
SPECIAL SECTION ON RESEARCH CHALLENGES AND OPPORTUNITIES
IN SECURITY AND PRIVACY OF BLOCKCHAIN TECHNOLOGIES

Received August 17, 2017, accepted September 26, 2017, date of publication October 5, 2017, date of current version November 7, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2759766

Process Memory Investigation of the Bitcoin
Clients Electrum and Bitcoin Core
LUUC VAN DER HORST1, KIM-KWANG RAYMOND CHOO 2, (Senior Member, IEEE),
AND NHIEN-AN LE-KHAC3, (Member, IEEE)
1Dutch National Police, 3970 AA Driebergen, The Netherlands
2Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, TX 78249-0631, USA
3School of Computer Science, University College Dublin, Dublin 4, Ireland

Corresponding author: Kim-kwang Raymond Choo (raymond.choo@fulbrightmail.org)

ABSTRACT Bitcoin cryptocurrency is reportedly one widely used digital currency in criminal activities
(e.g. used for online purchases of illicit drugs and paying of ransom in ransomware cases). However, there
has been limited forensic research of bitcoin clients in the literature. In this paper, the process memory of two
popular bitcoin clients, bitcoin Core and electrum, is examined with the aims of identifying potential sources
and types of potential relevant data (e.g. bitcoin keys, transaction data and passphrases). Artefacts obtained
from the process memory are also studied with other artefacts obtained from the client device (application
files on disk and memory-mapped files and registry keys). Findings from this study suggest that both bitcoin
Core and electrum’s process memory is a valuable source of evidence, and many of the artefacts found in
process memory are also available from the application and wallet files on the client device (disk).

INDEX TERMS Digital forensics, bitcoin forensics, electrum forensics, bitcoin core, bitcoin client,
cryptocurrency forensics, memory forensics.

I. INTRODUCTION
With recent advances in Information and Communications
Technologies (ICT) and pervasiveness of popular consumer
devices (e.g. Android and iOS devices), digital and cryp-
tocurrencies such as Bitcoin [1], Litecoin [2], Freicoin [3],
and Peercoin [4] are becoming increasingly popular in
e-commerce. Such currencies, however, can be abused by
criminals. For example, it has been reported that Bitcoin was
used to purchase illicit drugs online (e.g. Silk Road) [5] to pay
criminals in return for the decryption key/password in ran-
somware incidents [6], and for money laundering and terror-
ism financing [7]. It has also been reported that some Darknet
marketplaces implement cryptocurrency wallets natively [8].

Despite Bitcoins and other virtual currencies being a poten-
tial source of evidence, there have been limited research
on virtual currency forensics. Existing forensic research on
Bitcoins focus on the Blockchain [9], rather than Bitcoin end-
user software (e.g. mobile application or wallet) or on the
potential to forensically recover data using memory analysis.
This is the gap we seek to address in this paper.

In this paper, we examine two popular Bitcoin clients,
namely: Bitcoin Core and Electrum, and seek to recover
artefacts relating to Bitcoin use from memory.

We will briefly discuss background related work in the
next section, prior to describing our approach in Section III.

Specifically, we first analyze the properties of both Bitcoin
Core v0.11.1 and Electrum v2.6.2 in different scenarios
to help us make an informed guess of potentially relevant
data objects in the process memory. Subsequently, a virtual
machine running Microsoft Windows OS is set up, where
the Bitcoin application is installed. Then, the RAM images
of the virtual machines are investigated to locate the arte-
facts in the process memory. The conditions under which
these artefacts appear may shed light on how these values
can be uncovered from memory. Findings are presented in
Section IV. In Section V, the implications of this investigation
are discussed. The last section concludes this research and
outlines future research.

II. BACKGROUND AND RELATED WORK
In this section, we present firstly an ecosystem of Bitcoin
including a primer on Bitcoin and Bitcoin clients. We then
show the criminal use of Bitcoin and related work on Bitcoin
forensics.

A. BITCOIN PRIMER
Bitcoin is a digital currency and payment system intro-
duced by the pseudonymous Satoshi Nakamoto in 2008 [23].
The system functions as a peer-to-peer, decentral network
in which payments are send directly between the parties

VOLUME 5, 2017
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

22385

https://orcid.org/0000-0001-9208-5336

L. van der Horst et al.: Process Memory Investigation of the Bitcoin Clients Electrum and Bitcoin Core

FIGURE 1. Bitcoin chain of transactions [23].

involved, instead of relying on central institutions to settle
payments. Bitcoin uses cryptographic proof to make this hap-
pen. Hence, Bitcoin is also considered to be a cryptocurrency.

Each user in the Bitcoin network owns public and private
key pairs. Bitcoin value is associated with a chain of trans-
actions in which each transaction consists of the private key
signature of the hash of the input transaction and the payee’s
public key as shown in Figure 1.

If the payer wants to send these Bitcoins to the payee
owning a public/private key. To do so, the payer takes the hash
of the input transaction – proof that he/she owns the Bitcoin
value – and the public key of the payee. He/she then hashes
these values and signs the hash with its private key, thus cre-
ating a new transaction to the payee. The transaction consists
of the hash of the input transaction, the output address and
the payer’s signature. Since only the payer has the private
key corresponding to the public address, (s)he is the only
one capable of generating a transaction for this address via
signing, thus spending the Bitcoin value associated with this
address.

To avoid double-spending of Bitcoins, the system adopts a
public ledger called the Blockchain in which newly accepted
transactions are consolidated in a chain of blocks. Blocks are
created by nodes in the network (i.e. Bitcoin miners), which
have to solve a cryptographic problem to create a block, and
when successful, are rewarded with newBitcoins. Thus, these
nodes invest CPU cycles to earn Bitcoins. In this way, new
Bitcoins are added to the systemwhile transactions are settled
at the same time. Bitcoin miners fall outside of the scope
of this paper. Each block consists of the new transactions
and the hash of the previous block. To verify whether a
payer owns the Bitcoins, clients in the network can verify the
chain of transactions leading up to the payer’s key pair in the
Blockchain. For performance reasons, it is also possible to
download only the headers of the Blockchain for transaction
verification. This system is called Simple Payment Verifica-
tion (SPV). Eventually, a Bitcoin user needs key pairs to own
Bitcoin value and to start transactions. These keys are stored
in the system running the Bitcoin node. A Bitcoin key store
is generally referred to as a Bitcoin wallet.

Bitcoin uses the Elliptic Curve Digital Signature
Algorithm (ECDSA) for its public/private keys. An ECDSA
private key consists of 32 bytes of random data. The cor-
responding public key consists of 65 (uncompressed) or
33 (compressed) bytes of data.

For a payer to make a transaction, (s)he has to know
the public key of the payee. To make it easier to share
the (binary) public key, it can be changed into a charac-
ter string using the base58 algorithm. The public key in
base58 format is also called a Bitcoin address. Private keys
can also be transformed to base58 to facilitate sharing. This
format for private keys is called the Wallet Import For-
mat (WIF). In addition, when encoding Bitcoin keys into
base58 format, a four-byte checksum is added to the binary
value [3].

Bitcoin transactions can be identifiedwith the SHA256 hash
of the transaction data. This value is called the transaction-
ID of the transaction. Furthermore, in most clients, users
can associate user labels with transactions and public keys
in the wallet. However, these labels are not part of the
transaction or Blockchain data.

Several newer Bitcoin wallets make use of hierarchical
deterministic (HD) wallets, where keys in the wallets are
derived from amaster key pair. As a result, all keys can always
be recovered with the master key. Since key derivation is fully
deterministic, this setup makes it possible to store and create
private keys on a different machine than the public keys. This
offers improved security, as the ‘private’ machine does not
have to be connected to the Internet.

B. BITCOIN CLIENT
Bitcoin end-users need specific client software (in this paper,
the terms Bitcoin client and Bitcoin application are used
interchangeably) to store Bitcoin keys and to initiate new
transactions. Bitcoin is based on a consensus model and
there is no formal specification of the protocol available. The
Satoshi client [1] serves as a reference implementation for
new clients. Specifically, its implementation of the Bitcoin
network protocol is generally considered the de facto stan-
dard, at least to the extent that it facilitates interoperability
with new Bitcoin software [3].

C. BITCOIN TUMBLERS
Bitcoin Tumblers or so-called Bitcoin Mixers, have been
exploited as a money laundering facility by exchanging
Bitcoins into conventional currencies such as U.S. dollars
and Euros. Popular services include Darklaunder, Bitlaun-
der, CoinMixer, and Helix. Each service normally offers
one or more types of laundering with different levels of
security. These services claim that they do not store or collect
personal information. However, such claims have not been
verified and are not in the scope of this paper.

D. BITCOIN CRIMINAL USE
As previously discussed, Bitcoin is increasingly popular,
including with criminals, and therefore the importance of

22386 VOLUME 5, 2017

L. van der Horst et al.: Process Memory Investigation of the Bitcoin Clients Electrum and Bitcoin Core

cryptocurrency forensics. Some of the criminal uses of
Bitcoin are outlined below.

1) MALWARE
One of the earliest known abuses of Bitcoin relates to the
use of botnets for Bitcoin mining. In the simplest variant,
mining software is downloaded and executed by the bots
on infected machines. This software will then contribute
to mining pools which in turn cash out to criminals. This
modus operandi monetizes a previously untapped resource of
infected computers: CPU cycles. It can easily be combined
with other botnet uses such as click fraud or spam attacks.
Huang et al. [13] discussed (pseudo-)anonymous set-ups of
mining botnets and profitability, and they listed nine different
examples ofmining botnets. Other uses ofmalware in relation
to Bitcoin were provided in by Dell SecureWorks Counter
Threat Unit [29]. According to this analysis, cryptocurrency
stealing malware (CCSM) can, for instance, focus on stealing
credentials, wallet files or posing as a transaction for a man-
in-the-middle attack.

2) DDOS ATTACKS
In distributed denial of service (DDOS) attacks, Bitcoin is
one of the ways that victims pay the cybercriminals orches-
trating such attacks. For example, a criminal group using
this modus operandi was reportedly taken down by law
enforcement agencies in December 2015 [9]. In the study of
Vasek et al. [33], it was determined that up to 60% of large
Bitcoinmining pools had experienced aDDOS attack to some
extent. Consequently, the hash rate of the affected mining
pools decreased, and resulted in a better position for other
mining pools (e.g. those under the control of the attackers).

3) MONEY LAUNDERING
Due to the pseudo-anonymous and decentralized nature
of cryptocurrencies have lead criminals to use it for
money laundering extensively. Since cryptocurrencies may
not have in place anti money-laundering / counter terror-
ism financing (AML/CTF) practices such as customer due
diligence (CDD) and know your customer (KYC), crimi-
nals may exploit such currencies to launder criminal pro-
ceeds or finance terrorists. To date, a number of darknet
marketplaces include a native bitcoin wallet per account or a
bitcoin-based escrow system. However, FBI assessed with
relatively high confidence that it would be possible to
deanonymize launderers when they exchanged their bitcoins
for fiat money [24]. Additionally, due to the underlying
Blockchain technology, one could potentially identify bitcoin
users based on their prior transactions.

4) THEFTS AND EXIT SCAMS
Cryptocurrencies and their exchange markets can also be
targeted by criminals andmalicious market operators (e.g. the
collapse of Mt. Gox bitcoin exchange and Evolution darknet
market [8]).

E. BITCOIN FORENSICS
Similar to other areas of digital forensics such as cloud foren-
sics, evidence relating to the use of Bitcoins can potentially
be located in different locations, such as Blockchain, client
software and network protocol. Existing Bitcoin forensics
appear to focus on the Blockchain [10]–[13]. We only located
two papers on Bitcoin client analysis and none on Bitcoin
network protocol analysis. This is, perhaps, due to the fact
that Blockchain data is publicly available whereas traffic data
and client data have to be generated by the researchers (e.g.
purchase and transact using Bitcoins to generate the artefacts
for analysis).

One of the first successful attempts to deanonymizeBitcoin
users based onBlockchain datawas byMeiklejohn et al. [10].
The authors showed that it is possible to deanonymize Bitcoin
users using Blockchain analysis, in the sense that Bitcoin
addresses can be clustered based on certain protocol prop-
erties. All addresses in a cluster can then be attributed to
the same end user. If the end user of a particular address in
the cluster is known, then the other addresses in the cluster
can be attributed to this user as well. This approach has
been adopted by various other researchers as well. For exam-
ple, Spagnuolo et al. [11] developed BitIodine, a Blockchain
forensic tool. They demonstrated its utility on SilkRoad wal-
lets and addresses related to the CryptoLocker ransomware.
A number of commercial tools for Blockchain analysis
such as Chainalysis [12] and Numisight [13] have also been
presented.

Möser et al. [14] examined the potential of using
Bitcoins in money laundering activities. The authors used test
transactions to reverse-engineer the behavior of the Trans-
action Anonymization Services, which mixes the Bitcoin
transactions to unlink sender identities and receiver identities.
They concluded that ‘‘budget-constrained cybercrime fight-
ers are effectively set back by two of the three tested ser-
vices.’’ [14]. In other words, existing research on Blockchain
properties suggested that it is possible to make useful deduc-
tions from this source and even users could potentially be
deanonymized.

Early attempts of Bitcoin client software forensics were
conducted by staff from Magnet Forensics Inc., the devel-
opers of Internet Evidence Finder (IEF) in 2013 [15], [16].
IEF parses two on-disk resources related to Bitcoin clients,
namely: wallet files and client log files. This feature has been
implemented since version 6.1. Although it is not completely
clear from the vendor’s website, the tool appears to support
only Bitcoin Core client forensics. Montanez in 2014 [2] ana-
lyzed Bitcoin wallets such as Litecoin and Darkcoin installed
on iOS and Android devices. The author was able to recover
relevant metadata, such as installation date and time stamps
and usage indicators, using Cellebrite UFED Physical Ana-
lyzer, iFunBox (for iOS) and ADB (for Android). For one
specific wallet on iOS, bitWallet, a private key was also
recovered in plain text. However, Montanez appears to focus
only on human-readable data, e.g. in wallet log files and

VOLUME 5, 2017 22387

L. van der Horst et al.: Process Memory Investigation of the Bitcoin Clients Electrum and Bitcoin Core

database files. It is unclear the types of binary data that could
be recovered.

In 2015, the SANS Institute published the findings of a
forensic analysis of Bitcoin-QT andMultibit applications and
of the Bitminter mining software on a Windows device [17].
Similar to Montanez, the research reported in [17] provides
a list of application files with their purpose and forensic
value. In the analysis, only string-based (human-readable)
data was taken into account. This is the only study that we are
aware of that examines memory-resident data. Specifically,
in [17], memory snapshots were taken frommachines running
the client software. In turn, analysis of the snapshots was
performed by running a keyword search in EnCase. This is
a form of unstructured memory analysis. While the search
yielded many hits, no detailed analysis of memory location,
the data format and its implications were not presented.

While there are a small number of tools designed for
Blockchain forensics, only IEF has been shown to support
forensic analysis of a client application (i.e. Bitcoin Core).
There is, arguably, a need for forensic research into other
Bitcoin clients in order to provide the forensic community
with an in-depth understanding of the types and locations of
artefacts that could be recovered.

III. RESEARCH METHODOLOGY
The research presented in this paper focuses on digital evi-
dence present in memory. Applications running on Windows
devices/machines could result in data stored in the memory
in the form of memory areas (VADs) with private application
data, memory-mapped files, being either executable files and
data files and handles to other system resources such as
registry keys, connections, and so forth.

Memory-resident data of an application can be analyzed
in a structured and an unstructured manner. The structured
approach focuses on the OS perspective on memory (pro-
cesses, files, tables, etc.), whereas the unstructured approach
regards the memory dump as a collection of values that can
be crawled using tools such as strings and grep. Bitcoin
applications function as a storage for Bitcoin keys (wallet)
and can contain data of forensic interest, such as public and
private keys, addresses, user labels and transaction details.

There are multiple Bitcoin clients with varying user-
friendliness and security features. Bitcoin Core [23] and Elec-
trum [24] are two of the most popular clients. Both Bitcoin
Core and Electrum are available for Windows machines.
While Bitcoin Core lacks a number of features, it is generally
regarded as one of the most stable and secure clients. On the
other hand, Electrum has more features such as brain wallets
and hierarchical deterministic (HD) wallets [24].

Another difference between these two clients is that
Bitcoin Core is written in C++, and Electrum is writ-
ten in Python. Also, Bitcoin Core is a full client in the
sense that it downloads a complete copy of the Blockchain
for transaction verification. Electrum, on the other hand,
connects to a central server from which it downloads
the Blockchain headers for Simple Payment Verification

(http://docs.electrum.org/en/latest/spv.html). Thus, Electrum
enjoys a better performance, but it is generally considered to
be less secure since trust is partially delegated to the owner
of the server.

In this paper, we focus on the (memory) forensic analysis of
Bitcoin Core and Electrum. Not much research has been per-
formed to these clients. The Electrum client has not even been
previously studied in the forensic literature, to the best of our
knowledge. However, it must be noted that the methodology
we adopt in this paper can be used for the forensic analysis of
other Bitcoin clients.

A. OVERVIEW
This research takes the following approach to discover
relevant data in process memory of an application. First,
the application under investigation is analyzed with respect
to the relevant data it may store (temporarily) in memory.
This may vary between applications. In the context of Bitcoin
clients, such data include Bitcoin key material and user
labels. For example, Bitcoin Core and Electrum may support
application-specific functions which could be of relevance to
a forensic investigator. The relevant application functions and
memory-resident data of potential interest are described in the
next section.

When the relevant data are identified, the next step is to
set these to controlled, pre-known values. Thus, the target
application will be installed on machines dedicated for this
forensic study (e.g. machines are wiped prior to installing
the Bitcoin clients). In the application, the values are entered
and memory images are made at specific points in time. The
lab set-up and the state of the application for each memory
snapshot are described in Section ‘‘Memory Image’’. Subse-
quently, the memory images created in the previous step will
be analyzed with the memory forensic framework, Volatility.
Since the values identified in the first step are pre-set, it is pos-
sible to trace their existence, location and format in memory.
The search process is described in Section ‘‘Analysis’’. Addi-
tionally, memory mapped files, registry keys and connections
of each application are explored for completeness.

The rationale between this method is twofold. First, uncov-
ering which artefacts can be uncovered from memory per
application provides forensic investigators with clues on the
relevance of memory forensics with respect to these appli-
cations. Secondly, the conditions under which these artefacts
appear in memory can be used as heuristics to dig up these
artefacts from other memory images.

B. APPLICATION DATA
A Bitcoin client generally has three major functions: 1) to
store keys and user data securely, 2) to initiate Bitcoin transac-
tion from the wallet, and 3) to request for Bitcoins. A Bitcoin
client may support other features as well, but these are beyond
the scope of this research. An example of one such function
supported by both Bitcoin Core and Electrum is the option to
sign and verify human-readable messages.

In Bitcoin Core, keys and user data are stored in a Berke-
ley database. This database is written in C and stores the

22388 VOLUME 5, 2017

L. van der Horst et al.: Process Memory Investigation of the Bitcoin Clients Electrum and Bitcoin Core

FIGURE 2. Bitcoin Core Send tab.

key material as binary data. By default, this database is not
encrypted, but the user can choose to do so via the menu
option ‘Settings >Encrypt Wallet’. Apart from the Bitcoin
private and public keys in the wallet, the database stores
various user data, such as contacts – basically an association
between a label and a public address – and the transaction
history of the wallet. Bitcoin Core also enables the user to
make a backup of a wallet file to a location on disk.

The user can send Bitcoins from the wallet via the ‘Send’
tab, which is shown in Figure 2. To do so, the user enters
the Bitcoin address, label and amount for the transaction in
this screen and presses ‘Send’. Optionally, the user can add
additional addresses to the same transaction or override the
default settings for determining the transaction fee. Note that
the label is not part of the public Bitcoin ledger, but is stored
in the wallet for bookkeeping purposes.

To request a payment to the wallet, the user has to enter
the label, amount and message in the ‘Receive’ tab in Bitcoin
Core and press ‘Request Payment’. In turn, the applica-
tion generates the request for a Bitcoin address available in
the wallet. This address corresponds to a public and pri-
vate key pair in the wallet. The request is represented as
a URI string and as a QR code, which then can be shared
with other Bitcoin users for them to initiate the payment
requested.

Differences between Electrum and Bitcoin Core include
the following. In Electrum, data is stored in JSON format
in a file; consequently, key material is stored as text-based
data. Also, the private data (seed and master private key)
in Electrum is encrypted by default. When the user creates
a wallet, (s)he has to supply a passphrase for encryption.
Electrum uses hierarchical deterministic wallets in which all
keys are derived from a single master key pair. After wallet
initialization, 37 key pairs would have been pre-calculated
and visible in the ‘Addresses’ tab in the wallet. Furthermore,
Electrum generates a seed of 13 natural language words
during wallet initialization from which the master private
key (and thus all private keys) in the wallet are derived.
Seed phrases are described in Bitcoin Improvement Pro-
posal 39 (https://github.com/Bitcoin/bips/blob/master/bip-
0039.mediawiki). Note that Electrum’s seed phrase is similar

FIGURE 3. Electrum transaction history.

TABLE 1. Application data in bitcoin core and electrum.

to BIP39, but not completely BIP39-compliant. This seed can
be memorized by the user and allows the user to restore all
values in the wallet. Two other (minor) differences between
Electrum and Bitcoin Core are as follows. During payment
request, Electrum allows the user to set a specific expiry date
for a request. It is not possible for an Electrum user to specify
a distinct ‘message’ for the request, as the user can only
specify a label.

Figure 3 presents a screenshot of the Electrum client show-
ing its transaction history screen, and Table 1 summarizes the
application data corresponding to each application function
in Bitcoin Core and Electrum.

In this paper, we seek to determine whether data in the
third column of Table 1 are present in the process memory of
Bitcoin Core and Electrum. Although all data in Table 1 have
forensic relevance, not all can be easily traced back in the pro-
cess memory. In particular, it is not clear in which format that
timestamps and transaction amounts and fees are processed in
memory. Hence, these values are excluded from the analysis
below.

VOLUME 5, 2017 22389

L. van der Horst et al.: Process Memory Investigation of the Bitcoin Clients Electrum and Bitcoin Core

C. MEMORY IMAGES
Memory images are acquired from a virtual machine running
in various states. The virtual machine runs the Microsoft
Windows 7 Enterprise SP1 (64-bit) operating system in a
licensed VMWare Fusion Professional Edition v6.0.65 envi-
ronment. The VM is configured with 1 GB of RAM. The
operating system was fully patched in all machines. Addi-
tionally, all virtual machines had VMware Tools installed.
In the VM, Electrum v2.6.2 was installed and brought to a
specific state. Bitcoin Core v0.11.1 based on QT v5.5.0 was
used in the Bitcoin Core scenarios. Memory snapshots were
acquired by suspending the virtual machine and copying the
file with the .vmem extension from the virtual machine’s
folder.

Table 2 describes the state of each application and the prop-
erties of each memory image created in this research. Bitcoin
Core has been investigated both in an unencrypted and in
an encrypted state. Since Electrum v2.6.2 only supports a
wallet with encrypted private data, this application cannot
be analyzed in an unencrypted state. During the creation of
the memory images, all user data (e.g. labels, passphrases)
and application data (e.g. addresses, public and private key
values) were documented in detail.

During memory analysis, these values were traced back in
the memory images to determine their format, location and
context (see the next paragraph). Incoming transactions to
the wallets under investigation come from an external wallet,
whereas all outgoing transaction return to this same external
wallet. Furthermore, all labels defined in the scenarios follow
a predefined format, namely:

MAGIC_CATEGORY_RANDOM_MAGIC

In this format, MAGIC is a fixed value set to f0r3ns1c
to facilitate tracing in memory. CATEGORY indicates for
which purpose the label was created (e.g. the value ‘req’
for a payment request). In turn, RANDOM consists of a
variable-length alphanumerical random string which ensures
the uniqueness of the label.

D. ANALYSIS
In the next stage, the memory images are analyzed using
Volatility v2.5 [18] and standard Linux command-line tools
in a virtual machine running Kali GNU/Linux v2.0 (64-bit)
operating system. Memory snapshots were stored on the host
system and available to the analysis machine via an HGFS
mount point. The memory images were analyzed in two
different ways.

Most importantly, all application data known to be pro-
cessed by the application as specified in the previous step
were traced back in memory. This analysis is similar to
the unstructured approach but Volatility makes it possible
to attribute values found in memory to a particular pro-
cess. For this analysis, the yarascan plugin in Volatility was
used. We then modified the yarascan plugin, which includes
detailed metadata of the VAD area in which a particular value
was found in its output. For completeness, the full memory

TABLE 2. Memory images per application.

image was searched, rather than only the (private) process
memory of the Bitcoin application. Binary values, such as
public and private keys, were searched both as string and as
binary value.

All known user strings found in memory were analyzed for
their format, their location including their VAD properties,
and their immediate context. Based on these results, it is
possible to determine which application data is likely to be
memory-resident and how it might be retrieved frommemory
when their values are not previously known (as is the case in
a regular forensic investigation).

Apart from the unstructured analysis described above,
a more structured analysis was performed on the Bitcoin
application process in each memory image. In particular,
the memory-mapped files, registry keys and connections of
the application were examined using standard Volatility plug-
ins. This is to ensure that no important forensic clue is missed.
Also, if it is possible to extract Bitcoin data files (i.e. wallet
files and log files) from memory, then these files would be
processed as standard on-disk artefact. Thus, further detailed
memory analysis becomes unnecessary.

22390 VOLUME 5, 2017

L. van der Horst et al.: Process Memory Investigation of the Bitcoin Clients Electrum and Bitcoin Core

IV. FINDINGS FOR BITCOIN CORE
A. PROCESS MEMORY
We now describe and explain which data were excluded from
the final result set, prior to describing the outcome of the
search process such as the occurrences, format, location and
context of all values traced back in the process memory of
Bitcoin Core.

1) DATA EXCLUSION
All occurrences of known forensic values were identified in
the memory images with the Bitcoin Core application (mem-
ory images of scenarios from 1 to 4 in Table 2, and here-
after respectively referred to as memory image 1, memory
image 2, memory image 3 and memory image 4). The results
from the process vmstoolsd.exe were omitted because this
application will not be running on a typical system setup.
Similarly, occurrences of known artefacts in kernel memory
were omitted from the analysis, since it is not clear why
the values found in kernel memory were present there and
whether they can be attributed to typical application use. For
instance, during configuration of the application, information
such as labels and bitcoin addresses were copied to and from
the virtual machine. The occurrences in kernel memory of
these labels and addresses can be a result of those actions.
Moreover, comparison between kernel memory and process
memory of Bitcoin Core showed that any data present in
kernel memory would also be present in the process memory.
Hence, the analysis of kernel memory has no added forensic
value.

Search hits for the default public address label ‘‘default’’
were excluded from the dataset due to the overwhelming
number of false positives. In addition, only six occurrences
of four-byte checksum values related to public and private
keys were found. Manual analysis of the memory locations
of these hits showed that these occurrences had no relation to
the full key values and could not be attributed otherwise to
relevant forensic information. Hence, these occurrences were
excluded from further analysis.

2) OCCURRENCES
The number of occurrences of known forensic artefacts are
shown in Figure 4. The results from the search process are
described in more detail below.

a: PRIVATE KEYS
All (nine) known private keyswere located in binary format in
the process memory when the wallet was unencrypted (mem-
ory images 1 and 2).When the wallet was encrypted (memory
images 3 and 4), no private key could be traced back in mem-
ory, not even directly after a transaction was initiated (mem-
ory image 4). Furthermore, no occurrence of private keys in
Wallet Import Format (WIF) was found. This observation is
not surprising, as private keys are stored in binary format in
the wallet database and WIF-formatted keys are only created
when exporting keys.

FIGURE 4. Number of items found in process memory of the Bitcoin Core
client by type and memory image.

b: PUBLIC KEYS AND ADDRESSES
All (nine) known public keys in binary format were located
in the process memory in all images. Addresses were only
present in memory images 2, 3 and 4, with the exception
of the address related to the ‘‘default’’ label. Because of
this, it is likely that addresses are only calculated from the
binary public key in the wallet when a label is associated
with them. Not all public keys and addresses occurred equally
often. However, no correlation was found between particu-
lar categories (send address, receiving address or payment
request) or the usage in transactions on the one hand and
the number of occurrences of the associated public keys and
addresses.

c: LABELS
Known labels have been found in all memory images inwhich
they could be present (i.e. memory images 2, 3 and 4). All
16 different labels were found, four labels for each category
(i.e. message, receiving address, payment request and send
address). In memory image 3, in which the application was
just opened and no user actions had been taken, the minimum
number of occurrences for each label was three. In memory
images 2 and 4, in which the user had interacted with the
application in various ways, the minimum number of occur-
rences for each label was four. Apart from these observations,
labels for payment requests appeared more often than other
types of labels, approximately twice as often (six or more
times in memory image 2, eight or more times in memory
images 2 and 4). In any case, all labels appeared more than
once in process memory. However, because labels are not
known upfront and do not follow a fixed pattern, they can be
hard to locate for an investigator. This could only be done
based on the context of the user labels (see below under
Context).

d: TRANSACTION IDs
Transaction IDs were only found in memory image 3. Both
search hits corresponded to the Transaction ID of the last
transaction initiated from the client.

e: PASSPHRASE
The passphrase used for wallet encryption, was not encoun-
tered in process memory.

f: FILE LOCATIONS
Before memory images 2 and 4 were created, a backup of
the wallet file was saved to a user-specified file location. The

VOLUME 5, 2017 22391

L. van der Horst et al.: Process Memory Investigation of the Bitcoin Clients Electrum and Bitcoin Core

file name of the backup file was encountered in both memory
images. More specifically, the full path of the backup file was
present in memory image 2 four times. In memory image 4,
the full path of each of both backup locationwas present once.
When scanning for all file paths in the process memory, many
other file paths were present as well. Hence, an investigator
should scan through these manually to determine whether
they are linked to a backup file (e.g. based on file name or file
location, e.g. a thumbdrive or user folder).

A total of 14 occurrences of the backup file name (without
the file path) was encountered in memory image 2, whereas
memory image 4 contained a total of 61 occurrences of
backup file name. Of the latter, 30 occurrences referred to
the first backup and 31 occurrences to the second backup.

3) FORMAT
The public and private keys in binary format were also present
as binary data in memory. All other values, namely addresses,
transaction-IDs, labels and file locations, appeared as string
values in memory.

4) LOCATION
All values encountered were without exception present
in VAD regions with the following characteristics: Vad-
Type: VadNone; VadPermissions: PAGE_READWRITE;
VadFile: no memory-mapped files; VadFlags: Private Mem-
ory. In other words, all values were found in private (non-
shared) read/write regions in process memory. No correlation
was found between the memory location and VAD on the one
hand and the type of data on the other hands. Therefore, no
conclusions could be drawn on the co-existence of particu-
lar (types of) values in process memory.

5) CONTEXT
The context of the items encountered in process memory are
described below per item type.

a: PRIVATE KEYS
Analysis of the direct context in which occurrences
of private keys appeared, showed that by most of the
occurrences were consistently preceded by the fingerprint
0xf70001d63081d30201010420. At least four instances of
each known private key were preceded by this fingerprint.
Thus, private keys can be easily retrieved from memory by
carving sequences of 32 bytes directly following this finger-
print. Doing so revealed the existence of multiple unknown
private keys. This is expected, as not all private keys in the
wallet are involved in the user actions during image creation
and included in the search item list.

b: PUBLIC KEYS AND ADDRESSES
Through all images, all known public keys in binary format
were directly preceded by two different fixed strings, namely
key! and keymeta!. At least one occurrence of a public key
followed each of these strings.5 Similarly, the fingerprints
name’’ and purpose’’ preceded at least one instance of each

known public key address in base58 format across all images.
Analysis of the fingerprints showed that these are in fact
Berkeley database tags for public keys in the wallet.dat file.
Comparison with the data in the respective wallet files con-
firmed that the memory regions in which the values were
uncovered were in fact memory-resident parts of the wallet
file. Hence, it is very likely that the same information can
also be extracted from the wallet file. In case no wallet file
is available to the investigator, extracting all binary public
keys and public key addresses from process memory is a
straightforward process. Public keys in binary format have
a fixed length6 and public key addresses have a predictable
length and format. All such values following the fingerprints
mentioned above will yield the correct results.

c: LABELS
No fingerprint could be identified to systemically extract
labels from process memory with one exception. In some
cases, the public key address and its corresponding user label
co-occurred in the same memory region. More specifically,
for a given public address having the name’’ tag (see above),
its corresponding label consisted of the first human-readable
string preceding this address. However, systematic retrieval
of this information is not trivial as the label is variable length
and a variable number of bytes, typically 4 to 7, was present
between label and the public address.

d: TRANSACTION IDs
Only two transaction IDswere traced back inmemory. No rel-
evant findings could be derived from these memory context,
except for the fact that one of the IDs was preceded by the
string ‘‘AddToWallet’’. This string occurs in the debug.log
when a new transaction ID is added to the wallet. This finding
gives rise to the idea that the memory presence of transaction
IDs is linked to logging. As such, this information can be
better retrieved by analysis of the memory-resident debug.log
file as described in the next paragraph.

e: FILE LOCATIONS
No conclusions could be drawn from the context of the mem-
ory locations of the hits on file location data (paths and file
names).

B. FILES
The Bitcoin Core processes in each image were explored on
open file handles to forensically relevant files. Two applica-
tion files are specifically important in this respect: the wallet
file (wallet.dat) and the application log file (debug.log). The
wallet file is the keystore containing the bitcoin keys and
all user data (as described earlier). In an encrypted wallet,
the private keys are only readable when the correct passphrase
is known. However, all public keys, transaction data and user
labels are not encrypted and form a valuable resource to
the investigator. The debug.log file, on the other hand, can
be interesting due to two reasons: it shows the transactions
initiated by the wallet with their date and time and, possibly

22392 VOLUME 5, 2017

L. van der Horst et al.: Process Memory Investigation of the Bitcoin Clients Electrum and Bitcoin Core

more important, it shows the full file location of any backup
created by the user. Hence, it is possible to identify wallet
backups on user locations and attribute these to the use of the
bitcoin client.

Analysis of the handle table8 was used to determine which
application files might be present in memory. This analysis
showed that a handle to the debug.log file was open in each
process instance, but an active handle to the wallet file was
only present in memory image 1 and 3. The memory-resident
instances of the wallet and debug log files could be easily
exported from the images using Volatility’s dumpfiles plugin.
However, this plugin traverses the handle table of the process
to find the relevant memory regions. Since no active handles
to the wallet.dat files were present in memory image 2 and 4,
it was not possible to export this file from these images. It may
even be the case that no memory-resident instance of this file
was present in these images at all.

The log file is human-readable and can be searched for
transaction IDs and backup locations (see above). Comparing
the memory-resident version of this file with the on-disk
instance showed that the memory-resident file only contained
the last entries of the log file and is incomplete. Hence, not all
available log information was present in the memory-resident
version of the debug.log file.

In the cases where it was possible to export application
files, analysis of these files is relatively trivial. Where it was
possible to export a wallet file (image 3), this wallet file can
be copied to the application directory of an instance of Bitcoin
Core. When the application is opened, the wallet file is than
loaded without issues and can be investigated via the Bitcoin
Core graphical user interface.

Additional file metadata (e.g. mac times) of the application
files can be obtained by memory-resident information in the
MFT table, which is available through themftparser Volatility
plugin. In all images, both the wallet and log files had records
in the MFT table. Apart from the application files discussed
above, any (memory-resident) backups of the wallet may
be of importance. None of the images had open handles to
the wallet backups created. In theory, wallet backups can be
exported to a user location with a user determined file name.
Hence, it can be hard to identify a particular file as a wallet
backup. Apart from the presence of the file path en location
in process memory, the debug.log is still the best source as
any backup is registered in this file.

C. REGISTRY KEYS
Registry keys used by the Bitcoin Core client were identified
using the handles plugin. Registry keys on the following
locations were in use by the application:
•HKEY_CLASSES_ROOT\bitcoin
•HKEY_LOCAL_MACHINE\SOFTWARE\Bitcoin

Core(64-bit)
•HKEY_CURRENT_USER\Software\Bitcoin\

Bitcoin-Qt
•HKEY_CURRENT_USER\Software\BitcoinCore

(64-bit)

The presence of these keys serve as an indicator for the
presence of an active instance of the Bitcoin Core client.
Moreover, relevant configuration for the bitcoin client could
be obtained from these keys. For this purpose, the loca-
tion HKEY_CURRENT_USER\Software\Bitcoin\Bitcoin-
Qt contained most relevant application settings, e.g. the
application directory, proxy settings and transaction fee
settings.

D. CONNECTIONS
The netscan plugin shows an overview of the connection
objects encountered in the memory image. In all images, IP
addresses of neighboring bitcoin peers were visible. These
connections can be identified based on the TCP port number
8333. Such connections can serve as an indicator for the pres-
ence of an active bitcoin client, but further forensic usefulness
is yet unclear.

V. FINDINGS FOR ELECTRUM
A. PROCESS MEMORY
Similar to the previous discussion on the findings for Bitcoin
Core, we now present the findings for Electrum.

1) DATA EXCLUSION
All occurrences of known forensic values were traced back
in the memory images with the Electrum client (memory
images of scenarios from 1 to 3 in Table 2, which will be
referred to as memory images 5, 6 and 7, respectively). The
results from the process vmstoolsd.exe were omitted because
this client will not be running on a typical system setup.
This process is associated with VMWare Tools running in the
virtual machine. Similarly, occurrences of known artefacts in
the kernel memory were also omitted from the analysis, since
it is not clear why the values found in the kernel memory
were present and whether they can be attributed to typical
application use. For instance, during configuration of the
application, information such as labels and Bitcoin addresses,
were copied to and from the virtual machine. The occurrences
in the kernel memory of these labels and addresses can be a
result of those actions.

Two instances of the Electrum.exe process were found
in the process list of each memory image, in which one
process was a child process of the other process. No forensic
data was found in the parent instance and hence, only the
child instance was investigated. Scanning process memory
for separate words from the seed phrase resulted in an over-
whelming number of false positives, which can be expected.
Hence, only full complete seed phrases are taken into
account.

2) OCCURRENCES
The number of occurrences of known forensic artefacts are
shown in Figure 5.

a: PRIVATE KEYS
No private key or checksum of private keys was located in
process memory.

VOLUME 5, 2017 22393

L. van der Horst et al.: Process Memory Investigation of the Bitcoin Clients Electrum and Bitcoin Core

FIGURE 5. Number of items found in process memory of Electrum by type
and memory image.

b: PUBLIC KEYS AND ADDRESSES
In memory images 5, 26 distinct known private keys were
found back in binary format with their corresponding public
key address. In memory images 6 and 7, all 41 known values
of public key addresses were found as well as all 37 known
binary values for public keys (not all addresses are native
to the wallet and hence, no corresponding binary key is
known or present, e.g. for public key addresses for outgoing
transactions). Not all values occurred equally often. However,
no correlation could be detected between the usage of a
particular key (e.g. in a payment request) and the number of
occurrences. In any case, many more occurrences were found
in the application which was recently used (memory image 5)
compared to the application which was just opened (memory
images 5 and 7). In addition, the master public key could be
traced back in process memory in all three images.

c: LABELS
All known labels were present in the process memory in
memory images 6 and 7. In memory image 7, labels linked to
payment request occurred much more often than other labels,
but this was not the case after a reboot (memory image 7).
Furthermore the label associated with a recent outgoing trans-
action occurred much more often in an image.

d: TRANSACTION IDs
All three known transaction IDs were found at various times
in process memory on memory images 6 and 7. Each trans-
action ID occurred about 33 times on average in each image.

e: PASSPHRASE
The passphrase for the wallet was not encountered in process
memory.

f: FILE LOCATIONS
The full path of the backup file location was only found
in memory image 6, whereas only the file name occurred
38 times in this image. No reference to the backup file was
found in memory image 7.

3) FORMAT
Almost all data appeared as string values in memory.
However, public keys associated with key pairs involved

FIGURE 6. Public keys associated with the wallet’s transactions, which
occurred as binary values in memory.

in the wallet’s transactions were an exception. More
specifically, the public key of the input transaction(s)
for outgoing transactions initiated just before the image
was made occurred in the binary format. The transac-
tion flow through the wallet is depicted schematically
in Figure 6.

Three incoming transaction were initiated to three differ-
ent addresses in the wallet (address: in memory image 5,
address: in memory image 6 and address: in memory image
7). Just before memory image 6 was created, one outgoing
transaction was initiated (address: out 1) which had one input
to public key ..7b3cb551. This key was found in binary
format in memory image 6. Similarly, just before memory
image 7 was created, one outgoing transaction was initi-
ated (address: out 2) which had three inputs. The three public
keys associated with these inputs were found in binary format
in memory image 7. Based on these findings, the presence
of binary public keys in process memory suggested that this
key is actively involved in the transaction flow through the
wallet.

4) LOCATION
Similar to the Bitcoin Core client, all forensic values located
in Electrum’s process memory were present in VAD regions
with the following characteristics: VadType: VadNone; Vad-
Permissions: PAGE_READWRITE; VadFile: no memory-
mapped files; VadFlags: Private Memory. In other words, all
values were found in private (non-shared) read/write regions
in process memory. There was one exception: one occurrence
of the file name of the wallet backup file (not the full path)
was found in a memory-mapped DLL file (shlwapi.dll). Nat-
urally, the properties of the VAD region of this occurrence
had different properties. No correlation was found between
the memory location and VAD on the one hand and the type
of data on the other hands. Therefore, no conclusion could be
drawn on the co-existence of particular (types of) values in
process memory.

22394 VOLUME 5, 2017

L. van der Horst et al.: Process Memory Investigation of the Bitcoin Clients Electrum and Bitcoin Core

5) CONTEXT
Analysis of the direct context in which artefacts appeared
showed that most were present as part of JSON-formatted
data. A closer analysis revealed that those occurrences were
part of memory-resident data from the Electrum wallet file.
The wallet file consists of a JSON file in which the user and
key data is ordered with various tags, e.g. addr_history and
master_public_keys. Scanning process memory with these
tags provides a straightforward way to extract useful data
from process memory in cases were an on-disk representation
of the wallet file is unavailable.

A comparison betweenmemory images 5 to 7 revealed that
onlymemory image 6 had a completememory-resident repre-
sentation of the wallet file. Memory images 5 and 7 had only
minor parts of the wallet data in memory, although this data
is not associated with a memorymapped file object. In any
case, the artefacts present can be traced back only by using
the JSON tags from the wallet format. For example, wallet
transaction data could be retrieved also inmemory image 7 by
scanning for the tag ‘‘txi’’ and analyzing the data directly
following this tag. In some cases, the relevant forensic values
were preceded by another fixed string. In particular, all public
key addresses associated with the key pairs in the wallet
were preceded by the string blockchain.address.subscribe.
According to the Electrum documentation [1], this string
is associated with the protocol between Electrum client
and Electrum server. With this command, the client sub-
scribes for updates on the address passed to the central
server. By doing so, the client keeps track of the current status
of the addresses in its wallets. As such, any occurrence of
a Bitcoin preceded by this string is a clear indication that
the key pair of this address is present in the wallet. No con-
clusion could be drawn from the context of binary public
keys and as a consequence, these are hard to trace back in
memory.

B. FILES
The Electrum wallet file is the most important compo-
nent from a forensic perspective. It contains the wallet
key material, user data and transaction history. The default
location of the wallet file is in the wallet’s directory
in USER_DIRECTORY\AppData\Roaming \Electrum\.
Additionally, this directory contains various files with (foren-
sically) interesting application data, namely: the file contacts
containing a list of the wallet’s contacts with their corre-
sponding addresses; the file config containing the console
history and recently opened wallets; the file recent_servers
containing an overview of recently used Electrum servers.

While examining the handle tables from the Electrum pro-
cesses, no reference to wallet files or other relevant Electrum
files was found. Hence, extracting these files using Volatil-
ity’s dumpfiles plugin was not possible. However, analysis of
the memory-resident MFT table revealed the entries for all
these files. In addition to the metadata available in the MFT
table, file content of the config, contacts and recent_servers

files was found in the $DATA section of MFT records due to
their small file size.

No reference to wallet backup files was found in the handle
tables in any of the images. Hence, wallet backups can only
be attributed to the Electrum process by manually analyzing
the file paths in process memory as mentioned above. Fur-
thermore, only memory image 2 contained an entry for the
wallet file in the MFT table.

C. REGISTRY KEYS
No application-specific registry key was in use by the Elec-
trum application.

D. CONNECTIONS
The Electrum application opens multiple connections
TCP port 50002 and one connection on TCP port 443,
to the seed server. These connections are visible in
the memory image with the netscan plugin and can
serve as an indicator for the presence of the Electrum
application.

VI. DISCUSSION
A. BITCOIN CORE
The Bitcoin Core wallet is not encrypted by default. Without
encryption, the private keys of the wallet are all present in
process memory and easily retrievable with the preceding
fingerprint 0xf70001d63081d30201010420. The private keys
consist of all 32 byte values following this fingerprint. How-
ever, when the wallet was encrypted, no unencrypted private
keys could be found in memory. Additionally, the wallet
passphrase was not found in the memory. Public keys, public
addresses and labels were always found in the process mem-
ory, regardless of the state of the application. The memory-
resident instances of these values appeared to be parts of the
wallet file in the Berkeley database format. The keys used in
this database format directly preceded all known values, key!
and keymeta! for public keys in binary format and name’’
and purpose’’ for labels. With these fingerprints, all public
keys1 and labels could be forensically recovered from the
process memory.

Only some instances of Transaction IDs related to the wal-
let’s transactions were found in the memory. The instances
found in one image had links to the debug.log file. Possibly,
the fingerprint AddToWallet might be used to find these
values, but this could not be established with certainty. The
file location of wallet backups were found in the memory
amongst many other file paths and file names, but not in all
images. In addition, no open handle to backup locations was
linked to the process instance. Hence, it might be hard (or
even impossible) to identify a specific file path and name in
process memory as a backup location in the first place. The
best heuristic for finding wallet backup locations from values
in the process memory would be to create a list of full file
paths occurring in memory and checking for user-specific file
locations and file names.

VOLUME 5, 2017 22395

L. van der Horst et al.: Process Memory Investigation of the Bitcoin Clients Electrum and Bitcoin Core

Many, if not all, artefacts found in the process memory
are present in the wallet.dat and debug.log files present on
disk. The wallet file stores all public keys, addresses, labels
and transaction data. In addition, transaction IDs and wallet
backup locations are both logged in the debug.log file. If no
on-disk instance of these files is available to the investiga-
tor, then it might be possible to extract a memory-mapped
instance of these files. However, this appeared not to be
possible in all cases as the wallet file is not always memory-
resident. Furthermore, only the last part of the debug.log
file was found in the memory. The memory-resident Master
File Table holds valuable metadata on the application files.
Finally, VAD properties do not appear to be useful as a heuris-
tic for retrieving specific forensic artefacts. Also, registry
keys and connections related to the Bitcoin Core application
were found, but the forensic relevance of these data appears
limited.

B. ELECTRUM
As previously indicated, in Electrum, the wallets are
encrypted by default. No private key or encryption passphrase
was located in any of the images. The seed phrase from
which the private keys are derived was found in memory just
after wallet initialization, but not after use or reboot. Public
keys, addresses, labels and even transaction IDs were found
in process memory, including the master public key from
which all public keys in the wallet are derived. Analysis of the
values in memory showed that these were part of memory-
resident parts of the wallet file in JSON format. As such,
the tags used in the wallet file can also be used to trace
back wallet contents in process memory. Moreover, all public
keys in the wallet appeared to be monitored by the client
on the Electrum server via the Electrum protocol. In mem-
ory, such addresses are directly preceded by the string value
blockchain.address.subscribe. All public keys in an Electrum
wallet can easily be extracted from processmemory using this
fingerprint.

It must be noted that almost all data of forensic interest
in Electrum’s memory are processed as strings. However,
public keys in binary format were also found when they
were involved in an outgoing transaction. There is, however,
no straightforwardway of retrieving these keys frommemory.
It is possible to pre-calculate a list of binary public keys from
themaster public key and trace these back in process memory.
If keys are present in binary format, then this is an indication
that it has been involved in an outgoing transaction. The full
path of the wallet backup location was only found in process
memory in one of the images and Electrum has no handle
to wallet backups. Hence, it will be challenging to determine
whether a backup has been made, and if so, what the location
of the wallet backup was.

All keys, addresses, labels and transaction data were also
found to be available in Electrum’s wallet files on disk.
Electrum has no open handles to the wallet file and, as a
consequence, this file could not be exported from the mem-
ory image. However, as noted before, analysis of data in

process memory revealed that the wallet file can be com-
pletely or partially present in memory, most likely as residual
data from memory-resident instances of the wallet file. Fur-
thermore, other Electrum application files also held relevant
data, most notably the config, recent_servers and contacts
files. These files’ metadata and their contents were present
in the memory-resident Master File Table (MFT).

Finally, VAD properties appeared to be useless as a heuris-
tic for retrieving specific forensic artefacts. Also, some con-
nections related to the Electrum application were found,
but the forensic relevance of these data seems limited.
Table 3 summarizes the results of the experiments.

A number of forensic artefacts were located in the pro-
cess memory of the Electrum client. In particular, extract-
ing public keys, addresses and user labels was relatively
straightforward using tags from the wallet file format. For the
Electrum clients, transaction IDs could also be traced back
in memory. Private keys and seed phrases, however, could
only be extracted in specific circumstances. Private keys were
only available for the Bitcoin Core client with an unencrypted
wallet. The seed phrase was only available for an unused
and recently initialized Electrum client. Passphrases were not
encountered at all.

The artefacts found in the process memory can help to
attribute Bitcoin public keys and addresses and the transac-
tions on these addresses to the user of the Bitcoin clients
involved. Subsequently, these findings can then be combined
with findings from Blockchain forensics to attribute the flow
of (criminal) value through the Bitcoin system. The pres-
ence of user labels can also provide forensic investigators
additional clues on the particular use of Bitcoin addresses,
contacts and transactions.

However, given the absence of seed phrases, passphrases
and private key material in the process memory of used,
encrypted clients, it is highly unlikely that process memory
analysis will make it possible to seize value from the client’s
wallet. This will only be possible in the case of an unen-
crypted Bitcoin Core wallet, but any security-aware user will
make sure (s)he will not leave this wallet unencrypted.

Information uncovered in this research could be used to
extract private and public keys, addresses and labels from
process memory. It may also be possible to acquire relevant
memory-resident file and registry data associated with the
Bitcoin clients. For instance, it was possible to export com-
plete or partial application files from memory images. For
the Electrum client, the contact list and other application files
were present in the memory-resident MFT table.

Memory-resident data are also of interest in a forensic
investigation, particularly when the wallet file and other
application files are not available from the disk. For instance,
a security-aware user might choose to protect his Bitcoin
assets by storing the wallet in an encrypted container or on
an external storage media not available to the investigator.
We also remark that conducting a detailed disk forensic
analysis would require more time, in comparison to under-
taking memory forensics. Memory-mapped files can also be

22396 VOLUME 5, 2017

L. van der Horst et al.: Process Memory Investigation of the Bitcoin Clients Electrum and Bitcoin Core

exported from the memory and analyzed as disk artefacts. For
Bitcoin Core, the wallet file thus might be available, which
in turn can be loaded in Bitcoin Core and reviewed via the
GUI. Also, a buffered part of the debug.log file can easily be
exported frommemory images with the Bitcoin Core process.
In Electrum, application files are likely not available as these
are not encountered as memory-mapped executive objects
governed by Windows’ Object Manager.

It may also be possible to trace wallet files and application
files by manually scanning file paths in process memory for
wallet backup locations. It is also possible to extract file
contents from application files from the MFT table.

VII. CONCLUSION AND FUTURE WORK
In this paper, we forensically examined Bitcoin Core and
Electrum, two popular Bitcoin clients. We demonstrated that
data of forensic interest can be extracted from memory by
scanning the process memory for fingerprints identified in
this research or by searching fixed patterns with regular
expressions (e.g. Bitcoin addresses or file paths). Despite
the potential to use the located evidence to attribute Bitcoin
transactions to the user of the computer, it is unlikely the
evidence locatedwill directly result in the seizure of the assets
stored in the wallet. It must be noted, however, that most
data found in memory are also available in application and
wallet files on disk, with a few exceptions. As such, process
memory analysis is potentially beneficial to a forensic inves-
tigation, particularly when application and wallet files are not
available.

Findings from this research contribute to an improved
forensic understanding of Bitcoin clients in several other
respects. First, unlike earlier studies, we focus not only
on string values, but also binary-formatted values stored as
string or binary. For instance, Electrum is implemented in
Python and the wallet consists of (string-based) JSON data.
With the exception of keys involved in transactions, all in-
memory artefacts were string-based data.

Future research includes forensically examining newer
(versions of) Bitcoin clients, with the aims of proposing a
forensic taxonomy of Bitcoin client artefacts, similar to the
approaches undertaken in [19]–[22].

REFERENCES
[1] S. Nakamoto. (2008). Bitcoin: A Peer-to-Peer Electronic Cash Sys-

tem. Accessed: Jan. 2017. [Online]. Available: http://Bitcoin.org/Bitcoin.
pdf

[2] A. Montanez, ‘‘Investigation of cryptocurrency wallets on iOS and
Android mobile devices for potential forensic artifacts,’’ Dept. Forensic
Sci., Marshall Univ., Huntington, WV, USA, Tech. Rep., 2014.

[3] Accessed: Jan. 2017. [Online]. Available: http://freico.in/
[4] Accessed: Jan. 2017. [Online]. Available: https://peercoin.net/
[5] Accessed: Jan. 2017. [Online]. Available: https://www.usmarshals.gov/

news/chron/2015/100515.htm
[6] Accessed: Jan. 2017. [Online]. Available: https://www.wsj.com/articles/

in-the-Bitcoin-era-ransomware-attacks-surge-1471616632
[7] K.-K. R. Choo, ‘‘Cryptocurrency and virtual currency: Corruption and

money laundering/terrorism financing risks?’’ in Handbook of Digital
Currency, D. K. C. Lee, Ed. New York, NY, USA: Elsevier, 2015,
pp. 283–307.

[8] D. Sui, J. Caverlee, and D. Rudesill. The Deep Web and the Dark-
net: A Look Inside the Internet’s Massive Black Box. Accessed:
Jan. 2017. [Online]. Available: https://www.wilsoncenter.org/sites/default/
files/stip_dark_web.pdf

[9] T. Pantas. BlockChain Technology. Accessed: Jan. 2017. [Online]. Avail-
able: http://scet.berkeley.edu/wp-content/uploads/Blockchain Paper.pdf

[10] S. Meiklejohn, M. Pomarole, K. Levchenko, D. McCoy, G. M. Voelker,
and S. Savage, ‘‘A fistful of Bitcoins: Characterizing payments amongmen
with no names,’’ inProc. Conf. InternetMeas. Conf. (IMC), NewYork, NY,
USA, 2013, pp. 127–140.

[11] M. Spagnuolo, F. Maggi, and S. Zanero, ‘‘BitIodine: Extracting intelli-
gence from the Bitcoin network,’’ in Financial Cryptography and Data
Security. New York, NY, USA: Springer, 2014, pp. 457–468.

[12] Chainanalysis Inc. Chainanalysis. Accessed: Jan. 2017. [Online]. Avail-
able: https://www.chainalysis.com

[13] D. Ferrin. Numisight. Accessed: Jan. 2017. [Online]. Available:
http://www.numisight.com

[14] M. Möser, R. Bohme, and D. Breuker, ‘‘An inquiry into money laun-
dering tools in the Bitcoin ecosystem,’’ in Proc. IEEE eCrime Res.
Summit (eCRS), Sep. 2013, pp. 1–14.

[15] Magnet Forensics Inc. Bitcoin Forensics Part II: The Secret
Web Strikes Back. Accessed: Jan. 2017. [Online]. Available:
https://www.magnetforensics.com/computer-forensics/Bitcoinforensics-
part-ii-the-secret-web-strikes-back/

[16] Magnet Forensics Inc. Bitcoin forensics—A Journey into the Dark Web.
Accessed: Jan. 2017. [Online]. Available: https://www.magnetforensics.
com/computer-forensics/Bitcoinforensics-a-journey-into-the-dark-web/

[17] M. Doran. (2015). A forensic look at Bitcoin cryptocurrency. SANS
Inst. InfoSec Reading Room. Accessed: Oct. 2017. [Online]. Avail-
able: https://www.sans.org/reading-room/whitepapers/forensics/forensic-
bitcoin-cryptocurrency-36437

[18] Volatility Foundation, Volatility v2.5. Accessed: Jan. 2017.
[Online]. Available: http://www.volatilityfoundation.org/#!releases/
component_71401

[19] A. Azfar, K.-K. R. Choo, and L. Liu, ‘‘Forensic taxonomy of Android
social apps,’’ J. Forensic Sci., vol. 62, no. 2, pp. 435–456, 2017,
doi: 10.1111/1556-4029.13267.

[20] A. Azfar, K.-K. R. Choo, and L. Liu, ‘‘Forensic taxonomy of
Android productivity apps,’’ Multimedia Tools Appl., vol. 76, no. 3,
pp. 3313–3341, 2017, doi: 10.1007/s11042-016-3718-2.

[21] A. Azfar, K.-K. R. Choo, and L. Liu, ‘‘An Android communication
app forensic taxonomy,’’ J. Forensic Sci., vol. 61, no. 5, pp. 1337–1350,
2016.

[22] A. Azfar, K.-K. R. Choo, and L. Liu, ‘‘Forensic taxonomy of popular
Android mHealth apps,’’ in Proc. 21st Amer. Conf. Inf. Syst. (AMCIS),
Aug. 2015, pp. 13–15.

[23] Bitcoin Core Developers, Bitcoin Core. Accessed: Jan. 2017. [Online].
Available: https://bitcoincore.org/

[24] T. Voegtlin. (2011). Electrum Application. Accessed: Jan. 2017. [Online].
Available: https:// electrum.org/#home

LUUC VAN DER HORST received the M.Sc. degree in forensic computing
and cybercrime investigations from the School of Computer Science, Uni-
versity College Dublin and the MA degree in linguistics from the Radboud
University, Nijmegen, The Netherlands. He is currently a forensic investiga-
tor with the Dutch National Police, The Netherlands.

VOLUME 5, 2017 22397

L. van der Horst et al.: Process Memory Investigation of the Bitcoin Clients Electrum and Bitcoin Core

KIM-KWANG RAYMOND CHOO (SM’15)
received the Ph.D. degree in information security
from the Queensland University of Technology,
Australia. He currently holds the Cloud Technol-
ogy Endowed Professorship with the University of
Texas at San Antonio, and is a Fellow of the Aus-
tralian Computer Society. He was named one of
ten Emerging Leaders in the Innovation category
of The Weekend Australian Magazine/Microsoft’s
Next 100 series in 2009, and was a recipient of

various awards, including the ESORICS 2015 Best Research Paper Award,
the Highly Commended Award from Australia New Zealand Policing Advi-
sory Agency, the British Computer Society’s Wilkes Award, the Fulbright
Scholarship, and the 2008 Australia Day Achievement Medallion. He
serves on the editorial board of Cluster Computing, Digital Investigation,
IEEE Access, IEEE Cloud Computing, IEEE COMMUNICATIONS MAGAZINE,
FUTURE GENERATION COMPUTER SYSTEMS, Journal of Network and Computer
Applications, and PLoS ONE. He also serves as the Special Issue Guest
Editor of ACMTransactions on Embedded Computing Systems (2017), ACM
Transactions on Internet Technology (2016), Digital Investigation (2016),
Future Generation Computer Systems (2016, 2018), IEEE CLOUD COMPUTING

(2015), IEEE Network (2016), IEEE TRANSACTIONS on CLOUD COMPUTING

(2017), IEEE TRANSACTIONS on DEPENDABLE and SECURE COMPUTING (2017),
Journal of Computer and System Sciences (2017), Multimedia Tools and
Applications (2017), Personal and Ubiquitous Computing (2017), Pervasive
and Mobile Computing (2016), Wireless Personal Communications (2017).

NHIEN-AN LE-KHAC (M’07) received the Ph.D.
degree from the Institute National Polytechnique
Grenoble, France. He is currently a Lecturer with
the School of Computer Science, University Col-
lege Dublin (UCD). He is currently the Director of
UCD Forensic Computing and Cybercrime Inves-
tigation Programme-an International Programme
for the law enforcement officers specializing in
cybercrime investigation. He has published over
90 scientific papers in international peer–reviewed

journal and conferences in related disciplines.

22398 VOLUME 5, 2017

