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ABSTRACT In this paper, we report the design and implementation of a Kinect-based system for providing
automated realtime assessment, feedback and guidance to users who are practicing rehabilitation exercises at
homewithout the supervision of physical therapists. The foundation for the system is a rule-based framework
that can be used to assess in realtime the quality and quantity of the exercises performed by the user.
We demonstrate the capability of the rule-based framework by showing the detailed rules for three common
rehabilitation exercises, including bowling, hip abduction, and sit to stand. To test its usability and accuracy,
we have used the system in a human subject study with eight healthy users. The results show that with proper
empirical parameters in the rules, the performance of these exercises can be reliably assessed in realtime.

INDEX TERMS Rule-based human motion assessment, microsoft Kinect, human activity recognition,
rehabilitation exercises, finite state machine.

I. INTRODUCTION
Physical exercises constitute an essential part of preventive
and rehabilitative medicine [1]. Typically, a therapist would
prescribe a rehabilitation program for a patient to help treat
symptoms and speed up the recovery process. The patient is
expected to perform the prescribed exercises at home daily
with many repetitions. The current state of the practice is
far from adequate. In many cases, printed materials with
simple illustrations and purposes of the prescribed exercises
were given to a patient. In recent years, videos (or links to
videos posted on the Web) of the prescribed exercises are
provided to the patient in addition. The paper-only materials
are apparently not desirable. Even with the help of the videos,
patients may still be left wondering if he/she is doing the
exercises correctly. Another important impeding factor is
that such materials are not engaging enough to get patients
to perform the prescribed exercises daily at home without
the supervision of any therapist, let alone to perform them
correctly with sufficient repetitions.

It is well known that gamification can help engage peo-
ple in physical exercises [2]. However, current games or

game-like programs designed for rehabilitation are typically
limited to repetition count and scoring. Some cutting edge
research prototypes are capable of providing more specific
feedback, such as [3] where only the violations in static axes
are detected. While this is a good progress forward, it is still
not desirable because physical therapeutic exercises typically
involve dynamic movements. Making sure that a patient is
performing the prescribed exercises exactly as specified is
crucial for a speedy recovery, and performing them incor-
rectly may in fact cause injuries to the patient [4], [5]. Hence,
a good assistive technology for helping patients to carry out
the prescribed exercises correctly and adequately at home
without supervision must accurately detect all violations of
the physical movements performed by patients in realtime
and provide specific feedback so that they know what they
did wrong and make corrections.

Assistive technology for therapeutic exercises should also
provide a mechanism for customization. Depending on the
severity of the health problems of the patient, an exercise
would need to be customized to fit the patient’s condition.
This applies not only to different patients, but also the same
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patient. During the course of the recovery, the rules for a
prescribed exercise might need to be changed as well. For
example, for a stroke patient, he/she could hardly move
his/her arm initially, and as he/she progresses in recovery,
he/she would be able to move his/her arms more freely. If the
bowling exercise is prescribed, the range of motion should
be quite small in the beginning and it should be increased
gradually over time. Furthermore, the tolerance on movement
trajectory should also be gradually tightened up.

In this paper, we present a rule-based framework for
specifying therapeutic exercises. Because the exercises are
described in terms of rules, the specification also serves as the
basis for realtime feedbackwhere the patient will be informed
of exactly which rule is violated during a repetition. The
parameters used in the rules, such as the beginning and ending
pose orientations, as well as the tolerance values, can be easily
adjusted dynamically. Subsequently, we describe the design
and implementation of an avatar-based guidance system that
incorporates the rule-based framework. The usability of the
system is validated via a human subject study with eight
healthy subjects.

II. RELATED WORK
There are primarily two approaches to human activity recog-
nition: (1) learning based and (2) rule based. In the learning
based approach, labeled training data are first obtained, and
then they are used either directly or indirectly via a predefined
model to classify a newly acquired activity [6]–[13]. In the
rule based approach, the activity is first described in terms of
a set of rules and an unknown activity is classified based on
the rules defined for each possible activity.

Unlike the rule-based approach, the learning-based
approach can be used to classify an arbitrary activity without
the need to fully describe it, provided that there are sufficient
training data for the activity. The learning-based approach
obviously has advantages over the rule-based approach in
terms the cost of describing an activity because in the
rule-based approach, each activity must be painstakingly
fully described by rules with appropriate parameters, which
requires intimate knowledge about every activity involved.
On the other hand, this strength in generality also constitutes
the weakness of the learning-based approach in the context
of guiding a patient on performing therapeutic exercises
correctly because it is difficult to provide specific feed-
back to the patient regarding exactly what was performed
wrong. Furthermore, it is also difficult to obtain sufficient
training data in cases when an exercise must be customized
with gradually changing range of motion and tolerance
values.

Because we take the rule-based approach, we only
outline related work that follows the same approach.
General-purpose rules have been proposed for classifying
hand gestures [14] and whole body activities [15]. In the lat-
ter [15], a Gesture Description Language (GDL) is introduced
to describe common activities. Each activity (or gesture) is
identified by a set of rules. There are two different types of

rules, the basic rules and the final rule. Each basic rule is
defined in terms of of one or more key frames each consisting
of a set of joint positions. The final rule is defined in terms of a
sequence of basic rules. The use of key frames as the building
blocks in [15] has its limitation in that it cannot define rules
that rely on the entire trajectory of a gesture. Furthermore,
no guideline on how to identify key frames was provided
in [15].

It is worth noting that in the context of therapeutic exercise
monitoring and guidance, rules defined for an exercise are
primarily used to determine the quality of movements rather
than to recognize which exercise the patient is performing
because the exercise to perform is considered to be known
from the context. Therefore, it is unnecessary for the rules
to completely describe an exercise. As a result, the number
of rules is small and they are usually defined in terms of joint
angles. For example, in [16] and [17], gait retraining rules are
defined in terms of the trunk flexion angle, trunk lean angle,
and the distance a set of joints for postural control traverse.
In [18], the rules for sit-to-stand and squat exercises are
defined in terms of the knee angle and the ankle angle, and the
rules for shoulder abduction/adduction are defined in terms of
the shoulder angle. In [19], the rules for knee rehabilitation
exercises are defined in terms of the knee angle. In [20],
the rules for the sit-to-stand exercise are expressed in terms
of the minimum hip angle and the movement smoothness of
the head.

The construction and expression of rules in our framework
are influenced by [14], where a hand gesture is defined by
a sequence of movement segments in terms of a monoton-
ically increasing or decreasing key parameter, such as as
the angle between two fingers. Each segment is referred to
as a monotonic segment. In our framework, we also also
monotonic segments to define dynamic rules. The frames
that delineate two consecutive segments are refereed to as
reference configurations. Unlike [14], where only dynamic
rules were defined, we also define invariance rules and static
rules [21], [22]. The invariance rules specify the rules by
which the movement must abide by throughout the entire
repetition. The static rules specify the poses of segments that
must remain stationary. The invariance rules and static rules
are critical for rehabilitation exercises, but they may not be
important for gesture/activity recognition.

III. RULE-BASED ASSESSMENT FRAMEWORK FOR
REHABILITATION EXERCISES
Rehabilitation exercises are assessed via three sets of rules,
rules for dynamic rules (dynamic rules for short), rules for
static poses (static rules for short), and rules for movement
invariance (invariance rules for short):
• Dynamic rules. A dynamic rule defines a sequence of
consecutive key positions (i.e., reference configurations)
of a moving body segment for each repetition.

• Static rules. A static rule specifies the position and/or
orientation of a key body segment that should remain
stationary at during each repetition.
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• Invariance rules. Each invariance rule describes a condi-
tion that a moving body segment must meet during each
repetition.

All rules are described in terms of one or more reference
configurations. It can be defined in a number of ways depend-
ing on the context. It could be in terms of the joint angle
in between two adjacent body segments, such as the angle
between a moving leg and the the stationary one. It may be in
terms of the orientation with respect to one of the anatomical
planes, such as the frontal, sagittal, or transverse plane. It may
also be defined in the form of the distance between some
joints or relative positions of different joints (particular for
static rules).

A. ENCODING OF RULES
Rules are encoded using the eXtensible Markup
Language (XML) for their readability and extensibility.
Listing 1 shows a template for encoding the rules. The rules
start with an ExerciseRules element where the exercise name
should be given as an attribute for identification purpose.
This is followed by a list of dynamic rules enclosed in a
DynamicRules element, one or more static rules in a single
StaticRules element, and one or more invariance rules in an
InvarianceRules element.

Listing 1. The template structure on rule encoding for an exercise.

The DynamicRules element consists of one or more
DynamicRule elements. Each DynamicRule element consists
of two or more Configuration elements, as shown in Listing 2.
If there is only a single DynamicRule, then the structure can
be compacted to have the DynamicRule directly under the
ExerciseRules element.

Listing 2. Encoding of dynamic rule.

The StaticRules element and the Invariance element are
rather similar to the DynamicRule element. Both consist of
a list of Configuration elements, as shown in Listing 3.

In our framework, three types of Configuration elements
are used, which are shown in Listings 4, 5, and 6. Each
Configuration element encodes a reference configuration and
it all starts with a Type element so that the element can be
parsed properly. The JointAngle type defines a configuration
using the joint angle between two adjacent body segments.
The CenterJoint element defines the common joint of the

Listing 3. Static/Invariance rule encoding.

Listing 4. A configuration for joint angle.

two segments. The DownstreamJoint and UpstreamJoint ele-
ments specify the other endpoints of the two segments. The
Angle and MaxAngleDeviation element are self-explanatory.
The tolerance value in the MaxAngleDeviation element is
determined heuristically and empirically. When determining
this parameter, the following factors should be considered:
• The tolerance value must not lead to the overlapping of
the current configuration with any other configuration to
avoid confusion.

• The tolerance value must not result in an unsafe posture
for the user.

The JointDistance type defines a configuration using dis-
tance (as indicated in the Distance element) between two
joints, shown in Listing 5. One joint is a moving joint (i.e., the
MovingJoint element), and a stationary joint (i.e., the Station-
aryJoint element). The MaxDistDeviation element defines
the tolerance value.

Listing 5. A configuration for distance between two joints.

The BoneOrientation type specifies a configuration
using the orientation of a body segment. The body
segment is defined using two joints, DownstreamJoint
and UpstreamJoint. To describe the segment orientation,
we decide to adapt from the spherical coordinates for the
3-dimensional space. To define a set of spherical coordi-
nates, we need to choose an origin, which we decide to
use the DownstreamJoint, a plane that contains the origin,
and two mutually perpendicular axes passing through the
origin. Because many rehabilitation exercises involve the
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Listing 6. A configuration for bone orientation.

movement of certain body segment along some anatomical
plane, we encourage the user to use the most relevant anatom-
ical plane as the plane required by the set of spherical coordi-
nates. One of two axes should be the axis that is perpendicular
to the anatomical plane. The user has freedom to choose the
other axis that lies within the anatomical plane.

FIGURE 1. Spherical coordinates in defining the bone orientation.

The definition of the planes and the axes used in defining
the orientation of a body segment is provided in Figure 1.
We choose to define a coordinates system that is similar to
that used byMicrosoft Kinect software development kit. If the
Kinect sensor is positioned up right without any tilt, and the
user is standing facing the Kinect sensor, then the frontal
plane would coincide with the plane determined by the x-y
axes, and the z-axis would be pointing away from the Kinect
sensor to the back of the user. The transverse plane would
coincide with the floor (assuming that the floor is strictly
flat) and are determined by the x-z axes. the sagittal plane
is determined by the y-z axes.

Given a body segment, where the DownstreamJoint has a
Cartesian coordinates of (0,0,0), and the UpstreamJoint has a
Cartesian coordinates of (x,y,z), the spherical coordinates of

the UpstreamJoint are (r, alpha, beta) according to the setup
used in Figure 1 where the plane of interest is the transverse
plane, and the two axes used are x and y axes. Here r is the
length of the body segment. The angle alpha is defined as the
angle between the body segment and the y-axis. The angle
beta is defined to be the angle between the x and y axes.
Consequently, the relationship between the Cartesian coor-
dinates and the spherical coordinates for the UpstreamJoint
is: x = r ∗ sin(alpha) ∗ cos(beta), y = r ∗ cos(alpha),
z = r ∗ sin(alpha) ∗ sin(beta).
To define the orientation of a body segment, the length

of the segment r is not relevant and only the plane, the two
axes, and the two angles are important. Because one of the
axes must be the axis that is perpendicular to the plane,
it can be inferred from the plane itself. Hence, that axis is
not necessary either. The reference configuration would need
to define the plane, one axis, and the two angles, as shown
in Listing 6. The valid value for the Plane element includes
‘‘Frontal’’, ‘‘Sagittal’’, and ‘‘Transverse’’. The valid values
for the Axis element includes ‘‘X’’, ‘‘Y’’, and ‘‘Z’’. When
used for invariance rule to limit the movement of a body
segment within an anatomical plane, the alpha value will be
0 with no beta value and no second axis specified, and the
plane should be that anatomical plane.

When used to describe a dynamic rule, all three types
of Configuration elements may contain the Duration and
MaxDurationDeviation elements, which specify the desirable
duration range of the current monotonic segment startingwith
the current configuration.

IV. REALTIME MOTION TRACKING
The quality of an exercise is assessed by examining the
skeleton frames provided by the Kinect sensor based on the
rules for the current rehabilitation exercise. Typically, there
are two levels of analysis based on the defined rules: the
frame level and the system level. All rehabilitation exercises
are repetitive. Hence, the unit of quality assessment is one
repetition and the user is informed about the quality of the cur-
rent repetition at the end of the repetition. However, feedback
is provided to the user while he/she is doing the exercise in
realtime even before the current repetition is completed. For
example, on detection of the violation of one or more rules,
some form of feedback (such as visual cue) is immediately
provided to the user. The repetition is determined by applying
the dynamic rules.

To deal with occasional jitters andmeasurement errors, raw
data can be filtered using some standard filter. In our experi-
ments, we find that the complementary filter works fairly well
because it offers a good compromise in combining slow and
fast moving signals. Given a sequence of raw data of certain
variable, such as a joint angle, rawn, where n = 1, 2, 3, . . .,
and the corresponding filtered data, filteredn, is determined
by the following formula:

filteredn = α ∗ filteredn−1 + (1− alpha) ∗ rawn. (1)

Here α is a smoothing parameter between 0 to 1.
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FIGURE 2. Two types of finite state machines for the dynamic rule, one with a transient final pose (top), and the other with a
stable final pose (bottom).

For static rules and invariance rules, the detection of a
single (filtered) frame violation would render the current
repetition unacceptable. The tracking of repetition and the
quality of performance with respect to dynamic rules are
much more complicated and we will elaborate in detail
below.

Realtime motion tracking is guided by a finite state
machine, as shown in Figure 2. The number of states are
identical to that of the monotonic segments, which in turn is
the number of reference configurations. The first challenge in
motion tracking is to determine when a repetition is started.
To do so, we depends on the first configuration in the dynamic
rule. This configuration corresponds to the initial state in the
state machine as indicated by C1.

Because of the repetitive nature of rehabilitation exercises,
one repetition contains two back-to-back mirrored activities.
For example, for the hip-abduction exercise, one repetition
starts with a hip-abduction activity and is followed by a hip-
adduction activity. One repetition of the sit-to-stand exercise
starts with a sit-to-stand activity and is followed by the mir-
roring stand-to-sit activity. These two mirroring activities of
each repetition lead to another interesting phenomenon: the
final pose of the first activity may be quite different. The final
pose can transient, or it can be a stable pose. For example,
at the end of the hip-abduction activity, the abducting leg
reaches out to the maximum hip angle, which is a transient
pose because it is difficult for a user to remain at this pose.

In contrast, the first activity of the sit-to-stand exercise
ends with the user standing straight up, which is a stable
final pose because the person could stay comfortably in that
pose for much longer time than that of a transient pose before
proceeding to the stand-to-sit activity. For exercises with a
transient pose, it makes sense to track the exercise as a single
state machine. For exercises with a stable pose, it is best to
model the exercise as two separate finite state machines. The
two types of finite state machines are illustrated in Figure 2.

We start by explaining the finite state machine specifica-
tion for exercises that has a transient final pose. An exercise
is modeled to have k reference configurations as defined in
the dynamic rules. Consequently, there are 2k−1 states in the

finite statemachine for the exercise. Each state corresponds to
a reference configuration defined. Hence, we reuse the same
symbol Ci to refer to the reference configuration as well as
the corresponding state. The 2k − 1 states are represented
as C1, C2, . . . ,Ck−1, Ck , C

,
k−1, . . . ,C

,
2, C

,
1, where C

,
i is the

mirror motion segment of Ci. The machine enters a state Ci
on detecting the corresponding reference configuration and
will stay in that state until the detection of the next reference
configuration as shown in Figure 2.

For exercises with a stable final pose, two separate finite
state machines are used to track each repetition. The state
transition is identical to that in the finite state machine with a
transient final pose.

In practice, a patient may not execute an exercise exactly
as described. As such, it is inadequate to compare against
the next reference configuration according to the finite state
machine because the expected reference configuration may
not be satisfied. Therefore, we must track each actual mono-
tonic segment dynamically as the user is performing the
exercise. This is accomplished by tracking the variables
defined in the rule (such as the joint angle, the body segment
orientation angle, or the distance between two joints). The
current monotonic segment ends when the variable reaches a
peak (if the variable is increasing) or a valley (if the variable
is decreasing).

A user may decide to stop in the middle of a repetition,
perhaps because of the feedback received or some other
reasons. To allow this to happen, we add a transition from
any of the states to the initial state in the finite state machine.
Consequently, in addition to the next expected reference con-
figuration, we also compare the current frame against the
initial reference configuration.

In summary, as shown in Figure 2, at a stateCi, three events
could happen:
• Event e1: The current frame does not match the next
expected reference configuration. Hence, the finite state
machine stays in the current state Ci.

• Event e2: The current frame matches the next expected
reference configuration. The finite state machine then
switches to the next state Ci+1.
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• Event e3: The current frame satisfies the initial config-
uration. The finite state machine then switches to the
initial state.

The mechanism described above has one weakness in that
it does not tolerate jitters if they are severe enough to cause the
velocity of the variable to change sign, i.e., when the variable
is increasing in value and the jitter makes the next frame to
appear to be decreasing in value, and vice versa. We propose
the following mechanism to cope with the jitter.

FIGURE 3. The mechanism to dynamic track when a monotonic segment
terminates. As can be seen, if the jitter is smaller than the threshold, our
mechanism can survive the jitter.

The mechanism keeps track of both the maximum and the
minimum values of the variable that have been observed in
each state. As shown in Figure 3, for a monotonic segment
with an increasing (or decreasing) value, it is not terminated
until the current value is smaller (or greater) than the last seen
maximum/minimum value by a threshold to be resilient to
small jitters. The downside of this mechanism is that it would
a cause some delay in state transitions. Ultimately, it also
causes a slight delay in updating the repetition count on the
user interface.

V. CASE STUDIES
In this section, we show how to use our rule-based framework
to define rules for three rehabilitation exercises, including
bowling, hip abduction, and sit to stand.

A. BOWLING
For the bowling exercise, there is one dynamic rule defining
two reference configurations for the movements. As shown
in Figure 4, one reference configuration defines the initial
position for the bowling exercise where the bowling arm is
straightly down or slightly backward from the position, and
the other reference configuration is the bowling arm pointing
straight forward. This rule not only defines the range of
motion of the exercise, but it helps the system to automatically
perform repetition count.

There are also two invariance rules. One rule dictates that
the bowling arm must be straight, i.e., the angle formed
between the lower and upper arms must remain to be
180 degrees the entire time during the exercise. The other rule
specifies that the bowling arm must move within the sagittal
plane. Bowling does not have any static rule. Listing 7 shows
all the rules for this exercise. Both reference configurations

FIGURE 4. The two reference configurations for the bowling exercise
from the sagittal view. (a) The initial pose; (b) the final pose.

Listing 7. The rules for the bowling exercise.

in the dynamic rule are defined in terms of the body segment
orientation.

B. HIP ABDUCTION
The hip abduction exercise requires that the abducting leg
moves away from the body to about 45 degrees in the frontal
plane. Usually, the hip-abduction activity is followed by the
hip-adduction activity so that the leg would move back to
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FIGURE 5. The two reference configurations for the hip abduction
exercise from the frontal view. (a) The initial pose; (b) the final pose.

Listing 8. The rules for the hip-abduction exercise.

the initial configuration. This leads to a dynamic rule with
two reference configurations, one for the initial pose and the
other for the final pose where the abducting leg reaches the
out-most position, as shown in Figure 5. Furthermore, there
is an invariance rule to dictate that the abducting leg must
move within the frontal plane. The rules for the hip-abduction
exercise is given in Listing 8.

C. SIT TO STAND
The sit-to-stand exercise requires a user to first sit, and then
lean forward to stand up, as shown in Figure 6. When in the
sitting position, the user’s two feet must be placed evenly on

FIGURE 6. The three reference configurations for the sit-to-stand exercise
from the sagittal view. (a) The initial pose; (b) intermediate pose; and
(c) the final pose.

the floor, and the torso is straight up so that the angle formed
between the torso and the legs is approximately 90 degrees.
While the user is standing up, the feet should remain at the
initial place.

To make multiple repetition of the exercise, a user would
perform the mirrored activity, stand to sit, after the sit-to-
stand activity. Unlike the bowling and the hip abduction
exercises, where the end pose of the first activity is not stable,
the sit-to-stand activity ends with a stable pose because he/she
may choose to remain in the standing pose for some time
before proceeding to the stand-to-sit activity. As such, it is
more robust to track the sit-to-stand, and the stand-to-sit
activities separately using two finite state machines.

Here we only define the rules only for the sit-to-stand
activity, as shown in Listing 9. The rules for the stand-to-sit
activity is rather similar (the only difference is that the refer-
ence configurations in the dynamic rule are in reverse order).
One dynamic rule and one static rule are used to define the
sit-to-stand exercise. The dynamic rule defines the hip angle
movement. The sit-to-stand activity has the two monotonic
segments using the hip angle as the variable. Hence, there are
three reference configurations in the dynamic rule, as shown
in Figure 6, for the initial, intermediate, and final pose with
the hip angle at 90 degrees, 60 degrees, and 180 degrees,
respectively. The static rule describes the rule about the foot
placement, i.e., they must be aligned in parallel to the frontal
plane.

VI. SYSTEM DESIGN AND IMPLEMENTATION
In this section, we present the design and implementation of
an avatar-based system [23], [24] for rehabilitation exercises
guidance and realtime assessment. The system provides guid-
ance to its users by demonstrating in a virtual 3D environment
the proper way of practicing an exercise via an avatar on
the left side of the screen. The demonstration is enabled by
replaying in a loop pre-recorded motion data. The data can
be recorded from a user under the supervision of a physical
therapist, or directly recorded from a physical therapist doing
the exercise. On the right side of the screen, another avatar
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Listing 9. The rules for the sit-to-stand exercise.

shows the actual user movement in realtime. Furthermore,
the system uses the rules defined for the current exercise to
assess the user performance in realtime. The quantity and
the quality of the exercise performed are presented to the
user in the form of visual aids in realtime. The system also
logs information such as the number of correct repetitions
and raw motion data (i.e., joint positions) for offline analy-
sis. If desirable, the log data can be furnished to the user’s
physical therapist to review.

The system is designed to satisfy the following
requirement:

• The system should provide a three-dimensional visual
guide on how to perform a rehabilitation exercise pre-
scribed by a therapist. The user should be able to view
the movement from different angles and in slow motion
so that he/she could learn the correct movement.

• The system should not display images of the demonstra-
tor or the user so that the user feels more comfortable
practicing the prescribed exercises. This may seem to
be counter-intuitive. However, numerous studies have
shown that users typically prefer not to see their own
images when doing rehabilitation exercises.

• The system should provide realtime feedback to the
user while he/she is practicing. In particular, the system
should catch a wrong movement as soon as it is per-
formed to minimize the risk of injuries. Furthermore,
the feedback should be presented to the user at least
visually with intuitive cues.

• For review by the therapist, the movements of a user
should be recorded as well as higher-level meta data
regarding the performance of the exercises practiced by
a user at home. This is important to facilitate patient
accountability and tele-medicine.

To satisfy the first two requirements, we choose
to use the Unity 3D game development framework
(https://unity3d.com/). While the Microsoft software devel-
opment kit (SDK) and virtually every third party toolkit
offers application programming interfaces (APIs) and sam-
ple applications for skeletal data rendering, the display is
in 2-dimensional only with the joints connected by artificial
bones. Such an approach is not satisfactory because it fails
to show the movements in the sagittal plane. Even though
overlapping color images of the demonstrator or the user
with the skeleton images could result in a better depth view,
the second requirement (about not showing the user images)
rules out this approach.

Indeed, with the Unity framework, both the coach and
the user are represented by three-dimensional avatars. Fur-
thermore, the movements of the coach and the user can be
watched frame-by-frame in a 360-degree view. This help the
user to learn how to perform a newly prescribed exercise,
and facilitates the therapist to examine the user’s practicing
quality in great detail.

To satisfy the third requirement, the system implements
a motion assessment engine that is capable of (1) parsing
the rules for each rehabilitation exercise and creating internal
data structures accordingly, and (2) examining each incoming
skeleton frame according to the rules and assess the quantity
and quality in realtime. Our rule-based framework (i.e., the
rule specification as well as the motion assessment mech-
anisms) makes this task possible. Furthermore, in addition
to the avatars, we added target positions for each exercise
for key joints. To facilitate this extension, we extend the
rules by adding a new element <TargetJoint>. If a joint in a
final reference configuration of a dynamic rule is included in
the <TargetJoint> element, a sphere is inserted at the target
position. This sphere is used as the visual cue in the following
ways: (1) it shows the number of correct repetition count; (2)
the sphere is colored green as long as the user is performing
the repetition correctly, and it turns yellow as soon as the user
violates one of the rules. If the latter happens, the current
repetition is not counted, and an additional text indicating the
nature of the error is displayed on the screen.

To satisfy the last requirement, the joint positions in
Cartesian coordinates as well as the segment orientations in
quaternion of the user for every frame are captured and logged
to files. Furthermore, the assessment results and the repetition
counts are also logged.
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FIGURE 7. Our system: (a) in the project view, and (b) in the game view.

We implemented the system as a Unity project [25],
as shown in Figure 7. We choose to use the ZigFu
plugin (http://developkinect.com/groups/zigfu; the official
website is not longer accessible) to access the Kinect runtime.
Because the ZigFu plugin supports theMicrosoft Kinect SDK
as well as OpenNI, both the Kinect sensor and any of the
OpenNI-compatible depth sensors (such as Asus Xtion Pro
Live) can be used with our system. The C# programming
language is used to script the avatars and all dynamic content
of the virtual reality environment.

As shown in the project view (Figure 7(a)). Themain assets
are two avatars provided by the ZigFu plugin:
• CoachAvatar. This avatar is placed on the left side of the
scene. A C# script named Replay.cs is used to controls
the movement of the CoachAvatar using the motion data
collected previously. This avatar serves as the virtual
coach for the user to demonstrate correct movement.

• SubjectAvatar. This avatar is placed on the right side of
the scene. Another script named EtSkeleton.cs is used to
control the avatar using the captured motion data while a
user is performing the rehabilitation exercise in realtime.

The scene also contains several statically allocated com-
ponents, include the floor, directional light, main camera,
status display, and an invisible game object used to attach
the ZigFu runtime scripts for motion data capture. The scene
also contains the visual cuing objects created dynamically
according to the correctness rules.

VII. HUMAN SUBJECT STUDY
The avatar-based system was used in a human subject study
with eight participants. The goal of the human subject study
was to validate if the system is helpful in improving the
quality of exercises performed unsupervised by a physi-
cal therapist. However, we will report the findings in a
separate article regarding the validation of this hypothesis.
In this paper, we present evidence that the system can be
used to provide realtime assessment and feedback to users
of different profiles. In this study, four males and four

FIGURE 8. Height profiles for eight subjects.

females participated. Their height profiles are shown in Fig-
ure 8. As can be seen, the participants range from as short as
1.45meters to as tall as 1.86meters.We report five repetitions
of each participant for the first two exercises, and a single
repetition for the sit-to-stand exercise. We show that with the
right parameters being used in the correctness rules for the
three exercises we have experimented, the assessment can be
done for all participants.

A. RESULT FOR BOWLING
The result for the bowling exercise is shown in Figure 9. To fit
all results within the range of 0-180 degrees, the bowling
arm orientation angle, beta, is transformed to be 360− beta.
Hence, the initial pose angle would be close to 90 degrees
instead of 270 degrees, and the final pose angle would remain
to be around 180 degrees. As can be seen from Figure 9,
the final poses for all eight subjects are within 20 degrees
from the ideal angle (i.e., 180 degrees), and the initial pose
angles also fluctuates between 90-110 degrees. This observa-
tion suggests that we should use 20 degrees as the tolerance
value for the beta angle. All five repetitions done by all eight
subjects were considered correct by the physical therapists
participating this study. The invariance rule on the arm move-
ment with respect to the sagittal plane is assessed by the angle
between the arm vector and the sagittal plane. In Figure 9,
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FIGURE 9. Raw data for five repetitions of the bowling exercise recorded
for eight subjects.

this curve is labeled as ‘‘Invariance-MovingPlane’’. As can
be seen, this angles varies between 0 and 20 degrees. This
suggests the tolerance value should be set to 20 degrees.

However, the bowling arm elbow angle (labeled as
‘‘Invariance-ElbowEngle’’ in the figure) (i.e., for the invari-
ance rule that the arm should remain straight during the

FIGURE 10. Raw data for five repetitions of the hip-abduction exercise
recorded for eight subjects.

movement) varies significantly beyond a 30-degree range for
some subjects (i.e., subjects 1, 6, and 8). This observation
means that even with a generous tolerance value of 30 degrees
for the elbow angle rule, the system would label some of
the repetitions done by these three subjects as wrong. One
solution is to this problem is to set personalized tolerance
values for different subjects to fit their profiles.
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FIGURE 11. Raw data for one repetition of the sit-to-stand exercise
recorded for eight subjects.

B. RESULT FOR HIP ABDUCTION
The result for the hip abduction exercise is shown in
Figure 10. As can be seen, the variations between these
eight subjects are much less prominent than those for the
bowling exercise. The abducting leg initial pose hip angle
varies between 0 and 15 degrees. The final pose hip angle
varies between 40 and 45 degrees. The knee angles (for the

invariance rule on keeping the abducting leg straight) are
within the range of 160-180 degrees. The angle between of
the abducting leg and the frontal plane (for the invariance rule
on moving within the frontal plane) varies between -10 to
15 degrees. These suggest that the tolerance value for the
initial pose should be set to 15 degrees, the tolerance value for
the final pose can be set as small as 5 degrees, the tolerance
value for the knee angle should be set to 20 degrees, and the
tolerance value for the abducting leg orientation beta angle
should be set to 15 degrees.

C. RESULT FOR SIT TO STAND
The result for the sit-to-stand exercise is shown in
Figure 11. This experiment revealed that it is a challenge
to use the Kinect-based system to monitor the sit-to-stand
exercise because the initial pose hip angle and the inter-
mediate pose hip angle are significantly different from the
expected values. For the initial value, we expect 90 degrees,
and for the intermediate pose, we expect about 60 degrees.
The actual result shows that the initial angle varies between
120 to 130 degrees, and the intermediate pose hip angles vary
in the range of 90 to 110 degrees. A detailed analysis of the
Kinect data compared with a multi-camera motion tracking
system confirms that Kinect has systematic error in determin-
ing the hip center and spine joints [26]. However, because the
error is systematic, we can workaround the issue by shifting
the expected angle values, from 90 to 120 degrees for the
initial pose, and from 60 to 90 degrees for the intermediate
pose. The final pose hip angle is within 20 degrees from the
expected 180-degree value. With this adjustment, the Kinect-
system can in fact reliably be used to assess the performance
of sit-to-stand exercise.

VIII. CONCLUSION
In this article, we presented a rule-based framework for defin-
ing key requirements on properly executing rehabilitation
exercises. We also elaborated the design and implementa-
tion of an avatar-based guidance and monitoring system that
incorporates the rule-based framework, and reported experi-
mental results with eight healthy human subjects. Our system
is intended to be used at home for a user to carry out the
prescribed rehabilitation exercises without direct in-person
supervision of physical therapists.We show that as long as the
parameters for the exercises, including the expected values
and tolerance values, are configured properly, our system can
be used reliably to give users realtime guidance and feedback.
The use of inexpensive Microsoft Kinect sensor makes the
system a low-cost, and possibly more engaging tool for users
to practice at home. In the future, the system can be extended
to include cloud services to enable tele-monitoring [27]–[30]
of the user performance by physical therapists. Finally, it is
worth noting that the rule-based framework is not only
useful for specifying correctness requirements for rehabil-
itation exercises, but it also can be used to specify other
human activities, such as using proper body mechanics when
performing pulling and lifting activities [31]. The frame-
work proves to be valuable in building systems that help
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promote healthier workplaces [31]–[35] and healthier life
styles [36], [37].
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