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ABSTRACT The design of DNA codes sets satisfying certain combinatorial constraints is important in
reducing hybridization errors due to nonspecific hybridization between distinct codes and their complements
in DNA computing, data encryption, and data storage. The DNA code design problem is to find the largest
possible set of DNA codes. In this paper, we present a Bloch quantum chaos algorithm for the designing
DNA codes sets. The algorithm uses the chaotic equation to initialize the Bloch coordinates of quantum bits,
next adopts the whole interference crossover strategy to get crossover operation, then employs quantum non
gate strategy to get mutation operation, finally utilizes the dynamic adjustment strategy to adjust the quantum
rotation corner. Several experimental results in which our algorithm finds DNA codes sets match or exceed
the best previously known constructions.

INDEX TERMS DNA code design, chaotic, whole interference crossover, Bloch quantum chaos algorithm.

I. INTRODUCTION
Sets of DNA codes that satisfy combinatorial constraints
play an important role in information storage and retrieval.
They are widely applied into DNA computing [1], DNA
Microarray technology [2], Molecular bar codes for chemical
libraries [3], image encryption [4], [5] and data storage [6].
The reliability of these applications is dependent on specific
hybridization between a DNA code and its Watson-Crick
complement, but nonspecific hybridization may also occur
between a DNA code and the reverse of a distinct code [7].
Combinatorial constraints can effectively limit nonspecific
hybridization in specific applications.

Common combinatorial constraints [8] are comprised by
hamming distance constraints (HD), reverse Watson-Crick
complement constraints (RC) and fixed GC content con-
straints (GC). The first two constraints are used to avoid unde-
sirable hybridization between different DNA strands and the
last constrain ensures that all the codes have similar thermo-
dynamic characteristics to perform uniform computation [9].
The details of these constraints are defined in Section 2.

Based on the above constraints, many researchers have
worked on the design of sets of DNA codes. Construc-
tive lower bounds for DNA codes using coding theory was
proposed by Marathe et al. [8]. Deaton et al. [10] pro-
posed genetic algorithms for designing DNA codes that
satisfy frame shifts constraint, which was stronger than
the HD and RC. Tulpan et al. [11], [12] used a stochas-
tic local search (SLS) algorithm to generate reliable DNA
codes. In their approach, they used HD, RC , GC constrains
and hybrid them. Because their algorithms framework has
a good flexibility, it can be easily applied to other con-
straints. Kobayashi et al. [13] presented a template-map
strategy for designing DNA codes. The template method
is easy to construct specific DNA code, though the dis-
tance parameter cannot be large. Zhang et al. [14] advanced
the improved dynamic genetic algorithm to design DNA
code sets based on minimum free energy (MFE) constraints.
Montemanni and Smith [15] introduced a variable neigh-
borhood search (VNS) algorithm into design DNA code
sets. Their method is composed seeding building, clique
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search, hybrid search and iterated Greedy Search. This aims
to change the neighborhood structure over time, and thus
could obtain a larger search space. Kawashimo et al. [16]
proposed dynamic neighborhood search (DNS) algorithm
to design DNA sequence sets. Their approach is easy to
handle many types of hamming distance based constraints.
Gaborit and King [17] first presented linear constructions of
code. Smith et al. [18] further extended this construction for
nonlinear code and cyclic code. Simulated Annealing (SA)
is a metaheuristic algorithm derived from thermodynamic
principles. Gamal et al. [19] put forward SA to construct good
source codes, error-correcting codes, and spherical codes.
Montemanni et al. [20] applied SA to design DNA code
sets. In recent work, computer algebra systems Niema [21]
were also used to construct DNA codes that satisfy GC and
HD constrains. Different mapping from fields [22], [23] or
rings [24], [25] to DNA codes could produce different lower
bounds. Aforementioned all the methods were based on the
traditional coding theory and heuristic algorithm to construct
DNA codes. Hong et al. [26] first introduced algebraic num-
ber theory into DNA codes design with large n (<1000) and
number of codes (M < 7000) satisfying the GC constraint.

In this context, we present a bloch quantum chaos algo-
rithm for the design of DNA codes sets. In this method, the
bloch coordinates of each qubit are treated as three paratactic
genes, each chromosome consist of three gene chains, and
each of chains represents an optimization solution that is
a DNA code. Quantum rotation corner is updated by the
dynamic adjustment strategy. The bloch coordinates of qubits
are updated by quantum rotation gates, and are mutated
by quantum non-gates, are crossed by whole interference
crossover strategy. By comparing the sizes of DNA codes
sets obtainable by our method with previous work, our results
match or exceed the best previously known constructions.

II. CONSTRAINTS ON DNA CODES
A DNA code of length n is a set of codes (x1, . . . , xn) with
xi ∈ {A,G,C,T }(representing the four nucleotides in DNA).
The problem of designing DNA code set is to construct
the largest sets which satisfy combinatorial constraints. Let
DNA code x and y are x = 5′ − x1x2 . . . xn − 3′ and y =
5′−y1y2 . . . yn−3′ in the set S, respectively. Given a distance
parameter d , the constraints considered here are as follows:

A. HAMMING DISTANCE CONSTRAINT (HD)
For all pairs of distinct code x and y, the HD constraint
specifies that H (x, y) ≥ d ; where H (x, y) denotes the Ham-
ming distance between codes x and y; that is, the number of
positions i at which the ith letter in x differs from the ith letter
in y. The hamming distance formula for this calculation is:

H (x, y) =
n∑
i=1

h(xi, yi), h(xi, yi) =

{
0, xi = yi
1, xi 6= yi

(1)

In the design of DNA code, Hamming distance is
used to describe the degree of dissimilarity between two

DNA sequences. A higher value of H (x, y) indicates that
the more number of different bases between the two DNA
code x and y, then the same number of bases is less, thus
the number of complementary bases between the code x and
yC (the Watson-Crick complement of DNA code y) is less.
Eventually, the probability of a nonspecific hybridization
between x and yC is smaller.
For example: Let x = ATGACT and y = ACTAGC , then

H (x, y) = 4.

B. REVERSE COMPLEMENT HAMMING DISTANCE
CONSTRAINT (RC)
For all pairs of code x and y, where x may equal y, the RC
constraint specifies that H (x, yRC ) ≥ d ; where H (x, yRC )
denotes the reverse complement hamming distance between
codes x and y. In addition, yRC denotes the Watson-Crick
complement of DNA code y; yRC is the code which reverse y
and replaced each A in y by T and vice versa, replaced each
G in y by C and vice versa.
In the DNA computing experiment, single stranded DNA

molecules are freely expanded in solution, so x may hybridize
with the reverse code y of yR.H (x, yRC ) is to used describe the
degree of dissimilarity between DNA sequences x and yRC .
A higher value of H (x, yRC ) indicates the more number of
different bases between the twoDNAcode x and yRC , then the
less number of complementary base pairs between DNA code
x and yR, so it is difficult to occur non-specific hybridization
between DNA code x and yR.
For example: Let x = ATGACT and y = GTACAC , then

H (x, yRC ) = 4.

C. GC CONSTRAINT
A fixed number w of the letters within each code is either G
orC . Throughout; we assume that the numberw is bn/2c. For
a code x the number of letters which are G or C is denoted
GC(x). the GC constraint specifies that GC(x) = bn/2c. We
use the following formula to calculate the content of GC(x):

GC(x) =
|C| + |G|
|x|

(2)

where |G| and |C| respectively represent the number of
G and C in the code x; and |x| is the length of code x.
For example: Let x = ATGACC , then GC(x) = 50%.

D. FITNESS FUNCTION
The optimization problem is defined by the problem of min-
imum value. The model of the problem is as follows:

fitness(si) =
∑

si,sj∈W ,si 6=sj

max{0, d − H (si, sj)}

+

∑
si,sj∈W

max{0, d − H (si, sRCj )} (3)

The target is to repeatedly modify the code si towards a
feasible solution (i.e fitness(si) = 0). If the GC constraint is
considered, we check that each generated code accepts only
codes with the specified GC content.
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In this study, we have chosen to construct DNA code sets
that satisfy two or three of above constrains. Let ARC4 (n, d)
denotes the maximum numbers of a DNA code of length n
that satisfies the HD and RC constraints for a given parameter
d , and let AGC,RC4 (n, d) denotes the maximum numbers of
a DNA code of length n that satisfies the HD, RC and GC
constraints for a given parameter d and w.

III. THE PRINCIPLE OF THE BLOCH QUANTUM
CHAOS ALGORITHM
In 1996, Narayanan and Moore [27] introduced the concept
of quantum into genetic algorithm for the first time, and
proposed quantum inspired genetic algorithm, which suc-
cessfully solved the TSP problem. However, the quantum
meaning of the algorithm is not very obvious, and it is
similar to the isolation niche genetic algorithm. In 2000,
Han and Kim [28] proposed a genetic quantum algorithm
which was used to solve a class of combinatorial optimization
problems effectively. At the same time he introduced the con-
cept of quantum bits and quantum gates. Chaos is a common
phenomenon in nature with confusing behaviors, but it has a
delicate internal regularity. Chaotic motion has the property
of ergodicity, which is more advantageous than the blind
random search in optimizing search. The ergodicity can avoid
the shortcomings of the evolutionary algorithm into the local
optimal as much as possible [29]. Chaos optimization algo-
rithm is more suitable for searching relatively small space,
and the optimization effect may not very satisfactory when
the search space is relatively large. In recent years, Chaos
optimization algorithm has achieved good performance in
solving the well-known traveling salesman, 0-1 Knapsack
and image encryption [30], [31] problem. In this study, we
integrate chaos optimization into quantum evolutionary algo-
rithm to design DNA code.

A. CHAOTIC SYSTEM
Chaos is a widely existing nonlinear phenomenon. In a certain
range, it does not iterate through all possible states according
to its own ‘‘rules’’. In chaos optimization, we use the logistic
model to generatechaos variable [32]. The logistic map is
a mathematical map which statistics the insect number that
changes with time under certain geographical scope and liv-
ing conditions. That is xn+1 = µxn(1−xn). xn is a chaos vari-
able, xn ∈ [0, 1], µ is a control parameter. If µ > 4, then the
model will diverges, so the range of µ is between 3.6 and 4.
If µ = 4, then the system enters the complete chaotic
state.

B. THREE CHAINS ENCODING METHOD
FOR QUANTUM CHROMOSOME
In classical calculations, information is represented by binary
numbers 0 and 1, which are often referred to as bits. In
quantum computing, |0〉 and |1〉 are used to represent the state
of microscopic particles, which are called quantum bits, also
known as quantum. ‘‘|〉’’ is called the Deakra mark which
represents the meaning of state in quantum mechanics [33].

FIGURE 1. Bloch sphere representation of a qubit.

Quantum bits can not only represent two basic states of
|0〉 and |1〉, but also the linear superposition states of these
two states. On a three-dimensional bloch sphere, a qubit can
be described as follows: |ϕ〉 = cos θ2 |0〉 + eiϕ sin θ2 |1〉,

where cos θ2 and eiϕ sin θ2 are complex numbers
∣∣cos θ2 ∣∣2 and∣∣eiϕ sin θ2 ∣∣2 represent the probability that a qubit are in states

|0〉 and |1〉, respectively, and satisfy the normalization con-
ditions as follows:

∣∣cos θ2 ∣∣2 + ∣∣eiϕ sin θ2 ∣∣2 = 1. As shown in
the following figure, on the bloch sphere, a point P can be
determined by two angle parameters θ and ϕ. At the same,
we can also know that each qubit corresponds to one point on
the bloch sphere. So, the qubit |ϕ〉 can be expressed by bloch
coordinates as |ϕ〉 = [cosϕ sin θ, sinϕ sin θ, cos θ ]T .

C. POPULATION INITIALIZATION
Using the Logistic map to generate r chaotic variables

x in+1 = µx
i
n(1− x

i
n), i = 1, 2, 3, 4, . . . , r (4)

whereµ = 4, i is the serial number of the chaotic variable. Set
n=0, different initial values are given to r chaotic variables
x i0 (i = 1, 2, . . . r) respectively r Chaotic variables x i1(i =
1, 2, . . . r) are produced by the chaotic equations of (4).These
r chaotic variables x i1(i = 1, 2, . . . r) initialize the first bloch
spherical coordinates of qubit in the population.

Let n = 2, 3, 4, . . . ,N − 1, then the remaining chromo-
somes are produced according to themethod described above.
Taking the Nth chromosome of initial results for example:

pn =

∣∣∣∣∣∣
cosϕin sin θin
sinϕin sin θin

cos θin

∣∣∣∣∣∣ (5)

where ϕin = 2π × x in, θin = π × x
i
n, as can be seen from the

above equation, a chromosome contains three gene chains,
called x chain, y chain and z chain. Each gene chain repre-
sents an optimal solution. Thus, the three optimal solutions
represented by the three chromosomes:

pix = (cosϕi1 sin θi1, . . . , cosϕin sin θin)

piy = (sinϕi1 sin θi1, . . . , sinϕin sin θ in)

piz = (cos θi1, . . . , cos θin) (6)
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TABLE 1. The query table 1ϕ of and 1θ .

D. SOLUTION SPACE TRANSFORM
The code problem is transformed into a mathematical lan-
guage description, and the following definitions are given:
f (x) : {T ,C,G,A} → {0, 1, 2, 3}.

f (x) =


0, x = T
1, x = C
2, x = G
3, x = A

(7)

From the above formula, we can see that the range of
optimization problem space A = {0, 1, 2, 3} is. Because
the range of the bloch spherical coordinates of the qubit is
limited to the unit space In = [−1, 1]n, we have to convert
the unit space to the specific optimization problem space.
In the population, each chromosome contains three bloch
spherical coordinates. By using the linear transformation, the
bloch sphere coordinates of the unit space can be transformed
into the solution space of the optimization problem �. Each
optimization variable in the solution space corresponds to the
bloch sphere coordinates. If the jth qubit on pi chromosome
is [xij, yij, zij]T , then the corresponding solution space trans-
formation formula is as follows:

X jix = round{
1
2
[b(1+ xij)+ a(1− xij)]} − 1

Y jiy = round{
1
2
[b(1+ yij)+ a(1− yij)]} − 1

Z jiz = round{
1
2
[b(1+ zij)+ a(1− zij)]} − 1 (8)

where b = Max(A) + 1 and a = Min(A) + 1. From the
above definition, we can know that the design problem of
DNA coding is a discrete problem. So we should convert the
final result into an integer.

E. UPDATE OF QUANTUM ROTATING GATE
In the quantum evolutionary algorithm, population updates
are achieved through quantum gates. Common quantum gates
includeXORgates, controlledXORgates, HadamardH gates,
and rotary gates [33]. Choosing the right quantum gates to
update the population is the key to the design of quantum
evolutionary algorithms. The quality of the quantum gates
directly affects the performance of the algorithm. The param-
eters of the quantum rotation gate can be adjusted arbitrarily
and have strong versatility, so the quantum rotation gate is
used to update the population. Quantum rotating gate can
make each of the current population approaching the cur-
rent optimal chromosomes. In this process of approaching,
it is possible to produce better chromosomes. The quantum

TABLE 2. Before the whole interference crossover.

TABLE 3. After the whole interference crossover.

rotation gate U used is shown below:

U =


cos1ϕ cos1θ − sin1ϕ cos1θ sin1θ cos(ϕ+1ϕ)
sin1ϕ cos1θ cos1ϕ cos1θ sin1θ sin(ϕ+1ϕ)
−sin1θ − tan(ϕ/2)sin1θ cos1θ


(9)

U

 cosϕ sin θ
sinϕ sin θ
cos θ


=

 cos(ϕ +1ϕ) sin(θ +1θ )
sin(ϕ +1ϕ) sin(θ +1θ )
cos(θ +1θ )

 (10)

From Eq (10) can be seen, it is clear that the U causes
the phase rotation of 1ϕ and 1θ . The value and direction
of 1ϕ and 1θ affect the convergence speed and efficiency
of the algorithm. Han et al constructed [28] a query table
to decide the direction of quantum rotation corner. The table
listed all possible situations as an aid decision-making tool.
This method involved multiple conditional judgments which
would seriously affect the efficiency of the algorithm. As
far as the direction of quantum rotation corner is concerned,
Li et al presented a simple method to decide the direction
of quantum rotation corner. Let q0j(x0j, y0j, z0j) be the bloch
coordinates of the jth qubit in the current optimum chromo-
some. qij(xij, yij, zij) is the bloch coordinates of the jth qubit
in the ith chromosome. Let

A =

∣∣∣∣ x0j xij
y0j yij

∣∣∣∣B = z0j − zij (11)

The direction of 1ϕ and 1θ is determined by such rules
as follows: (1) If A 6= 0 or (B 6= 0), then the direction of 1ϕ
or (1θ ) is −sgn(A) or (−sgn(B)); (2) If A = 0 or (B = 0),
then the direction of1ϕ or (1θ ) is arbitrary. The query table
of 1ϕ and 1θ is as follows.

With the values of 1ϕ and 1θ , although the scope
(0.005π, 0.1π ) was given in the literature [27], there is
no specific basis for selection. Therefore, the value of
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TABLE 4. Parameters used in our algorithm.

FIGURE 2. The pseudo code of the updated set S.

1ϕ and 1θ should be based on specific practical issues.
When their values are too large, the algorithm will converge
early and then fall into the local optimal solution. Conversely,
the algorithm will converge slowly and seriously affect the
efficiency of the algorithm.We adopt the dynamic adjustment
strategy to adjust the value of quantum rotation corner. The
method is as follow:

θ ′ = λ ∗ exp(−
t

maxDT
) (12)

ϕ′ = λ ∗ exp(−
t

maxDT
) (13)

where λ is a fixed search step with the value 0.01π , t repre-
sents the number of iterations, maxDT represents the maxi-
mum number of iterations. In a word, the quantum rotation
corner of the update formula is as follow:

1ϕ = −sgn(A) ∗ λ ∗ exp(−
t

maxDT
) (14)

1θ = −sgn(B) ∗ λ ∗ exp(−
t

maxDT
) (15)

F. CROSSOVER OPERATION
In the basic quantum evolutionary algorithm, since only the
quantum rotation gate update operation is carried out, it is
easy to cause all the individuals to evolve toward the same
target during the population evolution, and then fall into the
local optimum. The chromosomal crossover operation not
only improves the diversity of the population, but also keeps
the good individuals in the population. These two properties
are very important for the evolutionary algorithm. Common
cross-over strategies are single-point crossover, two-point
crossover, multi-point crossover and uniform crossover [34].
In order to combine the coherent characteristics of quan-
tum bits, this paper adopts the whole interference crossover.
This crossover operation requires that all chromosomes in
the population participate in the exchange of information,

FIGURE 3. Flow chart illustrating the algorithm.

TABLE 5. The meaning of subscripts.

which can greatly increase the diversity of the population,
but it increases the computational complexity at the same
time. Suppose the population size is 5, each chromosome
has 4 qubits, before the crossover the results are shown
as Table II, after the crossover the results are shown as
Table III.
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TABLE 6. Lower Bounds for AGC,RC
c (n,d ,w).

G. MUTATION OPERATION
In the quantum algorithm theory, the mutation of quantum
chromosomes is done by means of quantum non-gate. If the
qubit |ϕ〉 is described by the vector [cos θ sin θ ]T in unit
circle, then the result of the mutation is as follow:[

0 1
1 0

] [
cos θ
sin θ

]
=

[
sin θ
cos θ

]
(16)

From the results of the mutation, it can be seen that the
effect of non-gate is to exchange the probability amplitudes
of qubit and the phase θ is mutated to π/2−θ . We can extend
the effect of the quantum non-gate from the plane unit circle
to the three-dimensional bloch sphere, and set the mutation
operator on the bloch sphere. Let V be the mutation operator
on the bloch sphere.

V =

 x11 x12 x13
x21 x22 x23
x31 x32 x33

 (17)

V

 cosϕ sin θ
sinϕ sin θ
cos θ

 =
 cos(π

/
2− ϕ) sin(

π
/
2− θ )

sin(π
/
2− ϕ) sin(

π
/
2− θ )

cos(π
/
2− θ )

 (18)

TABLE 7. The meaning of subscripts.

From (18), we can calculate the specific form of the
mutation operator V .

V =

 0 cotθ 0
cotθ 0 0
0 0 tanθ

 (19)

The actual effect of this mutation is a sort of phase
rotation of qubit. The process of mutation is as fol-
lows: first set the probability of mutation, according to
the probability of mutation from the current population
to select a number of quantum chromosomes to apply
quantum non-gate transformation. The mutation operation
does not compare with the current optimal chromosome,
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TABLE 8. Lower Bounds for ARC
4 (n,d ).

and the rotation direction is positive, and the purpose is
to increase the diversity of the population, thus reduc-
ing the possibility of falling into the local optimal
solution.

IV. ALGORITHM DESCRIPTION
The step of a bloch quantum chaos algorithm can be described
as follows:

Step1. Initialize population and parameters. Set the cur-
rent optimization iteration t ← 0, the mutation
probability pm, the fixed search step λ, the size of
population m, the maximum optimization iterations
maxDT . Generate an initial population by Chaos
equation.

Step2. Transform solution space. Three approximate solu-
tions are transformed from unit space In = [−1, 1]n

to solution space � in each chromosome. Finally
compute the fitness of all individuals in the popu-
lation.

Step3. Update the set S. If the fitness functionfitness(s) ==
0, then the individual is added to the set S. Other-
wise, if all individuals fitness function fitness(s) 6= 0,
then randomly select an individual to add the set S.

Step4. Perform the whole interference crossover operation.
Step5. Perform the mutation operation.

Step6. Update population with the quantum rotating
door.

Step7. The updated population is transformed into the solu-
tion space of the optimization problem, which is
denoted as pop, and the fitness of all individuals in
the population is computed.

Step8. Update the set S. The update process is as follows:
If a individual from set pop is compatible with all
elements in set S, then we should add it to S. If
it’s incompatible with an individual in the set S,
we should add it to S and remove the incompat-
ible individual. Other circumstances are not con-
sidered. Compatibility means that the combination
constraints are satisfied. The main idea of the ran-
dom search algorithm as derived from the litera-
ture [35]. The pseudo code of the updated set S is
shown in Fig 2.

Step9. If the current optimization iteration is an integer
multiple of 100, then regenerate the population by
Chaos equation and go back to Step 7; otherwise go
to step10.

Step10. The number of iterations increases by 1.
Step11. Determine whether the algorithm termination con-

dition is satisfied. Output the optimal solution if it is
satisfied; otherwise, go to step 4.

A flow chart illustrating the algorithm is shown in Fig.3.
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V. SIMULATION RESULTS
A. ALGORITHM PARAMETERS
Simulations were conducted on an Intel(R) Core(TM)
i3-4160 CPU 3.60GHz 4GB RAM machine with the param-
eter settings as listed in Table IV.

B. RESULTS
In the following tables, lower bounds are given for
AGC,RC4 (n, d,w), ARC4 (n, d) and for 4 ≤ n ≤ 14, 3 ≤ d ≤ n.
For each combination, we reported the best result obtained by
the algorithms, together with the best-known result available
from the literature. The entry A presents our results. The
entry B presents the best result of previous study. In case
of AGC,RC4 (n, d,w), note that for the bloch quantum chaos
algorithm the constant GC-content w is always taken to be
bn/2c, while for the B entries it is in the range from bn/2c−1
to bn/2c + 1. The symbol ‘‘.’’ denotes that this instance of
the algorithm did not run. The symbol ‘‘—’’ denotes that the
distance constraint d is greater than the code length n. Entries
in bold are new best lower bounds found by our algorithms.

In the Table VI, subscripts in B entries indicate with which
algorithm the result was found. The meaning of the super-
scripts is as follows:

Let AGC4 (n, d,w) denote the maximum numbers of a DNA
code of length n that satisfies the HD and GC constraints
for a given parameter d and w. According to the following
inequality proposed by King [36]:AGC,RC4 (n, d,w) ≤

1
2
AGC4 (n, d,w)

0 < d ≤ n, 0 ≤ w ≤ n
(20)

With the last word, one of the new lower bounds for
AGC,RC4 (n, d,w) obtained here yield new lower bounds for
AGC4 (n, d,w) via the above inequality: AGC4 (9, 4, 4) ≥ 560.
The previous best lower bounds for thesewereAGC4 (9, 4, 4) ≥
555, obtained via variable neighborhood search algorithm.

In Table VIII, subscripts in B entries indicate with which
algorithm the result was found. The meaning of the super-
scripts is as follows:

It can be found from Table VIII that the SLS, VNS and
SA algorithm constructed better lower bounds for ARC4 (n, d)
with the code length n ≤ 8 and distance constraint d ≥ n/2
than linear and nonlinear of construction. Otherwise, linear
and nonlinear of construction produced many more DNA
codes with the code length n > 8 and distance constraint
d < n/2 than algorithmic methods. Linear and nonlinear
of construction and algorithmic methods can be considered
complementary to obtain a better lower bound, which can
better meet the needs of different DNA code applications.

VI. CONCLUSIONS
In this paper, we proposed a novel quantum evolutionary
algorithm to construct DNA code sets. In this algorithm,
the chromosome is encoded by the bloch coordinates of
qubits, and each chromosome comprises three gene chains,
and each of chains is treated as an optimization solution.

We use chaotic equation to initialize the bloch coordinates
of quantum bits, and adopt the dynamic adjustment strategy
to adjust the quantum rotation corner. The whole interference
crossover strategy is introduced into the algorithm to update
population. AGC4 (n, d,w) and ARC4 (n, d) with the code length
4 ≤ n ≤ 14 and distance constraint 3 ≤ d ≤ n. By comparing
our experimental results with the previous works, the results
improve the previously known code and matched the best-
known code for several instances. In addition, combine the
lower bounds for AGC,RC4 (9, 4, 4) with King’s inequality, we
can deduce the new lower bounds for AGC4 (9, 4, 4).
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