DAL scheme with
other locking schemes for supporting similar purposes. One
previous study [23] proposed a locking scheme for support-
ing semantic consistency maintenance in real-time collabora-
tive plain-text editing systems, where collaborating users are
allowed to request locks on selected textual ranges. A follow-
up study [20] further contributed two protocols for resolving
locking operation conflicts in the system. TheDAL scheme in
this study is significantly different from the abovementioned
studies in the following major aspects:

1. Under the DAL scheme, all locks are automatically
derived, granted and released, without any manual
effort from the programmers; whereas in the previous
studies, locks were always manually requested and
released, requiring additional coordination effort from
the users.

2. In the previous studies, each lock was placed on a
sequence of consecutive characters in the shared plain-
text document. When several sequences need to be
locked at once, a user has to either request multiple
locks on several sequences, or request one lock on a
potentially large scope covering those sequences (but
also covering many sequences which are not intended
to lock, leading to reduced concurrency). In contrast,
the DAL scheme in this study provides intelligent and
fine-grained locking, where locks are always granted
and released as a group, covering the latest working
region and depended regions only, which supports a
reasonable balance between conflict prevention and
concurrent work. More importantly, the derivation of
the working region and depended regions are com-
pletely automatic, without any manual effort needed.

VIII. CONCLUSIONS AND FUTURE WORK
Dependency-based automatic locking (DAL) is a novel
approach for supporting semantic conflict prevention in real-
time collaborative programming, whichwas proposed in prior
work. However, the prior DAL schemewas devised under two
assumptions, which are not realistic in practice. Together with
other restrictions, they become serious problems in applying
the DAL techniques in real-world programming scenarios.
To address the issues, we have proposed a novel DAL scheme
with a shared-locking approach, which ensures the respon-
siveness, effectiveness and consistency of semantic conflict
prevention in unconstrained real-time collaborative program-
ming, where programmers are allowed to perform concur-
rent editing operations with overlapping locking scopes, and
to perform editing operations that dynamically change the
source code structure.

VOLUME 5, 2017 22581

H. Fan et al.: Novel DAL Scheme With Shared-Locking

Based on detailed analysis of the problems under the prior
DAL scheme, we have proposed a shared-locking approach
which consists of three types of shared-locking allowed under
well-defined circumstances, with detailed design rationales in
four aspects. The shared-locking approach (a) ensures high
local responsiveness and minimum overhead while maintain-
ing consistent locking states over all sites, (b) preserves con-
tinuous work for all programmers under all circumstances,
(c) ensures the correctness and effectiveness of semantic con-
flict prevention, and (d) complies with the nature of real-time
collaborative programming environments.We have presented
major technical issues and solutions in realizing the novel
DAL scheme, including the locking state data structure, the
utility functions, the permission check procedure, the locking
state update procedure, and the integrated processors for
handling local and remote editing operations. We have imple-
mented the scheme in a research prototype, and conducted a
comprehensive set of performance evaluations on the utility
functions and essential procedures, which have confirmed the
good performance.

We have been continuously working in the field of
semantic conflict prevention for real-time collaborative pro-
gramming environments, and our future work includes:
(a) semantic conflict prevention across multiple documents;
(b) flexible locking scope determination with fine-grained
strength measurement of dependency relationships for bet-
ter balancing conflict prevention and concurrent work; and
(c) further improvement of the research prototype for more
evaluations.

REFERENCES
[1] P. A. Bernstein and N. Goodman, ‘‘Concurrency control in distributed

database systems,’’ ACM Comput. Surv., vol. 13, no. 2, pp. 185–221, 1981.
[2] W. Cai, F. He, and X. Lv, ‘‘Multi-core accelerated operational transforma-

tion for collaborative editing,’’ in Proc. Int. Conf. Collaborative Comput.,
Netw., Appl. Worksharing, 2015, pp. 121–128.

[3] Y. Chen, S. W. Lee, Y. Xie, Y. Yang, W. S. Lasecki, and S. Oney, ‘‘Codeon:
On-demand software development assistance,’’ in Proc. CHI Conf. Hum.
Factors Comput. Syst., 2017, pp. 6220–6231.

[4] H. Fan and C. Sun, ‘‘Achieving integrated consistency maintenance
and awareness in real-time collaborative programming environments:
The CoEclipse approach,’’ in Proc. IEEE 16th Int. Conf. Comput.
Supported Cooperat. Work Design (CSCWD), May 2012,
pp. 94–101.

[5] H. Fan and C. Sun, ‘‘Dependency-based automatic locking for semantic
conflict prevention in real-time collaborative programming,’’ in Proc. 27th
Annu. ACM Symp. Appl. Comput., 2012, pp. 737–742.

[6] H. Fan, C. Sun, and H. Shen, ‘‘ATCoPE: Any-time collaborative pro-
gramming environment for seamless integration of real-time and non-real-
time teamwork in software development,’’ in Proc. 17th ACM Int. Conf.
Supporting Group Work, 2012, pp. 107–116.

[7] H. Fan, H. Zhu, Q. Liu, Y. Shi, and C. Sun, ‘‘Shared-locking for
semantic conflict prevention in real-time collaborative programming,’’
in Proc. IEEE 21st Int. Conf. Comput. Supported Cooperat. Work
Design (CSCWD), 2017, pp. 174–179.

[8] M. S. Feldman, ‘‘CodeSync: A collaborative coding environment for
novice Web developers,’’ M.S. thesis, Wellesley College, Wellesley, MA,
USA, 2014.

[9] L. Gao, F. Yu, Q. Chen, and N. Xiong, ‘‘Consistencymaintenance of do and
undo/redo operations in real-time collaborative bitmap editing systems,’’
Cluster Comput., vol. 19, no. 1, pp. 255–267, 2016.

[10] L. Gao, F. Yu, L. Gao, N. Xiong, and G. Yang, ‘‘Consistency mainte-
nance of compound operations in real-time collaborative environments,’’
Comput. Elect. Eng., vol. 50, pp. 217–235, Feb. 2016.

[11] M. Goldman, G. Little, and R. C. Miller, ‘‘Real-time collaborative coding
in a Web IDE,’’ in Proc. 24th Annu. ACM Symp. User Interface Softw.
Technol., 2011, pp. 155–164.

[12] N. Gu, J. Yang, and Q. Zhang, ‘‘Consistency maintenance based on the
mark & retrace technique in groupware systems,’’ in Proc. Int. ACM
SIGGROUP Conf. Supporting Group Work, 2005, pp. 264–273.

[13] P. J. Guo, J. White, and R. Zanelatto, ‘‘Codechella: Multi-user program
visualizations for real-time tutoring and collaborative learning,’’ in Proc.
IEEE Symp. Vis. Lang. Hum.-Centric Comput. (VL/HCC), Oct. 2015,
pp. 79–87.

[14] A. Kurniawan, C. Soesanto, and J. E. C. Wijaya, ‘‘CodeR: Real-time code
editor application for collaborative programming,’’ Procedia Comput. Sci.,
vol. 59, pp. 510–519, Jan. 2015.

[15] J. Lautamäki, A. Nieminen, J. Koskinen, T. Aho, T. Mikkonen, and
M. Englund, ‘‘CoRED: Browser-based collaborative real-time editor for
javaWeb applications,’’ in Proc. ACMConf. Comput. Supported Cooperat.
Work, 2012, pp. 1307–1316.

[16] A. Ng and C. Sun, ‘‘Operational transformation for real-time synchro-
nization of shared workspace in cloud storage,’’ in Proc. 19th Int. Conf.
Supporting Group Work, 2016, pp. 61–70.

[17] V. Nguyen, H. H. Dang, N.-K. Do, and D.-T. Tran, ‘‘Enhancing team
collaboration through integrating social interactions in a Web-based
development environment,’’ Comput. Appl. Eng. Edu., vol. 24, no. 4,
pp. 529–545, 2016.

[18] M. R. J. Rantala, ‘‘Real-time collaborative coding—Technical and group
work challenges,’’ M.S. thesis, Faculty Bus. Built Environ., Tampere Univ.
Technol., Tampere, Finland, 2015.

[19] B. Shao, D. Li, T. Lu, and N. Gu, ‘‘An operational transformation based
synchronization protocol for Web 2.0 applications,’’ in Proc. ACM Conf.
Comput. Supported Cooperat. Work, 2011, pp. 563–572.

[20] C. Sun, ‘‘Optional and responsive fine-grain locking in Internet-based
collaborative systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 9,
pp. 994–1008, Sep. 2002.

[21] C. Sun. (2015). OTFAQ: Operational Transformation Frequently Asked
Questions and Answers. [Online]. Available: http://www.ntu.edu.
sg/home/czsun/projects/otfaq

[22] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, ‘‘Achieving convergence,
causality preservation, and intention preservation in real-time cooperative
editing systems,’’ ACM Trans. Comput.-Hum. Interact., vol. 5, no. 1,
pp. 63–108, 1998.

[23] C. Sun and R. Sosič, ‘‘Optimal locking integrated with operational trans-
formation in distributed real-time group editors,’’ in Proc. 18th Annu. ACM
Symp. Principles Distrib. Comput., 1999, pp. 43–52.

[24] C. Sun, Y. Xu, and A. Ng, ‘‘Exhaustive search and resolution of
puzzles in OT systems supporting string-wise operations,’’ in Proc.
ACM Conf. Comput. Supported Cooperat. Work Social Comput., 2017,
pp. 2504–2517.

[25] Y. Wang, P. Wagstrom, E. Duesterwald, and D. Redmiles, ‘‘New oppor-
tunities for extracting insights from cloud based IDEs,’’ in Proc. 36th Int.
Conf. Softw. Eng., 2014, pp. 408–411.

[26] J. Warner and P. J. Guo, ‘‘CodePilot: Scaffolding end-to-end collaborative
software development for novice programmers,’’ in Proc. CHI Conf. Hum.
Factors Comput. Syst., 2017, pp. 1136–1141.

[27] H. Xia, T. Lu, B. Shao, G. Li, X. Ding, and N. Gu, ‘‘A partial replica-
tion approach for anywhere anytime mobile commenting,’’ in Proc. 17th
ACM Conf. Comput. Supported Cooperat. Work Social Comput., 2014,
pp. 530–541.

[28] Y. Xu and C. Sun, ‘‘Conditions and patterns for achieving convergence in
OT-based co-editors,’’ IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 3,
pp. 695–709, Mar. 2016.

[29] Y. Xu, C. Sun, and M. Li, ‘‘Achieving convergence in operational
transformation: Conditions, mechanisms and systems,’’ in Proc. 17th
ACM Conf. Comput. Supported Cooperat. Work Social Comput., 2014,
pp. 505–518.

[30] D. Yang, T. Lu, H. Xia, B. Shao, and N. Gu, ‘‘Making itinerary plan-
ning collaborative: An AST-based approach,’’ in Proc. IEEE 20th Int.
Conf. Comput. Supported Cooperat. Work Design (CSCWD), May 2016,
pp. 257–262.

22582 VOLUME 5, 2017

H. Fan et al.: Novel DAL Scheme With Shared-Locking

HONGFEI FAN received the B.E. degree in soft-
ware engineering from Tongji University, China,
in 2007, and the Ph.D. degree in computer sci-
ence from Nanyang Technological University,
Singapore, in 2013.

Since 2014, he has been an Assistant Professor
with the School of Software Engineering, Tongji
University, China. His research interests include
computer-supported cooperative work and soft-
ware engineering.

HONGMING ZHU received the Ph.D. degree in
computer science from the University of Bolton,
U.K, in 2014.

He is currently a Lecturer with the School of
Software Engineering, Tongji University, China.
His research interests include distributed comput-
ing and software engineering.

QIN LIU received the B.S. degree in industrial
automation from the Dalian University of Technol-
ogy, China, in 1998, the M.S. degree in software
engineering from Southampton Solent University,
U.K., in 2001, and the Ph.D. degree in software
engineering from Northumbria University, U.K.,
in 2006.

She is currently a Professor with the School of
Software Engineering, Tongji University, China.
From 2008 to 2017, she served as the Executive

Dean of the School. Her research interests include software engineering and
software testing.

YANG SHI received the B.S. degree in electronic
engineering from the Hefei University of Tech-
nology, China, in 1999, the M.S. degree in pat-
tern recognition and intelligence systems from the
Kunming University of Science and Technology,
China, in 2002, and the Ph.D. degree in pattern
recognition and intelligent systems from Tongji
University, China, in 2005.

From 2005 to 2011, he was with Pudong CS&S
Co., Ltd., Shanghai, China. Since 2012, he has

been an Associate Professor with the School of Software Engineering, Tongji
University, China. His research interests include software engineering and
information security.

CHENGZHENG SUN received the Ph.D. degree
in computer engineering from the National Uni-
versity of Defense Technology, China, in 1987,
and the second Ph.D. degree in computer science
from the University of Amsterdam, Netherlands,
in 1992.

He is currently a Professor with the School
of Computer Science and Engineering, Nanyang
Technological University, Singapore. His current
research lies in the intersections of computer-

supported cooperative work and distributed systems.

VOLUME 5, 2017 22583

