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ABSTRACT Software defect prediction provides actionable outputs to software teams while contributing
to industrial success. Empirical studies have been conducted on software defect prediction for both cross-
project and within-project defect prediction. However, existing studies have yet to demonstrate a method
of predicting the number of defects in an upcoming product release. This paper presents such a method
using predictor variables derived from the defect acceleration, namely, the defect density, defect velocity, and
defect introduction time, and determines the correlation of each predictor variable with the number of defects.
We report the application of an integratedmachine learning approach based on regressionmodels constructed
from these predictor variables. An experiment was conducted on ten different data sets collected from the
PROMISE repository, containing 22 838 instances. The regression model constructed as a function of the
average defect velocity achieved an adjusted R-square of 98.6%, with a p-value of < 0.001. The average
defect velocity is strongly positively correlated with the number of defects, with a correlation coefficient
of 0.98. Thus, it is demonstrated that this technique can provide a blueprint for program testing to enhance
the effectiveness of software development activities.

INDEX TERMS Software defect prediction, machine learning, number of defects, defect velocity, class
imbalance.

I. INTRODUCTION
Software defect prediction helps to ensure that testing and
debugging remain in a fast-track mode by providing advance
information on the number of faults that are likely to be found
in a new program. Both stakeholders and software companies
spend substantial resources on repairing the damage caused
by defects in software products. The need for software defect
prediction in software engineering is driven by the impor-
tance of the proper use of available resources in software
testing and in delivering quality software products to the user.

However, existing studies have yet to demonstrate a
method of predicting the number of bugs in an upcoming
release using derived variables. Such an ability to predict
the number of software defects would assist software teams
in planning software testing and in maintaining software
standards. Therefore, considerable effort is still needed to
develop an acceptable prediction model that can predict the
number of software defects in a future software project. The
primary purpose of a prediction model is to provide cost-
effective support and guidance during software testing [1].
To ensure cost-effectiveness, it is important to be able to

predict the number of defects in a new product release. Such
a prediction method should focus on guiding software testing
efforts by predicting the possible number of software defects
in a new product release before testing begins. Identifying and
correcting faults in software can be expensive if performed
only after the delivery of the software product to stakeholders.
This is because software developers face substantial risks
and difficulties in identifying the root causes of faults and
correcting those faults during the requirement, design and
implementation phases of the software life cycle [2].

Prediction of defects in error-prone software can provide
a blueprint for program testing and can also improve the
effectiveness of development activities [3]. If the developer
fails to address a problem early in the software development
process, then the problem can become more complicated,
with a corresponding increase in cost in later phases. Con-
versely, if the complexity is kept low, then the software can be
more easily understood and modified during its life cycle [4].

To ensure that software stakeholders make good decisions
about future programs and properly allocate resources to
software projects, the output of a prediction model must
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provide a practical result to managers [5]. Currently, software
companies apply a series of previously proposed techniques
or custom approaches for predicting software defects. How-
ever, software companies continue to face unexpected faults
that could have been exposed during the initial stages of
development if suitable prediction practices had been imple-
mented. Detecting fault-prone software components as early
as possible can enable software experts to remain focused and
to direct their resources toward addressing possible issues
that may arise in a software system that is yet to be devel-
oped [6]. The metrics used early in the software develop-
ment life cycle (SDLC) can play a significant role in project
management by helping to reduce the defect density of a
software product; specifically, these metrics can be used to
determine whether increased quality monitoring is necessary
during development. They can also be used in the planning of
verification and validation activities [7].

In addition, it is essential to consider the cost and ben-
efits of predicting the number of software defects before
program testing starts. If the cost value of a prediction is not
assessed first, then poor prediction results may be obtained.
Furthermore, inappropriate resource allocation strategies can
significantly increase the testing effort [8]. This study pro-
poses a machine-learning-inspired (MACLI) approach that
can be used to predict the number of software defects in a
cost-effective manner. The outcome of such a prediction can
help managers and software development teams to appropri-
ately allocate the available resources to software testing and
maintenance.

In this study, we used an integrated machine learning
approach based on regression models constructed using a set
of predictor variables. Based on these variables, our regres-
sion models estimate the number of defects in a software
product prior to testing through multiple and simple linear
regression techniques. Our approach is distinct from previ-
ously proposed prediction models for binary defect classi-
fication because our technique can estimate the number of
defects in a defective program, whereas in binary classifica-
tion, a program is merely labeled defective or non-defective
without estimating the number of defects. Although many
techniques for software defect prediction have been proposed
in previous studies and have helped software developers to
achieve remarkable binary classification results [9], these
techniques have not considered the estimation of the number
of defects using the derived predictor variables applied in
this study. An experiment was conducted on 10 different
datasets collected from the PROMISE repository, contain-
ing 22,838 instances. The results indicate that the number
of defects shows a strong positive correlation with the aver-
age defect velocity, a weak positive correlation with the
average defect density, and a negative correlation with the
average defect introduction time, with correlation coeffi-
cients of 0.98, 0.22 and −0.30, respectively. The regression
model constructed as a function of the average defect veloc-
ity achieves an adjusted R-square of 98.6%, with a p-value
of <0.001.

The remainder of this paper is organized as follows.
Section II discusses related work. Section III explains our
motivation. In Section IV, we present our proposed frame-
work for defect prediction. Section V describes our experi-
ment and the construction of our prediction models. We then
present our results and discussion in Section VI. Section VII
discusses the potential threats to the validity of this study.
Finally, Section VIII presents our conclusion and directions
for future work.

II. RELATED WORK
Previous studies have proposed models for both within-
project and across-project defect prediction at the source code
level based on the software development process. Although
these studies have achieved noteworthy performance in terms
of accuracy, reliability, fault detection and performance
improvement in binary defect classification, the literature
lacks an approach for estimating the number of software
defects, and no previous studies have considered the predictor
variables applied in this study.

For example, Han et al., as reported in [10], proposed a
sustainable program reliability estimation model based on the
software development process. Their method comprises an
integrated software reliability model, a program construction
forecast model, a Rayleigh model, and computer-aided soft-
ware safety estimation to improve prediction outcomes.

Taba et al. [11] enhanced the accuracy of defect predic-
tion by applying metrics based on anti-patterns. They used
re-factoring to correct poor designs and used anti-patterns to
identify weaknesses in a design that might increase the risk of
future defects. If defects can be predicted using anti-pattern
information, then the development team can use re-factoring
to reduce the risk of defects in the system.

Mori [12] developed a predictionmodel with high accuracy
and explanatory power by superposing a naïve Bayes model
on an ensemble model.

Jing et al. [13] achieved improved software prediction
accuracy using a software defect prediction technique based
on collaborative representation classification. Their proposed
metric-based software defect prediction method resulted in a
considerably larger number of defect-free modules compared
with the number of faulty modules. Although class imbalance
was encountered in that study, the outcome of the study
was not affected because the class imbalance was properly
addressed through Laplace score sampling for sample train-
ing, which resulted in an improved prediction accuracy.

Mahmood et al. [14] analyzed the predictive performance
achieved using imbalanced data in the prediction of software
defects. When the data used for classification are of unequal
proportions among different classes, the predictive accuracy
of defect prediction studies appears to be low, whereas bal-
anced data result in increased predictive performance. One
measure that can be used to address such imbalance problems
was reported in [13].

Islam and Sakib, as reported in [15], used package-
based clustering to enhance the accuracy of software
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defect prediction. They grouped software packages into mul-
tiple clusters according to their relationships and similari-
ties and proposed a prediction model using this package-
based clustering approach that achieved prediction rates of
54%, 71%, and 90%, which were higher than those obtained
using a prediction model based on BorderFlow and k-means
clustering.

Tantithamthavorn et al. [16] argued that the outcome and
accuracy of any prediction model are functions of the data
used for training. Therefore, prediction models may be over-
fitted and produce untrustworthy results if the datasets are not
reliable.

Mausa et al. [17] applied a standard procedure for col-
lecting data to be used in a defect prediction study. Their
approach limits the factor of knowledge related to a biased
dataset by providing details on the capabilities of a bug-code
analyzer. This provides all of the functionalities necessary
to create a software defect prediction dataset using a defect
monitoring device capable of analyzing defects from the
contents of source code management repositories.

The erroneous use of training datasets can lead to poor
models and biased prediction results. To overcome this
problem, Siebra and Mellof [18] applied a simple pre-
processing technique to achieve reliable results. Meanwhile,
Rahman et al. [19] applied a feature-space transformation
process in combination with data pre-processing and normal-
ization to improve prediction accuracy.

Malhotra and Raje, as reported in [20], addressed the prob-
lem of incorrect interpretations when verifying the perfor-
mance of a defect prediction model. They used an object-
oriented metric design suite and compared various machine
learning techniques to investigate the impact of object-
oriented metrics on erroneous classification. The naïve Bayes
technique was found to be suitable for predicting the defect-
proneness of a class using object-oriented metrics. Their
results are consistent with the finding of Menzies et al. that
naïve Bayes appears to be the best technique for constructing
defect prediction models.

Cavezza et al. [21] examined defect prediction perfor-
mance during the software development process. The find-
ings of the study suggest that when a standard approach
is applied for defect prediction, promising results can be
obtained through continuous refinement of the prediction
model using new commit data and by predicting whether any
action introduced into a program introduces a bug.

Lu et al. [22] investigated the development of a semi-
supervised learning technique for program defect prediction
using a variant of a self-study algorithm. The study confirmed
that confidence fitting can be used as a substitute for estab-
lished supervised algorithms. The semi-supervised algorithm
in combination with dimensional reduction performed con-
siderably better than a random forest model when modules
with typical faults were used for training.

Xuan et al. [23] comprehensively studied within-project
defect prediction performance in a practical and sophisticated
manner. They used a massive set of evaluation metrics and

reported that a Bayesian network achieves good performance.
Other classification models may also perform better in differ-
ent scenarios because no single model dominates in binary
defect classification performance.

Fukushima et al. [24] evaluated a cross-project model
using just-in-time (JIT) prediction via a case study of open-
source projects. The study reported that within-project defect
prediction models that are able to achieve high accuracy
are uncommon compared with high-accuracy cross-project
prediction models. However, cross-project prediction mod-
els trained on projects with identical correlations between
the predictor and dependent variables often exhibit good
performance.

Nam and Kim, as reported in [25], applied a collection of
metric equalities to construct a prediction model for projects
with diverse metric sets. They combined metric selection
and metric combination to achieve a forecast rate of 68%,
which was higher than or comparable to the rates achieved
for within-project defect prediction. Their proposed method
also showed statistical significance.

Jing et al. [26] presented a successful solution for mixed
cross-company defect prediction by means of combined met-
ric representations for data origin and destination. The perfor-
mance of this approach depends on the correlation analysis
that is established to achieve effective transfer learning for
cross-company defect prediction. In this way, similar initial
and resulting data distributions can be obtained.

Panichella et al. [27] improved the detection of defect-
prone entities among software projects by means of a unified
defect predictor that considers the groupings produced by
various machine learning techniques.

Lessmann et al. [28] proposed techniques for predicting
fault-prone modules by prioritizing quality assurance efforts
and used these techniques for selecting modules in accor-
dance with their fault probabilities. To date, none of these
techniques has demonstrated the ability to predict the number
of defects that may exist in an upcoming product release.
Our proposed MACLI approach attempts to fill this gap to
expedite actions taken for quality assurance by predicting the
number of software defects using the average defect density,
average defect velocity, average defect introduction time and
module design complexity. Notably, software complexity sig-
nificantly affects the cost and time of software development
and maintenance [29].

Shepperd et al. [30] conducted a meta-analysis of all rel-
evant factors that influence predictive performance. They
verified the performance of their defect prediction model
by determining the factors that significantly influence the
predictive outcomes of software defect classifiers, as deter-
mined based on the Matthews correlation coefficient. They
found that the choice of classifier only slightly influences
the performance, whereas the model building factors (that
is, factors related to the research group) exert a significant
effect. This is because the research group is responsible for
data pre-processing. If the data applied in a study are not
properly cleaned, that study may produce a biased outcome.
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Consequently, the performance achieved in a prediction study
depends predominantly on the research group and not on the
choice of classifier.

Zhang et al. [31] attempted to construct a universal
defect prediction prototype. However, developing a universal
model of the primary connections between software metrics
and defects is challenging because of the variations among
predictors.

Caglayan et al. [32] constructed a sensitive defect pre-
diction model based on fault categories. By separating
defect statistics into different classes for consideration in
a defect prediction algorithm, practitioners are able to take
proper actions to improve their prediction accuracy. There-
fore, grouping and segmenting the errors in a program
before applying a prediction model can also improve accu-
racy. Maneerat and Muenchaisri [33] analyzed bad smell
prediction in an early phase of software development by
comparing the performances of different machine learning
algorithms through statistical significance testing. Halim [3]
proposed a model that can compute the complexity of object-
oriented software in the design phase for the prediction of
error-prone classes. He applied naïve Bayes and K-nearest-
neighbor models to identify the link between complexity and
bug-proneness in a design.

Parthipan et al. [4] also proposed an evaluation model that
captures the symptoms of design complexity using an aspect-
oriented complexity evaluation model. Note that in the design
phase and at the code level, defect prediction models are pri-
marily designed either to discriminate between defective and
non-defective modules (binary classification) or to forecast
the number of defects (regression analysis) [32].

Despite extensive efforts, these previous studies have
demonstrated various achievements with regard to the pre-
diction of software defects at the code level only. Additional
research on software defect prediction will be required to
produce a pragmatic prediction model for managers and
development teams. To the best of our knowledge, a model
that can predict the number of possible defects in an upcom-
ing product release has not yet been proposed for either
cross-project or within-project defect prediction. Therefore,
this study focuses on predicting the number of defects in a
software project to provide managers and development teams
with knowledge of future software trends. This study also
considers the impact of module design complexity, among
other predictor variables, in predicting the number of defects
in a software project. We evaluated the impact of module
design complexity to determine its effect on the number of
defects in a software product. Module design complexity is
defined as the difficulty of constructing a detailed design,
which often results in various issues and leads to complicated
software products.

Certain design violations can lead to increased
complexity in software module design and the bad smell
phenomenon [34]. In this context, the UnifiedModeling Lan-
guage (UML) standard is helpful for predicting and under-
standing software systems [35]. We also consider module

design complexity because the implementation phase follows
the design phase in the SDLC. Therefore, decisions made
during the design phase can ultimately affect the success of
software implementation. Reducing the complexity of any
software design can result in fewer complications during
coding, thereby simplifying software maintenance. Software
design is important in ensuring software quality. A proper
design can ensure a software taxonomy that facilitates the
improvement of software quality while providing the basis
for all subsequent software activities. Althoughmost software
practitioners do not pay significant attention to the need for a
detailed design, knowledge of the role of sustainable design
remains an important issue [36], [37].

UML provides a high level of detail about software mod-
ules, such as class attributes, operations, association names,
association directions, and multiplicity [38]. UML also repre-
sents the relationships among classes of objects in a system.
Khalid et al. [39] observed that analyzing complexity at
the class level can prevent defects from appearing later in
software development and can help to improve the details of
a design. The approach proposed in this study can also be
applied in the design phase of the SDLC for predicting the
number of possible defects in a new version of a software
product based on the predictor variables used to construct the
prediction models.

III. MOTIVATION
Software defect prediction plays an important role in software
standards. Zhang et al. [40] reported that predicting the num-
ber of software defects can minimize worry during software
testing and inspection, thereby enhancing software quality.
From the machine learning perspective, improving software
quality through defect prediction has become an interest-
ing aspect of software engineering and has been attracting
increasing attention for more than three decades. Our inspi-
ration comes from the possibilities enabled by predicting the
number of defects in an upcoming product release based on
derived metrics in the form of predictor variables derived
from the defect acceleration, namely, the defect density,
defect velocity and defect introduction time. To this end, we
wish to determine the effect of each predictor variable on the
number of defects. Studies on predicting the potential number
of software errors in a newly released product are lacking.
Consequently, software companies continue to suffer from
software defects despite the remarkable achievements made
in defect prediction.

We hypothesized that the choice of metrics used for pre-
diction also influences the prediction results. Based on this
hypothesis, we carefully selected and integrated our predictor
variables. The defect density g is the ratio of the number of
defects to the project size. The defect velocity v is the rate
of change in the defect status with time t . We chose these
metrics, which have not previously been applied in research
on software defect prediction, as our predictor variables.
We selected these metrics because the defect density of a
software project depends on the rate at which defects occur.
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Thus, the number of defects is a function of the defect accel-
eration, as shown in Equations (1) to (5). Another reason for
selecting these metrics was our desire to produce practical
outputs for managers and development teams for software
defect prediction.

The number of defects in a new software product needs
to be predicted before testing begins. This will enable devel-
opment teams to deliver more reliable software products
and help managers to better allocate the available resources
throughout the software development process. To this end,
machine learning algorithms are capable of exposing pre-
diction models to new data, that is, training and validation
datasets. As the prediction models interact with new data,
they can learn independently from the previous computations
to produce reliable results. Notably, software defect predic-
tion remains an important aspect of software engineering.
Hence, the ability to predict the number of software defects
that are likely to be present in a new release is important
for ensuring cost-effectiveness and can lead to the delivery
of nearly defect-free software products to stakeholders. Fur-
thermore, the advance prediction of the number of software
defects can help a software testing team to better utilize the
available resources for software testing based on the predicted
outcome.

A simple modeling technique is needed to evaluate the
effects of our chosen metrics on the number of defects in
an upcoming product release. No previous study has con-
sidered these predictor variables for predicting the number
of software defects. We conducted this study to investigate
the prediction of the number of defects in software dur-
ing the development process. Our modeling technique is
based on the relationship between the number of defects
and the defect density as a function of defect accelera-
tion. Therefore, in the present study, we used a MACLI
approach capable of predicting the number of defects
to provide managers with useful outputs. This method
also enables us to fill a gap in the existing literature.
We propose a novel idea for performing defect prediction
based on predictor variables that have not been applied in
any previous study on defect prediction. We believe that the
selected metrics can influence the outcome of any prediction
study because thesemetrics can serve as the independent vari-
ables in prediction models. Careful selection of the variables
used in prediction has the potential to improve prediction
outcomes [41]. Therefore, we strongly believe that our care-
fully selected variables will produce significant outcomes in
predicting the number of defects in a new product release.

IV. PROPOSED FRAMEWORK FOR DEFECT PREDICTION
In this section, we present our proposed framework for early
software defect prediction. Figure 1 illustrates the proposed
MACLI framework. The framework describes the systematic
process that we apply for predicting the number of software
defects. The first phase is the data pre-processing phase.
During this phase, we ensure that detailed information about
the source of the data is obtained. This is followed by data

FIGURE 1. Proposed MACLI framework for defect prediction.

analysis, in whichwe obtain several metrics from the datasets.
These metrics include the number of classes in the datasets,
the number of attributes, the number of defects, and the
percentage of defects. In addition, we determine the design
complexity for each dataset. In this study, the effect of the
design complexity was compared with the effects of the
chosen predictor variables. The next phase in the proposed
framework is the application of the modeling technique to
derive the predictor variables.

The modeling technique is based on the Rayleigh distribu-
tion curve. The predictionmodeling phase consists of amodel
training phase and a model validation phase. The training
phase consists of using part of the datasets to train both mul-
tiple and simple linear regression models. In this study, the
predictor variables derived via our modeling technique were
used in training and validating bothmultiple and simple linear
regression models, with the purpose of enhancing software
defect prediction and providing practical results to managers
and software development teams.

A. DATA PRE-PROCESSING
The first phase of our proposed framework is the data pre-
processing phase, which addresses class imbalance and data
cleanness. In machine learning studies, class imbalance is a
known problem that can affect the outcome of a prediction
study [42]–[50]. If the datasets applied in a prediction study
are properly cleaned and pre-processed, this can facilitate
the prediction of defects early in the SDLC, allowing the
software team to focus on achieving improved results. There-
fore, such measures can promote improved software quality.
Recent defect prediction studies have challenged the quality
of datasets used in defect prediction and have also demon-
strated the need to properly pre-process such datasets [51].
Our dataset pre-processing technique is further discussed in
the experimental section.

B. PROPOSED MODELING TECHNIQUE
In this section, we explain the development of the proposed
modeling technique in detail. Our modeling technique is
based on the Rayleigh distribution curve, which represents
the number of defects over time throughout a project [52],
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FIGURE 2. The Rayleigh distribution curve, where x0 = initial defect
status, v0 = initial defect velocity, t = time, and g = defect density.

as shown in Figure 2. This curve reveals how software
defects evolve with time throughout the development process.
As the phases of software development proceed, the num-
ber of errors increases if these errors are not caught and
eliminated. Furthermore, the Rayleigh model also shows
the relationships between other variables and the number
of defects over time throughout the SDLC. These predictor
variables were integrated into our models. First, we analyzed
the datasets to extract the values of the chosen variables
from existing projects. Then, we modeled these variables and
applied them in constructing our prediction models.

1) RAYLEIGH DISTRIBUTION CURVE
Figure 2 shows the path representing the defect status of a
project over time. Based on this model, we identified the
defect density g, defined as the ratio of the number of defects
to the size of the project, and the defect velocity v over
time t . Thesemetrics were used in constructing our prediction
models.
Definitions of Metrics: Defect density: The defect density

g is the ratio of the number of defects to the project size.
The defect density has no unit of measure. Defect velocity:
The defect velocity v is the rate of change in the defect
status with time t and is measured in units of number per
day. Defect introduction time: The defect introduction time
is the time at which defects occur in a software product
and is measured in days. Design complexity: The module
design complexity is defined as the difficulty of construct-
ing a detailed design, which often results in various issues
and leads to complicated software products. We derived our
predictor variables from the Rayleigh distribution curve pre-
sented in Figure 2, with the exception of the design com-
plexity, which is already present in the dataset as one of the
attributes. The Rayleigh distribution curve depicts how the
number of defects increases over time in a software project.
Based on the Rayleighmodel, we identified the defect density
g, which is defined as the ratio of the number of defects
to the size of the project and thus is a function of the
number of defects. We also identified the defect velocity v
over time t . These metrics were used in constructing our

prediction models. The defect density, as defined above, is
also illustrated in Figure 2. We evaluated the defect densities
of 10 different past projects based on the datasets collected
from the PROMISE repository [53]. We also analyzed these
datasets to verify their completeness and to determine our
other predictor variables. We then calculated the average
defect density, average defect velocity and average defect
introduction time for each dataset. At the starting point of a
project, the number of defects is zero, as shown in Figure 2.
The chance of defect introduction increases over time as the
project proceeds from one phase to the next. With further
phase transitions during software development, the defect
acceleration increases. The defect acceleration is the change
in the defect velocity at a given instant of time. The increases
in the number of defects and the defect density are therefore
functions of the defect acceleration, as derived in Equa-
tions (1) to (5). The progression through the project phases
is accompanied by increases in the numbers of both files and
defects. Furthermore, the defects present in these files change
from one phase of software development to another. Our
model determines the defect status of the files, which enables
us to determine the defect introduction time. Accordingly, the
average time at which errors appear is obtained, as derived in
Equations (9) to (16).

In these equations, the variable x0 represents the initial
defect status of the project, and v0 and t0 are the initial defect
velocity and the start time of the project, respectively. Using
the proposed modeling techniques, the numbers of defects
corresponding to the subsequent defect statuses x1, . . . , xn are
obtained. These variables are derived based on the software
defect density, which is influenced by the defect acceleration
of the software project.

The software defect density typically decreases during
software development as the competence of the development
team increases [10]. Therefore, the relationship of the defect
density gwith time t depends on the defect acceleration of the
project, that is, the velocity v at which defects are introduced
with respect to the time of introduction. This implies that
the defect density g is a function of the number of defects,
which is influenced by the defect acceleration of the project.
In this study, the defect acceleration is the basis of all inde-
pendent variables used to construct our prediction models,
and based on these independent variables, our models can be
used to predict the number of defects in a new product release.
In addition, we believe that these independent variables
are directly related to the number of defects. Petrić [54]
reported that the potential to predict the number of defects
depends on the independent variables considered. Under
the assumption of a constant project size, the number of
defects depends on the acceleration characterizing defect
occurrence.

f (no. of defects)⇒ g

This indicates that the defect density g is affected by the
number of defects in a project, which, in turn, depends on
the defect acceleration.
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Thus,

f (defect acceleration)⇒ no. of defects

If the defect acceleration is low, then the number of defects
will also be low. Accordingly, if the defect acceleration
increases, this increased acceleration will lead to an increase
in the number of defects in a project and, hence, an increase
in the defect density g.

Therefore,

f (defect acceleration)⇒ g

The defect density g is a function of the acceleration charac-
terizing defect occurrence given a constant project size. The
defect acceleration can be calculated as the change in defect
velocity over the change in time as follows:

defect acceleration =
1 velocity (v)

1 time (t)
(1)

At a constant project size, the number of defects and,
consequently, the defect density g of a project vary only as
functions of the defect acceleration. Thus,

g =
no. of defects

const. project size
∝
f (defect acceleration)
const. project size

(2)

For a constant project size, the defect density g, which
depends on the defect acceleration, can be expressed as shown
in Equations (3) and (4):

g =
f (defect acceleration)
const. project size

(3)

g =
1velocity (v)

1time (t)
(4)

v = gt (5)

By integrating the defect velocity v over time t , we obtain∫
vdt =

∫
gdt (6)

g
∫
dt = gt + c (7)

Replacing the constant c with the initial velocity v0 yields

g
∫
dt = gt + v0 (8)

To predict the defect status x as a function of time t , we use
the defect velocity, expressed as

v =
1status (x)
1time (t)

(9)

Therefore, the target defect status x as a function of
time t can be obtained by integrating v over t according to
Equation (9). Accordingly, we derive

x (t) =
∫
vdt (10)

Integrating the defect velocity over time, similar to
Equation (6), yields∫

vdt =
∫
gt + v0dt (11)

Through suitable manipulations of the expression for the
defect status x given in Equation (11), we can determine the
average defect introduction time t:∫

gt + v0dt =
∫
gtdt +

∫
v0dt (12)

= g
∫
tdt +

∫
v0dt (13)

= g
(
1
2
t2
)
+ v0t + c (14)

The constant of integration c becomes the initial defect
status x0. At this initial point, the number of defects and the
defect velocity are both equal to zero.

x (t) = g
(
1
2
t2
)
+ v0t + x0 (15)

The average defect introduction time t can then be calculated
by solving Equation (15) for t . Consequently, we obtain

t =

√
2x
g

(16)

where x is the defect status and g is the average defect density.

FIGURE 3. Flowchart of the proposed defect prediction model.

2) FLOWCHART OF THE PREDICTION PROCESS
This section presents a simple step-by-step flow diagram
for the prediction of the number of software defects. The
flowchart of our methodology is shown in Figure 3. This
flow diagram begins with data collection and ends withmodel
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evaluation for assessing the outcome of the prediction mod-
els. The data collection phase is the first step in the flow
diagram, in which the source and format of the data are
identified. This is followed by data analysis, involving data
cleaning and any methods applied to address class imbal-
ance, which remains a challenge in machine learning and
data mining studies [55]–[58]. Subsequently, we calculate the
average defect density of each dataset. Prior to implementing
our modeling technique, we ensure the proper evaluation
of our variables from the datasets, including module design
complexity. If this evaluation is unsatisfactory, it is necessary
to re-examine and analyze the corresponding dataset before
applying our modeling technique.

This flowchart clearly illustrates our procedure, from data
collection to the prediction of the number of software defects.
In this study, in accordance with the first stage of our pro-
posed methodology, after the datasets were collected, we
analyzed them to determine the number of defective modules
and subsequently calculated the average defect density of
each dataset. Before implementing our modeling technique,
we ensured that all variables, such as the module design
complexity, were properly evaluated for each dataset; other-
wise, the dataset was re-examined and analyzed before our
modeling technique was applied.

C. PROCEDURE FOR DEFECT PREDICTION
In this sub-section, we present the steps of constructing the
models used to predict the number of defects and the steps
of pre-processing the datasets. The proposed algorithm can
serve as a means to overcome the challenges posed by dataset
pre-processing, which is important because software defect
prediction models strongly depend on the quality of the data
on which they are built.

First, the input variables are the predictor variables derived
via ourmodeling technique, as shown in Equations (1) to (16).
Our prediction models are constructed based on these pre-
dictor variables, namely, the average defect density g, the
average defect velocity v, and the average defect introduction
time t , because we believe that these variables are related to
the number of defects as a function of the defect acceleration.
The defect acceleration is the basis of all of the independent
variables used in this study to construct our prediction mod-
els, and based on these independent variables, our models can
predict the number of defects in a new product release.

The defect density g over time t depends on the defect
acceleration of the project, that is, the velocity v at which
defects are introducedwith respect to the time of introduction.
For all datasets 1 to n, denoted by (M1−n), we perform pre-
processing and also apply operations M (i, j), where i repre-
sents each predictor variable and j represents the calculation
operations performed to obtain the value of each predictor
variable. Thus, we determine the predictor variables corre-
sponding to each dataset.

Steps 1 to 7 of Algorithm 1 represent the pre-processing
of datasets 1 to n to ensure accurate determination of
the predictor variables. These predictor variables are the

Algorithm 1 Steps of Predicting the Number of Defects
1: procedure Model Construction For Defect Prediction

Input: Predictor variables, namely, defect density g,
defect velocity v, and defect introduction time t
Output: Predicted number of defects

2: pre-process datasets (M1−n)
3: determine (g, v, t); see Equations (1) - (16)
4: for i = 1 to n do
5: for j = 1 to n− 1 do
6: if M (g, v, t) could not be determined then
7: for every (M1−n), recheckM (i, j) to deter-

mine (g, v, t) do
8: if M (g, v, t) have been determined

then
9: build a model f (g, v, t)
10: end if
11: end for
12: end if
13: Divide M (i, j) into two parts, 80% and 20%,

and store in variables Tdata and Vdata, respectively
14: Tdata← training (80%)
15: Vdata← validation (20%)
16: train model with M (i, j) (80%)
17: validate model with M (i, j) (20%)
18: if M (i, j) validation = successful then
19: determine prediction outcome
20: else
21: clean and pre-process dataset (M1−n)

again
22: end if
23: end for
24: end for
25: end procedure

independent variables used to construct our prediction mod-
els. The predicted number of defects depends on these inde-
pendent variables. Steps 8 to 12 represent the construction of
a model using the predictor variables. Based on these inde-
pendent variables, the constructed models can independently
learn from the pre-processed data how to predict the number
of defects in a new product release.

Step 13 represents the division of the datasets into training
and validation (or testing) sets. The training datasets are
used to train our prediction models. The training data are
independent of the testing data; separate training and testing
datasets are used to enable the prediction models to learn
independently and to ensure that our prediction models are
free of overfitting. The datasets selected for training and
testing are stored in separate variables.

Steps 14 and 15 indicate the variables in which the training
and validation datasets, respectively, are stored. Tdata is
the variable in which the training datasets are stored, and
Vdata is the variable in which the validation datasets are
stored. Step 16 represents the training of a model using the
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FIGURE 4. Scatter plot showing data imbalance in KC1.

training datasets stored in the Tdata variable, which consti-
tute 80% of the total data. Step 17 represents the validation
of the trained model using the validation datasets stored in
the Vdata variable, which constitute 20% of the total data.
Finally, steps 18 to 25 represent the generation of the predic-
tion outcome.

V. EXPERIMENTS
We conducted our experiments using ten different NASA
datasets that are widely used in software defect prediction
studies. In this section, we present the pre-processing of the
datasets used to train and validate our models for predicting
the number of defects. The experiments were conducted on
a desktop computer running 64-bit Windows 10 with an
Intel(R) Core(TM) i5-3317U CPU at 1.70 GHz and 4 GB
of RAM.

A. DATA COLLECTION PROCEDURE
We collected 10 different datasets from the PROMISE repos-
itory [53] for the implementation of our proposed technique.
These NASA metric datasets have been widely used in soft-
ware defect prediction. However, these datasets require a
significant amount of pre-processing and cleaning to be suit-
able for defect prediction. Accordingly, we performed data
cleaning as described in this section and data pre-processing
as described in the following section.

1) NASA DATASETS ARE OFTEN PROBLEMATIC
Several studies, such as [59] and [60], have indicated that the
NASA datasets are problematic. Nevertheless, no software

product is free from defects, and no dataset is free from
difficulties related to the imbalanced nature of such data.
Obviously, data imbalance remains a challenge in defect
prediction studies and thus can affect prediction results [42],
[44], [45], [48]–[50]. We visualize the imbalanced nature of
the NASA datasets in the form of scatter plots in Figures 4-13.
To make the datasets suitable for use in this study, we cleaned
them using our proposed approach described in Algorithm 2.

Algorithm 2 Data Cleaning for Defect Prediction
1: procedure Steps of dataset cleaning

Input: Datasets M
Output: Cleaned datasets suitable for prediction based
on A× B cross-validation

2: A = 10 /* number of folds for cross-validation
3: B = 10 /* number of repetitions of training/testing
4: Analyze datasets (M1−n) by analyzing each module
CD1−n of each (M1−n)

5: for i = 1 to n do
6: Assign a unique ID to eachCD1−n of each (M1−n)
7: Check existing attributes in each dataset
8: Check incomplete and missing values in each

module
9: Check outliers and inliers
10: Identify defective and defect-free modules

CD1−n
11: for i = 1 to n do
12: f : CD1−n→ (0, 1)
13: if error_count ≥ 1 then
14: f : (CD) = 1
15: CD = defective
16: Record number of defects
17: Calculate percentage of defects
18: else
19: f : (CD) = 0
20: CD = defect-free
21: end if
22: Repeat the entire algorithm on each module

CD in each dataset M1−n until all datasets have been
properly cleaned

23: Divide M1−n into two parts: 80% and 20%,
for training and testing, respectively

24: end for
25: end for
26: end procedure

B. DATA PRE-PROCESSING
The datasets that served as the input in this studywere cleaned
as presented in Algorithm 2. We applied a cross-validation
sampling strategy with anA×B validation technique to obtain
accurate results, where A is the number of folds and B is
the number of repetitions of training or testing. In the cross-
validation approach, the data were split into 10 folds, with
a relative training set size of 80% and a relative testing set
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FIGURE 5. Scatter plot showing data imbalance in KC2.

FIGURE 6. Scatter plot showing data imbalance in KC3.

size of 20%. The training data and testing data were indepen-
dent of each other to ensure unbiased prediction outcomes.
We made great efforts to properly pre-process, analyze, and

FIGURE 7. Scatter plot showing data imbalance in MC1.

FIGURE 8. Scatter plot showing data imbalance in MC2.

clean the datasets before applying them for the training and
validation of our models. Previous studies have faced many
criticisms because of the use of biased or noisy datasets.
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FIGURE 9. Scatter plot showing data imbalance in MW1.

Defect prediction research will not add value to the software
research community if the researchers do not spend sufficient
time pre-processing their datasets before conducting their
experiments. Such negligence may result in poor research
findings. To avoid any bias in the results of our study, we fully
cleaned and pre-processed our datasets using our systematic
technique. To the best of our knowledge, this technique helps
to achieve fair results.

First, we determined the source and size of each dataset.
In this study, we relied on the widely used NASA datasets
from the PROMISE repository. We analyzed each dataset
by importing it into a Microsoft Excel spreadsheet to easily
identify faulty modules, files, or instances and to identify
missing values. We then assigned a numeric identifier to
each instance in the dataset; this process was repeated for all
datasets. Unique identifiers were assigned to both defective
and non-defective modules, which allowed us to easily iden-
tify the number of defective instances in each dataset and
to avoid repeated data points. Outliers were separated from
inliers because only the clustered inliers are suitable to be
used as a basis for prediction. The number of defects in each
dataset was recorded as well; if the error count among the
attributes was greater than or equal to 1, the corresponding
module instance was considered defective, whereas an error
count of 0 indicated a defect-free module. Thus, we were able
to accurately determine the percentage of defective modules
in each dataset for comparison with the predicted number of
defects.

FIGURE 10. Scatter plot showing data imbalance in PC1.

Second, we verified the number of attributes in each project
by importing the pre-processed datasets into Orange 2.7. Files
with incomplete attributes were not counted. This process
was repeated for each file in every dataset. Although time-
consuming, this procedure is necessary to determine whether
datasets are suitable for use in training and validation.

We divided the samples into training and testing sets with a
10-fold cross-validation structure to ensure unbiased results.
The training sets consisted of 80% of the data and were
used to train our models. If models are properly trained,
they will produce reliable results during validation; this is
why we applied cross-validation sampling when training our
models to ensure highly accurate results with regard to model
performance.

We constructed nine regression models and applied these
models to our datasets, which were divided into training
and validation sets at proportions of 80% and 20%, respec-
tively. We first implemented multiple linear regression mod-
els, in which multiple independent variables were considered
to predict the number of defects. Thereafter, simple linear
regressionmodels were applied; in each of these models, only
a single independent variable was considered to predict the
number of software defects. The results of the predictions
were recorded. The details are shown in Tables 3 to 11.

1) HYPOTHESES
The following hypotheses were formulated based on the
derived predictor variables:

21534 VOLUME 5, 2017



E. A. Felix, S. P. Lee: Integrated Approach to Software Defect Prediction

FIGURE 11. Scatter plot showing data imbalance in PC2.

(a). The software defect velocity is expected to influence
the number of defects in a software project.

(b). The defect density is not expected to significantly
influence the number of defects.

(c). The defect introduction time is not expected to influ-
ence the number of defects.

(d). The defect density is expected to increase in a software
project with an increasing number of defects.

(e). An increase in the defect acceleration is expected to
lead to an increase in the number of defects.

These hypotheses were tested using the models presented
as Models 1 to 9. Models 1 to 6 are multiple lin-
ear regression models, whereas Models 6 to 9 are sim-
ple linear regression models used to enable comparisons
with prediction models constructed using the individual
metrics. The purpose of both the simple and multiple lin-
ear regression models is to predict the number of software
defects.

C. PREDICTION MODELS
In this work, both simple and multiple linear regression
models were constructed for the prediction of the number of
defects in a software project. The multiple linear regression
models were constructed for prediction based on two dif-
ferent independent variables, whereas in each simple linear

FIGURE 12. Scatter plot showing data imbalance in PC3.

FIGURE 13. Scatter plot showing data imbalance in PC4.

regression model, only one independent predictor variable
was considered to investigate the individual influence of each
predictor variable.
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The training datasets used in building our prediction
models are denoted by Tdata, and the validation datasets
are denoted by Vdata. The outcomes of the models built
using the training datasets were stored in a variable called
Result, and the prediction results were stored in a variable
called Pred.

1) MULTIPLE LINEAR REGRESSION MODELS
The regression models presented as Models 1 to 9 were
constructed using the the design complexity, denoted by
DC , as well as the derived variables, namely, the average
defect introduction time, denoted by ADT ; the average defect
density, denoted by ADD; and the average defect velocity,
denoted by ADV . These variables were used to predict the
number of defects, denoted by ND. The models were trained
using the 80% of the training data stored in the variable called
Tdata. The outcomes from training were stored in a variable
called Result.
Model 1 was built as a function of the design complexity

and the average defect introduction time as follows:

Result<−lm
n∑
i=1

ND∼
n∑
i=1

DC+
N∑
i=1

ADT , data=Tdata

(17)

Model 2 was built as a function of the design complexity
and the average defect density as follows:

Result<−lm
n∑
i=1

ND∼
n∑
i=1

DC+
n∑
i=1

ADD, data=Tdata

(18)

Model 3 was built as a function of the design complexity
and the average defect velocity as follows:

Result<−lm
n∑
i=1

ND∼
n∑
i=1

DC+
n∑
i=1

ADV , data=Tdata

(19)

Model 4 was built as a function of the average defect
introduction time and the average defect density as follows:

Result<−lm
n∑
i=1

ND∼
n∑
i=1

ADT+
n∑
i=1

ADD, data=Tdata

(20)

Model 5 was built as a function of the average defect
introduction time and the average defect velocity as follows:

Result<−lm
n∑
i=1

ND∼
n∑
i=1

ADT+
n∑
i=1

ADV , data=Tdata

(21)

Model 6 was built as a function of the average defect
density and the average defect velocity as follows:

Result<−lm
n∑
i=1

ND∼
n∑
i=1

ADD+
n∑
i=1

ADV , data=Tdata

(22)

2) SIMPLE LINEAR REGRESSION MODELS
Model 7 was built as a function of the average defect density
as follows:

Result < −lm
n∑
i=1

ND ∼
n∑
i=1

ADD, data = Tdata (23)

Model 8 was built as a function of the average defect
velocity as follows:

Result < −lm
n∑
i=1

ND ∼
n∑
i=1

ADV , data = Tdata (24)

Model 9 was built as a function of the average defect
introduction time as follows:

Result < −lm
n∑
i=1

ND ∼
n∑
i=1

ADT , data = Tdata (25)

In the equations above, ND is the number of defects,DC is
the design complexity,ADT is the average defect introduction
time, ADD is the average defect density, ADV is the average
defect velocity, and n is the number of datasets.
The multiple and simple linear regression models were

each validated using the 20% of the data stored in the variable
Vdata, which were independent of the training data used to
generate the outcomes stored in the variableResult. Thus, the
validation process was conducted as expressed below:

Pred < −predict
n∑
i=1

Result, Vdata (26)

D. MODEL COMPARISON
Throughout our experiments, we applied a cross-validation
sampling strategy. Importantly, the performance assessment
of any prediction method depends on the data sampling
method applied. For our experiments, we chose to apply
cross-validation sampling to achieve accurate results and also
because, for a large dataset, cross-validation sampling of the
data split into 10 folds with a relative training set size of 80%
and a testing (validation) set size of 20% performs better than
leave-one-out or random sampling.

Estimates of model performance serve to indicate howwell
a model will perform on unseen data [61]. Li et al. [62] used
a cross-validation sampling technique for their performance
assessment. In cross-validation, separate training and valida-
tion datasets are used to prevent the dependence of either one
on the other, and consequently, this approach is known to
be nearly unbiased. However, smaller samples may tend to
show wider variance [63]. Isaksson et al. [64] have therefore
argued that neither bootstrapping nor cross-validation is reli-
able when dealing with small samples. Nevertheless, unstable
results obtained through cross-validation can be stabilized
by repeating the validation process several times, as in, for
example, the 10-fold cross-validation applied in this study.

In the cross-validation sampling approach, measures of
both fit and prediction error are considered to achieve a more
accurate estimation of model prediction performance [65].
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It is meaningful to compare the metrics proposed in this
study with static codemetrics and process metrics. Both static
and process metrics are useful in defect prediction studies.
On the one hand, static metrics are widely applied in practice
as a safe alternative for predicting defective programs and
can also assist software developers in locating faults in their
programs [66], [67]. These static metrics are useful to a
certain extent, but their prediction accuracy decreases over
time [68]–[72]. On the other hand, processmetrics are applied
to measure the quality of a system because they capture more
details about faulty code. Process metrics show good poten-
tial for making predictions regarding post-product release
status and are useful for large datasets [30], [73]. However,
despite the potential of the existing metrics, additional studies
are still needed to find metrics that show further relevance
to the industry that is yet to be provided by the existing
static and process metrics [73]. Therefore, our aim with our
proposed metrics is to fill this gap by clearly demonstrating
their influence on the number of software defects and, thus,
their potential to help software companies improve software
standards.

We evaluated the performance of our models using the
p-value, the adjusted R-square and the F-statistic. The p-value
is used to indicate how well a model performs; it repre-
sents the statistical significance of a model [74], [75]. The
F-statistic enables a comparison of the average significance
of the variables used in constructing the models. The adjusted
R-square measures the goodness of fit of a model and also
indicates the influence of a significant variable in a model.
We considered the adjusted R-square in this study because its
value increases only when a significant variable is included
in a model. The Mean Magnitude of Relative Error (MMRE)
is the most widely used evaluation measure for determining
the performance of competing software prediction models,
and one of its purposes is to help a software team to select
the best-performing model. However, we did not apply the
MMRE as an evaluation criterion in this study because the
findings of several previous studies, such as [76] and [77],
suggest that the MMRE may be unreliable under certain
conditions, leading to the selection of the worse candidate
between two competing models; in particular, the MMRE
tends to prefer a model that underestimates to a model that
accurately estimates the expected value. These studies cast
doubt on the results of previous studies that have relied on
the MMRE to compare the accuracy of different prediction
models.

VI. RESULTS AND DISCUSSION
In this section, we present our hypotheses and preliminary
results. First, we set a null hypothesis H0 that our chosen
predictor variables may not perform well. This hypothesis
corresponds to the assumption that our predictor variables do
not affect the prediction model. Thus, any metric that cannot
achieve a p-value of 0.001 is of negligible significance. This
null hypothesis was used for significance testing based on our
results. The results indicated that the null hypothesis H0 does

not hold because the alternative hypotheses achieved signif-
icant p-values. We used 80% of the samples for training and
20% for validation. A substantial number of samples were
used for training to ensure that themodels were not built using
noisy data and that our training data would not produce any
biased output during model validation. The pre-processing
of the datasets assisted in obtaining reliable results that
could lead to unbiased prediction outcomes. We used both
multiple and simple linear regression models to predict the
number of defects based on different independent variables.
Tables 3 to 11 present the results obtained when using our
trained models to predict the numbers of defects for the 20%
of the data designated for validation.

Table 1 presents the statistics of the datasets collected from
the PROMISE repository in terms of the number of files, the
number of defects, the module design complexity, the number
of existing attributes, and the percentage of defects in each
dataset.

TABLE 1. Statistics of the datasets collected from the PROMISE
repository.

Table 2 presents the values of the predictor variables used
in our modeling technique, namely, the average defect den-
sity, average defect introduction time, and average defect
velocity, for each dataset.

TABLE 2. Values of the predictor variables for each dataset.

Table 3 presents the predicted numbers of defects as well
as the F-statistic, adjusted R-square, and p-value results for
the Model 1 predictions, based on the design complexity
and the average defect introduction time. We obtained these
results using the 20% of our datasets set aside for validation.
We cleaned and trained our datasets repeatedly using the same
ratio of 80% for training and 20% for validation. Note that
the KC1 and PC2 datasets constitute the 20% of the data
used to validate our prediction models. The results presented
in Tables 3 to 4 provide an idea of the possible number of
software defects that are likely to be present in a new product
release, as obtained from the models built using the proposed
independent variables. These results can support software
project stakeholders in decision-making and in allocating
available resources to new software projects.
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TABLE 3. Predictions based on design complexity and average defect
introduction time (Model 1).

TABLE 4. Predictions based on design complexity and average defect
density (Model 2).

Table 4 presents the predicted numbers of defects as
well as the corresponding F-statistic, adjusted R-square, and
p-value results for the Model 2 predictions. The performance
of this model is merely fair, with a p-value of 0.51, compared
with the p-value of 0.57 achieved by the model represented
in Table 3. Thus, the design complexity and average defect
density are apparently less strongly correlated with the num-
ber of defects than the design complexity and average defect
introduction time are, although the former two metrics can
nevertheless be used to build a prediction model.

TABLE 5. Predictions based on design complexity and average defect
velocity (Model 3).

Table 5 presents the predicted numbers of defects as well as
the corresponding F-statistic, adjusted R-square, and p-value
results for the Model 3 predictions. The performance of this
model (with a p-value of < 0.001) is significant, unlike that
of the previous models. Thus, this prediction model based on
the design complexity and average defect velocity achieves
high values of the F-statistic and adjusted R-square, and it
achieves significant prediction outcomes.

TABLE 6. Predictions based on average defect introduction time and
average defect density (Model 4).

Table 6 shows that Model 4, based on the average defect
introduction time and average defect density, achieves a
p-value of 0.96 and low values of the adjusted R-square and
F-statistic. Consequently, the joint impact of these variables
on the prediction outcome appears to be weak based on these
measures. However, this combination of variables can still be
used to build a prediction model.

TABLE 7. Predictions based on average defect introduction time and
average defect velocity (Model 5).

Table 7 presents the results for Model 5, which shows
significant prediction performance in terms of the p-value,
adjusted R-square and F-statistic. The high value of the
adjusted R-square and the p-value of <0.001 indicate the

good performance of this model. Moreover, the significance
of this model as measured based on the F-statistic is also high.
Therefore, the average defect introduction time and average
defect velocity show a high joint influence on the number of
defects.

TABLE 8. Predictions based on average defect density and average defect
velocity (Model 6).

Table 8 presents the results for Model 6, based on the
average defect density and average defect velocity. This
model performs similarly to the models represented in
Tables 5 and 7, with a high p-value and adjusted R-square
of <0.001 and 98.27%, respectively. Moreover, the derived
predictor variables show consistent performance in terms of
the p-value, adjusted R-square and F-statistic, as seen from
Tables 5, 7, 8 and 11. The models presented in all of these
tables show consistent performance as a result of the influ-
ence of the average defect velocity, which is included in all
of these prediction models.

TABLE 9. Predictions based on average defect density (Model 7).

Tables 9 to 11 present the outcomes of the simple linear
regression models, which enable a comparison of the influ-
ences of the individual predictor variables.

TABLE 10. Predictions based on average defect introduction time
(Model 8).

Tables 9 and 10 present the prediction outcomes based on
the average defect density and the average defect introduction
time, respectively. The average defect density individually
achieves a p-value of 0.98 and an F-statistic of 0.00086. Sim-
ilarly, as shown in Table 10, the average defect introduction
time individually achieves a p-value of 0.82 and an F-statistic
of 0.0583. Although these metrics show low correlations with
the number of defects, the models built using these metrics
nevertheless predict a noteworthy number of defects. Thus,
both metrics can be useful when building defect prediction
models.

TABLE 11. Predictions based on average defect velocity (Model 9).

Finally, Table 11 presents the best-performing prediction
model in terms of the F-statistic, adjusted R-square, and
p-value. The performance of this model is outstanding, with a
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p-value of <0.001 and an F-statistic of 479.9, which indicate
that this model yields significant results in predicting the
number of defects. Unlike the other individual variables,
the average defect velocity is strongly positively correlated
with the number of defects, with a high positive correlation
coefficient of 0.98.

FIGURE 14. Effect of design complexity on number of defects.

Figure 14 presents the effect of the design complexity on
the number of defects. From this graph, we conclude that the
design complexity exhibits a moderate positive correlation
of 0.67 with the number of defects. By contrast, Figure 15
shows that the average defect velocity presents a strong pos-
itive correlation of 0.98 with the number of defects because
the number of defects monotonically increases as the defect
velocity increases. The effect of time on the number of defects
is shown in Figure 16. This graph shows that time exhibits
a weak negative correlation of -0.30 with the number of
defects. Meanwhile, the defect density shows a weak positive
correlation coefficient of 0.22 (Figure 17).

The predictor variables considered in this study, namely,
the design complexity, average defect velocity, average defect
introduction time, and average defect density, are presented
in Figures 14 to 17, respectively. However, none of these
variables except the average defect velocity shows a linear
relationship with the number of defects. This result indi-
cates that if defects are not eliminated early in the SDLC,
then correcting them in a later phase may prove difficult.
We therefore conclude that the average defect velocity is
strongly positively correlated with the number of defects
in any given project. By contrast, the other variables show
moderate, negative, or weak correlations with the number of
defects. Figures 18 to 21 present the statistics of the variables
of design complexity, average defect velocity, average defect
introduction time and average defect density, respectively.
These figures show the range of values for each variable as
well as the mean and median values of the distributions.

The novelty of this work lies in the chosen variables, the
applied modeling technique and analysis, and the cleaning
and pre-processing of the datasets. The novel ideas presented
in this paper can also serve as the foundation for a new area of
research that may yield more reliable and actionable outputs

FIGURE 15. Effect of average defect velocity on number of defects.

FIGURE 16. Effect of average defect introduction time on number of
defects.

FIGURE 17. Effect of average defect density on number of defects.

within the software engineering community. Consequently,
our ideas can improve the quality of software products. If soft-
ware companies are provided with a proper technique for
predicting the number of software defects in advance, then
such a technique can be beneficial for decision-making by
software managers, thereby reducing the cost of software
development and improving the quality of software products.
In addition, if defects can be predicted early in the SDLC,
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FIGURE 18. Design complexity.

FIGURE 19. Average defect velocity.

FIGURE 20. Average defect introduction time.

development teams can focus on improving on their ability to
deliver more reliable software products by preventing these
defects from ever arising in their software systems. Such
efforts will also address the majority of software complexity
issues caused by software defects.

Throughout the experiments conducted in this study, the
pre-processing of the data played a significant role and

FIGURE 21. Average defect density.

required substantial attention because if a model is trained
with noisy data, then that model will never produce accurate
results; therefore, any report on such a study will always raise
eyebrows among the research community. Consequently, we
applied great effort in pre-processing our datasets before
dividing them into training and validation sets. Data quality
is one of our major concerns because if the data used in
a study are of low quality, then that study will be unable
to produce viable discoveries. In our study, we found that
most studies are biased because the data used are often noisy.
In addition, we observed that the pre-processing of datasets is
a challenging task, which is why in most studies, insufficient
time is spent on refining datasets.

Considering the number of predictor variables applied in
this work, our findings obtained using the proposed mod-
els demonstrate that the software defect velocity variable is
the predominant contributor to the emergence of software
defects, as seen from its strong positive correlation coeffi-
cient. These defects affect software quality. Therefore, there
is a need to predict software defects early in the SDLC to
address the complexity issues facing software products.

By comparing the results obtained in this study with exist-
ing work, we can conclude that our results represent a unique
approach for estimating the number of software errors in
a new product release. Although state-of-the-art classifiers
previously applied in defect prediction have achieved note-
worthy performance on binary classification tasks, these clas-
sifiers do not provide methods for estimating the numbers
of defects in the software modules that are predicted to be
defective. This study has presented an approach that can be
used to predict the number of faults in a defective program
or in a new software product based on the predictor variables
used to construct the prediction models proposed herein.

These predictor variables, namely, the defect density,
defect velocity and defect introduction time, have not been
fully integrated into previous prediction models to demon-
strate how they influence the number of defects in an upcom-
ing product release. This is why the purpose of this study
was to investigate the use of these variables in predicting the
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number of defects in a new software product to assist software
managers in their decision-making. This study considered a
multiple linear regression approach for estimating the number
of software defects to permit the integration of more than
one variable when building our predictionmodels. The results
suggest that the defect velocity strongly influences the num-
ber of defects in a software project. Given the strong positive
correlation between the defect velocity and the number of
defects, software development teams should better focus on
the rate at which software projects transition from one phase
to the next. This is because the number of defects that arise
in a project is a function of the rate at which defects occur.
In addition, the defect density of a project depends on the
number of defects present in the software.

The number of software defects depends on the rate at
which these defects occur. Therefore, there is a need to inves-
tigate this rate, called the defect velocity in this study. This
study also indicates that any software product with a high
defect density shows a high number of defects and vice versa.
If the factors determining the rate at which software defects
occur can be identified, this will enable developers to restruc-
ture their testing and debugging efforts into a more cost-
effective approach to deliver higher-quality software products
in subsequent releases.

The proposed technique attempts to predict not only the
number of defects but also the rate at which these defects
occur over time. This achievement is a result of the careful
selection, integration and modeling of the predictor vari-
ables considered in this study for predicting the number of
software defects as well as the determination of the influ-
ence of each of these variables. Based on these carefully
selected variables, this study indicates that using datasets
as they exist in the repository without adequate cleaning
and pre-processing could yield deceiving results. Therefore,
researchers are encouraged to pre-process their datasets care-
fully before using them as inputs to models. In this way, prop-
erly cleaned and pre-processed datasets will allow models to
learn independently of the peculiarities of the specific data
used, thereby making the prediction outcomes more reliable.

A cross-validation approach, such as that applied in this
study, relies on data cleanliness to avoid overfitting because
if a model is applied to the same dataset on which it was
trained, the model will achieve a perfect score, but its pre-
diction outcomes may be useless. Unclean data are, essen-
tially, biased data that can affect decision-making in industry.
Consequently, the quality of decision-making can be a func-
tion of the quality of the dataset used in the study on which
that decision-making is based. Hence, overfitting on unclean
data may have a negative impact on decision-making; there-
fore, it is important to properly clean and pre-process datasets
before applying them in any prediction model.

The approach proposed in this study attempts to solve
the problem of dataset reliability through the top-down pre-
processing and cleaning of the datasets. The datasets used in
this study were thoroughly cleaned before our predictor vari-
ables were calculated. The number of defects in a software

project is sensitive to these variables. The findings based on
these predictor variables suggest that the number of defects
in a software project is a function of the defect acceleration;
when a software project begins, the likelihood of defects
occurring is high.

TABLE 12. Correlation coefficients of the predictor variables with the
number of defects.

Table 12 presents the correlation coefficients between the
number of defects and the variables used to build the models.
Among the considered predictor variables, the defect velocity
exhibits the strongest correlation with the number of soft-
ware defects, with a correlation coefficient of 0.98, as shown
in Table 12. The rate at which defects occur in a software
project is characterized by the defect velocity. Thus, this study
has proven that the defect velocity contributes to the number
of defects in a software product. Clearly, the defect density
increases as the rate at which defects occur increases and
thus is a function of the defect velocity. If the defect density
of a software project is low, then this means that the rate at
which defects occur is also low, suggesting that the defect
density is also a function of the defect velocity with respect
to time. In addition, the results of this study indicate that
among the tested models, the prediction model based on the
average defect velocity is the best-performing model. This
model achieved a high adjusted R-square of 98.6% and a
p-value of<0.001, indicating significant performance. These
results confirm that the defect velocity affects the number
of defects in a software project, as shown by the correla-
tion coefficient of 0.98. In this study, we have demonstrated
how the number of software defects in an upcoming product
release can be predicted using the derived variables. This
demonstration clearly illustrates that the proposed prediction
approach provides actionable outputs for software companies
as well as a blueprint for program testing to enhance the
effectiveness of software development activities.

A. LIMITATIONS OF STATISTICAL METHODS
IN MACHINE LEARNING
Most existing prediction models show weak performance
as a result of their inability to capture the as-yet-unknown
correlation between defects and failures [78]. In our opinion,
this is because the predictor variables that actually influence
the number of defects in a software product have not been
fully integrated in the construction of a suitable prediction
model. In this study, we have integrated such predictor vari-
ables when building our proposed models; according to our
findings, the average defect velocity, that is, the rate at which
defects occur over time, exerts the greatest influence on
the number of defects in a software product. Based on our
findings, a prediction model built using only the defect
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velocity or the defect velocity in combination with other
predictor variables tends to produce reliable prediction out-
comes. However, statistical approaches such as those applied
in this study are subject to certain limitations, including
limitations related to multicollinearity, model fitting and the
quality of the data points.

1) MULTICOLLINEARITY
One of the most common problems encountered with the
application of statistical methods in the existing literature,
multicollinearity occurs when two or more predictor vari-
ables are highly positively or negatively correlated with
each other [78]. By contrast, linear regression models rely
on the assumption that the correlation between predictor
variables is always zero, meaning that they are indepen-
dent of each other [79]. When multicollinearity arises in
a statistical analysis, it may lead to inconsistent signs of
the coefficients and misleading conclusions. In our study,
the correlation coefficient between the number of defects
and the average defect introduction time had a negative
value of −0.30; this negative correlation was consistent
when tested on both the NASA metric data and the ELFF
datasets. Notably, collinearity between variables has previ-
ously been reported, namely, a negative correlation between
the defect density and the module size [80]. The author
of that study reported that since there must be a negative
correlation between the module size X and 1

X , a negative
correlation is consequently expected between X and the
defect density Y

X (number of defects/size). We can similarly
conclude that the average defect introduction time should
have a negative correlation with the number of defects. Both
the simple and multiple linear regression models applied
in our study predicted the number of defects with little or
no multicollinearity between the predictor variables. The
values of the correlation coefficients reported in Table 12
confirm the influence of each predictor variable as presented
in Figures 14-17.

2) MODEL FITTING
Almost all evaluations of regression models are primarily
concerned with model fitting, with less focus on the success-
ful prediction of the expected result. Furthermore, attempts
are typically made to demonstrate how well these models
explain the historical data through least-squares fitting and
the goodness of fit. In this study, we instead focused on
accurately predicting the number of defects and determining
the effect of each predictor variable on the number of defects.
A reliable model is one that is capable of predicting the num-
ber of defects in a software module [78]. Because of a lack of
reliable data, the authors of some existing studies may have
used only their own data for model fitting without performing
a proper evaluation of these models on newer datasets, such
as in [81] and [82]. The development of the prediction models
proposed in this study was aimed at accurately predicting the
number of software defects rather than determining how well
a model fit the data.

3) QUALITY OF DATA POINTS
It is somewhat challenging to determine which studies in the
existing literature have included procedures for controlling
the quality of the data points during pre-processing, although
if such procedures were applied, some justification for doing
so should be provided [78]. In our case, we addressed the
quality of the data points when applying our models to
the NASA datasets; some data points were removed during
the training phase due to the identification of incomplete
attributes because such incomplete data may impact model
performance. These data points were removed to enable us
to gain full knowledge of the data while ensuring that the
data analysis was performed using datasets with complete
attributes and that the imbalanced nature of the data could
be properly characterized. The data imbalance is clearly pre-
sented in Figures 1-10, and our data pre-processing steps are
presented in Algorithm 2.

B. BENEFITS OF THE PROPOSED MACLI APPROACH
In terms of cost and quality, our proposed MACLI
approach represents an easy-to-use and cost-effective data
pre-processing technique that can assist software companies
in gaining a comprehensive and accurate understanding of
their existing datasets and in performing appropriate pre-
processing thereof. At the same time, our proposed approach
requires fewer lines of code and less time and energy
than existing methods. Generally, good prediction models
are capable of learning independently and accurately from
reliable data such that they are able to produce reliable
prediction results. Furthermore, this approach can assist man-
agers in decision-making regarding the allocation of avail-
able resources to software projects. The experimental results
obtained in this study suggest that the defect velocity is the
primary factor responsible for the number of defects in a
software project; consequently, software companies of all
sizesmust pay adequate attention to the rate at which software
projects transition from one phase to another. This implies
that a software project must not be executed using a slow
approach; rather, more attention should be paid in every stage
of the development process to reduce errors. However, the
initial phase of a software project may require more than the
available number of experts to accurately determine whether
a project contains nearly zero defects and thus is ready to
transition to the next development phase. If an enormous
software project is handled by fewer than the required number
of experts, then that project may be more prone to errors,
whereas a project that is attended to by the required number
of experts is capable of approaching nearly zero defects and
can be delivered to the end user on time.

The challenges posed by software defects remain an impor-
tant issue to be addressed in software engineering. Software
companies continue to seek possible ways of reducing or
eliminating errors in software products. The regression mod-
els applied in this study can assist managers in forecasting the
future status of software products by predicting the number
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TABLE 13. ELFF dataset statistics.

of defects that are likely to be present in a new product
release. In addition, these prediction models can support
decision-making regarding the proper allocation of available

resources in a software project, which will lead to a more
profitable future for software companies. Because of the
variety of choices of regression models provided in this study
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for predicting the number of defects, our proposed models
also have the potential to yield new insights for software
teams by uncovering the relationships between the variables
that influence the number of defects; these variables had not
previously been considered, but our prediction models close
this gap.

C. VALIDATION OF THE PROPOSED APPROACH
To validate the proposed approach, we present experimen-
tal results obtained using newer datasets. We have applied
the proposed technique to the ELFF datasets, as presented
in Table 13. The results obtained further support our find-
ings based on the NASA datasets. From the results, we can
conclude that as the software defect velocity increases, the
number of defects in a software product also increases, and
vice versa. In addition, we have presented the steps of our
data cleaning process in Algorithm 2 to clearly illustrate the
approach we applied to make these data suitable for use in
defect prediction.

Table 13 presents the statistics of the 69 datasets used in
this study. The columns in the table, from the first to the last,
report the project name, the number of classes, the number of
defects, the number of attributes, the percentage of defects,
the average defect density per class, the defect introduction
time, and the average defect velocity per class.

FIGURE 22. Effect of defect density on number of defects.

Figures 22, 23 and 24 compare the results of our exper-
iments on the ELFF datasets with regard to the influence
of the proposed metrics, namely, the defect density, defect

FIGURE 23. Effect of defect introduction time on number of defects.

FIGURE 24. Effect of defect velocity on number of defects.

introduction time and defect velocity, on the number of
defects per class across these 69 open-source Java projects.
The results show that the defect density, defect introduction
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time and defect velocity exhibit correlation coefficients of
61.41%, −11.413% and 93.56%, respectively, with the num-
ber of defects. These findings further support that the number
of defects in a software project is a function of the defect
velocity, as demonstrated in this paper using both the NASA
datasets and the more recent ELFF datasets.

VII. THREATS TO VALIDITY
In this section, we present the potential threats to the validity
of this study. We discuss both the internal and external threats
that may have affected the study’s results.

A. INTERNAL THREATS TO VALIDITY
Although previous studies have achieved noteworthy per-
formance in terms of metric selection for defect prediction,
we carefully selected novel metrics that we believed might
influence the number of defects in a software product.We also
constructed the equations for deriving the corresponding pre-
dictor variables. These equations and the derived predictor
variables may have affected our results, and to clarify these
potential effects, we evaluated the individual performance
of each metric and its influence on the number of defects.
We considered only a few predictor variables for predicting
the number of defects in a new program; further studies may
consider other meaningful variables that might influence the
number of defects in an upcoming software project. For this
purpose, the careful selection of additional metrics that may
impact the number of software defects will be needed.

B. EXTERNAL THREATS TO VALIDITY
We conducted our experiments using 10 different datasets
containing 22,838 instances. These datasets contain imbal-
anced classes, which may pose a threat to the generalizability
of the results of this study. Note that these datasets are widely
used NASA projects collected from the PROMISE repository
and have been applied in several previous defect prediction
studies. For instance, Laradji et al. [41], Czibula et al. [83],
and Ghotra et al. [84] applied these NASA datasets in their
early studies. The accuracy of our results depends on the pre-
processing and data cleaning techniques applied in this study.
Although the results varied between projects, the dataset pre-
processing was an important phase of this study. Neverthe-
less, additional replication studies would be advantageous.
In this paper, class imbalance has been identified as a chal-
lenge in software defect prediction, but we did not specifi-
cally address this issue in the current study because our focus
was the prediction of the number of defects.

VIII. CONCLUSION AND FUTURE WORK
Several concerns that arise in software defect prediction have
yet to be resolved. Therefore, we have presented a MACLI
approach for predicting the number of defects in an upcoming
software product using predictor variables derived from the
defect acceleration, and we have determined the correlation
of each predictor variable with the number of defects. The
number of defects shows a strong positive correlation with

the average defect velocity, a weak positive correlation with
the average defect density, and a negative correlation with the
average defect introduction time, with correlation coefficients
of 0.98, 0.22 and −0.30, respectively. The proposed method
can provide practical outputs to managers and software devel-
opment teams. In our experiments, we used 10 PROMISE
datasets, containing 22,838 instances in total. Our experimen-
tal results show that a prediction model based on the average
defect velocity achieves an adjusted R-square of 98.6% and a
p-value of< 0.001, indicating that the average defect velocity
is strongly positively correlated with the number of defects.
The advance prediction of the potential number of defects in
a software product, as presented in Tables 3 to 1, can serve as
an actionable output for a software development team.

We implemented a systematic modeling technique for pre-
dicting the number of software defects. We considered var-
ious combinations of our predictor variables, namely, the
average defect velocity, average defect introduction time, and
average defect density, for use in predicting the number of
defects in an upcoming product release. In addition, we eval-
uated the individual effect of each of these variables on the
number of software defects. Our results suggest that among
these predictor variables, only the average defect velocity
shows a strong positive correlation with the number of pos-
sible defects in an upcoming product release. Therefore, to
reduce defects, software managers can focus on the rate at
which a project transitions from one phase to another over
time.

The results of our work must be confirmed to verify
the suitability of our approach for defect prediction. Future
studies can use the most recent datasets from any software
company to validate this method for predicting the number
of defects in an upcoming product release while also consid-
ering additional predictor variables. The proposed MACLI
approach can enable managers and development teams to
restructure their testing and debugging efforts based on a
highly cost-effective and actionable prediction model.
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