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ABSTRACT Battery State-of-Health (SOH) estimation is of utmost importance for the performance and
cost-effectiveness of electric vehicles. Incremental capacity analysis (ICA) has been ubiquitously used for
battery SOH estimation. However, challenges remain with regard to the characteristic parameter selection,
estimation viability and feasibility for practical implementation. In this paper, a novel ICA-based method for
battery SOH estimation is proposed, with the goals to identify the most effective characteristic parameters of
IC curves, optimize the SOHmodel parameters for better prediction accuracy and enhance its applicability in
realistic battery management systems. To this end, the IC curve is first derived and filtered using the wavelet
filtering, with the peak value and position extracted as health factors (HFs). Then, the correlations between
SOH andHFs are explored through the grey correlation analysis. The SOHmodel is further established based
on the Gaussian process regression (GPR), in which the optimal hyper parameters are calculated through the
conjugate gradient method and the multi-island genetic algorithm (MIGA). The effects of different HFs and
kernel functions are also analyzed. The effectiveness of the proposed MIGA-GPR SOH model is validated
by experimentation.

INDEX TERMS Batteries, incremental capacity analysis, state of health, Gaussian process regression,
multi-island genetic algorithm.

I. INTRODUCTION
Electric vehicles (EVs) are widely recognized as a viable
solution to deal with the problems of oil depletion and
environmental pollution [1], [2]. Battery systems are key
components of EVs, and strongly influence their driving
performance and driving range per charge [3]. Tremendous
progress has been made in the pursuit of affordable and
durable rechargeable batteries in recent decades. So far,
lithium-ion batteries represent a leading candidate in this
regard, thanks to their intrinsic advantages including high
energy density and long lifespan along with nomemory effect
compared with other battery chemistries [4]–[6]. Battery
management systems (BMSs) are always necessarily posi-
tioned to ensure safe, efficient and reliable operation of bat-
tery systems, in which State-of-Health (SOH) estimation is a
crucial but challenging task [7]. Accurate SOH monitoring

would contribute to effective battery health management,
which helps avoid catastrophic hazards and premature
failure [8]. However, a comprehensive and clear statement
of the underlying mechanisms of battery degradation is still
absent at present due to complexity and coupled effects of
the involved electrochemical reactions inside. Besides, differ-
ent types of lithium-ion batteries involve with distinct aging
mechanisms that are dependent on battery structural design
and used materials.

In view of the significance of accurate SOH estima-
tion, many attempts have been directed to revealing battery
degradation mechanisms and correspondingly developing
SOH estimation schemes, giving rise to a rich library of
related literature. The state-of-art SOH estimation meth-
ods have been systematically summarized in several review
papers [9]–[11]. Generally, these methods can be sorted into

21286
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017

https://orcid.org/0000-0002-1763-0397


Z. Wang et al.: State-of-Health Estimation for Lithium-Ion Batteries Based on the MIGA and the GPR

three categories, i.e., empirical or semi-empirical models,
physical-based and data-driven approaches, each with advan-
tages and limitations.

Empirical or semi-empirical models are derived by fit-
ting experimental data. They have satisfactory prediction
accuracy under certain conditions for a specific battery
type but lack physical meanings. Nevertheless, the volatility
and unpredictability of working conditions for battery sys-
tems during practical vehicular operation may make these
laboratory-calibrated models incapable of providing pre-
cise SOH estimation. In contract, physical-based models are
developed based on the first principle to account for realistic
side reactions that lead to battery degradation. For example,
the growth of solid electrolyte interface (SEI) film has widely
been considered as the main source of capacity loss and loss
of active material (LAM), resulting in a flotilla of electro-
chemical models [12], [13]. These physical-basedmodels can
provide direct interpretations for some battery degradation
phenomena, and enable the understanding of electrochem-
ical dynamics. However, due to the use of coupled partial
differential equations (PDEs), the extremely high computa-
tional requirements impede their practical applicability in
realistic BMSs. Data-driven approaches for battery SOH esti-
mation have emerged, owing to their flexibility and model-
free characteristics. A variety of data-driven approaches
have been put forward for battery SOH assessment, includ-
ing support vector machine (SVM) [14]–[16], Bayesian
network [17], [18], Autoregressive model [19], [20], particle
filter (PF) [21] and Gaussian process regression [22], [23].
For instance, the SVM approaches can depict the non-linear
relationship between measureable features and battery SOH
using kernel functions, and are considered to outperform
ordinary regression methods due to its insensitivity to data
uncertainty. Recently, signal processing methodologies are
also employed for modeling battery degradation, including
incremental capacity analysis (ICA) and differential voltage
analysis (DVA) [24]–[27]. Both ICA andDVAhave been used
as enabling in-situ techniques to explicitly identify battery
degradation mechanisms for a variety of battery types [28].
For instance, Dubarry et al. [29] utilized the ICA method
to analyze battery degradation process for large format
LiFePO4 (LFP) batteries and their path dependence in plug-in
hybrid electric vehicle (PHEV) application. Weng et al. [30]
and Feng et al. [31] applied ICA associated with support
vector regression and probability density function to SOH
monitoring, respectively. Berecibar et al. compared three dif-
ferent regression models for battery SOH estimation based
on the use of ICA and/or DVA. Initially developed for
investigating the intercalation-based battery cells, ICA can
transform voltage plateaus of a charging/discharging voltage
curve into peaks of the corresponding incremental capacity
(IC) curve by differentiating the charged battery capacity
verse the terminal voltage. It has the advantages of insen-
sitivity to battery types and efficacy in identifying capac-
ity loss mechanisms. Additionally, it has huge potential for
online battery degradation diagnosis since only a low-rate

constant charge regime is required to derive the IC curve.
Despite the widespread use of ICA-based methods for bat-
tery SOH estimation, there are still substantial challenges
in terms of effective characteristic feature extraction of IC
curves, and estimation viability and applicability in realistic
BMSs.

In this paper, the IC curve is derived and filtered using the
wavelet filtering, with the peak value and position extracted
as health factors (HFs). Then, the correlations between SOH
and HFs are explored through the grey correlation analysis.
The Gaussian process regression is applied to estimating
SOH with mean and confidence intervals that are considered
as the uncertainty representations of SOH. To optimize the
hyper parameters, an improved GPR method combining the
multi-island genetic algorithm is utilized to capture the actual
degradation of Lithium-ion battery with HFs extracted from
the ICA. The effectiveness of the proposed method has been
validated through experimentation.

The remainder of this paper is structured as follows:
Section II gives a brief introduction for the ICA method.
Section III reveals details of experimentation for battery
charging dataset collection. Section IV presents the pro-
posed SOH model and its validation, whose parameters are
identified using the Gaussian process regression based on
the conjugate gradient method and the Multi-Island Genetic
Algorithm (MIGA). The key conclusions are summarized
in Section V.

II. INCREMENTAL CAPACITY ANALYSIS
The ICAmethod is capable of providing SOH estimationwith
high accuracy for lithium-ion batteries using basic measur-
able parameters such as voltage and current. The charging
curves under the constant-current-constant-voltage (CC-CV)
regime are usually used to generate the IC curves through
differentiation. It has been demonstrated in literature that the
incremental capacity1Q/1V is more indicative of the under-
lying electrochemical changes during battery aging than the
conventional charging/discharging curves themselves. For
example, during a constant current charging process, the
following relationship holds:

dQ/dV = I · dt/dV (1)

where Q is the charged capacity, V is the terminal voltage,
and I is the loading current.

It is obvious that the incremental capacity is inversely pro-
portional to dV/dt. The constant current charging curve can
be translated into the incremental capacity curve according
to Eq. (2).

Q = It, V = f (Q), Q = f −1(V ) (2)

The slope dQ/dV can be re-written as a function of V
according to Eq. (3)

(f −1)′ =
dQ
dV
=
d(It)
dV
=

I
dV/dt

= g(V ) (3)
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In the data processing, dV and dQ are replaced by
δV and δQ in the discrete form, respectively. Thus, when
δV → 0,

dQ
dV
≈
δQ
δV

(4)

A detailed calculation will be provided in the following
parts. The voltage sequence V and current sequence I cor-
respond to the voltage and current at the time sequence T ,
respectively.

V = (V1,V2,V3 · · · ,Vn)

I = (I1, I2, I3, · · · , In)

T = (t1, t2, t3, · · · , tn) (5)

Therefore, the incremental capacity from Vk to Vk+1 can
be expressed as

QVk→Vk+1 = Ik (tk+1 − tk ) (6)

The voltage range is set as [Vmin, Vmax], which covers the
entire voltage change in the charging process. Based on the
method of integral forward, when mk = mk+1 = . . . =

mk+s = m, the incremental capacity at Vm can be derived
as

dQ
dV
≈
δQ
δV

∣∣∣∣
Vm

=

k+s∑
h=k

QVh→Vh+1 =

k+s∑
h=k

Ih(th+1 − th) (7)

where h = k , k + 1, . . . , k + s, δV = 1mV.
It is difficult to directly derive the peaks on the incre-

mental capacity curve since their corresponding points on
the charging/discharging curve always locate in the voltage
plateau region that is flat and sensitive to measurement noise.
Hence, effective and robust algorithms are needed to filter the
charging/discharging curve and extract the signature features.
To this end, the machine learning methods such as support
vector machine [30] and the probability density function [31]
have been proposed to extract the signature onboard. In this
study, the wavelet transform (WT) filtering is used to smooth
the incremental capacity curve due to its predominance over
other traditional filtering methods. Different from the tradi-
tional filtering techniques that always base on linear meth-
ods, the WT uses nonlinear methods to process the discrete
signals, and has a good ability at localizing signal in both time
and frequency planes. It can analyze and decompose an orig-
inal signal into different localized contributions, with each
representing a part of the signal covering a different frequency
range. The success of WT filtering method is mainly due to
the features of wavelet transform such as low entropy, multi-
resolution, decorrelation and flexibility of base selection,
etc. The mother wavelet function is critical since different
wavelet basis functions give rise to different results. The most
commonly used wavelet basis functions include the Symlets
wavelet and the Daubechies wavelet. Here, the Daubechies
wavelet is used to smooth the incremental capacity curve with
five wavelet decomposition levels in this study. A comparison
of the original and filtered ICA curves is shown in Fig. 1.

FIGURE 1. The incremental capacity curve filtered by the Daubechies
wavelet.

It can be seen that the WT method can effectively filter out
the noise and derive a smooth ICA curve.

III. EXPERIMENTAL
In this section, experimental work is elaborated, together with
an analysis of the influence of the charging rate, temperature,
and aging. A test rig was established in order to obtain the
charging/discharging data. It comprises of a battery cycler,
a thermal chamber, a host computer, and the test Li-ion
batteries. The battery cycler is used to charge or discharge
the test batteries in accordance with pre-defined loading pro-
files. It has the capability of recording various parameters,
including terminal voltage, loading current and accumulated
capacity. The accuracy of the voltage and current measure-
ment is up to 1 mV and 1 mA, respectively. The pouch NMC
batteries with a capacity of 10 Ah were used in this study. The
detailed specifications of the tested cells are listed in Table 1.

TABLE 1. The detailed specification of the tested cells.

The CC-CV charging regime was used to charge the bat-
tery with a cut-off voltage of 4.2V. As the performance of
lithium-ion batteries is highly sensitive to charging rates and
environmental temperatures, the incremental capacity curves
under different charging rates (0.05C, 0.25C, 0.5C, 0.75C
and 1C) under 25◦C are derived and shown in Fig. 2. It is
obvious that all the incremental capacity curves have similar
patterns with two peak values under different charging rates.
With the increasing charging rate, both the related peak value
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FIGURE 2. The incremental capacity curves under different charging
C-rates.

FIGURE 3. The incremental capacity curves under different temperatures.

and the corresponding voltage position move right to higher
voltages. In order to manifest the impact of temperature,
the incremental capacity curves under different temperatures
(5◦C, 15◦C, 25◦C and 35◦C) with 1 C-rate charging are
illustrated in Fig. 3. Also, all the incremental capacity curves
have the similar shapes. However, along with the increasing
temperature, the related peak value increases while the corre-
sponding voltage position moves left to lower voltages.

In order to obtain the incremental capacity curves under
a variation of aging status, the accelerated aging tests were
performed to simulate the real battery aging process. The
upper and lower cut-off voltages are set as 4.2V and 3.0V,
respectively. It is worth mentioning that the data during the
constant voltage charging is excluded for analysis for the
sake of simplification. The incremental capacity curves under
different cycles (Cycles of 1, 60, 120, 180, 240, and 300) are
sketched in Fig. 4. It can be seen that there are two peaks
at the early stage of accelerated aging tests, which gradually
fade away with the increasing number of cycles. Meanwhile,
the peak value at high voltage exhibits an obvious decline
trend while the peak position moves right to higher voltage
with aging. It is worth noted that three repeated discharging at
1C-rate were conducted, the capacities of which were

FIGURE 4. The incremental capacity curves under different cycles.

FIGURE 5. The relationship between the peak value and SOH.

FIGURE 6. The relationship between the peak position and SOH.

9.83Ah, 9.81Ah and 9.816Ah, respectively. Due to the consis-
tency of three repeated capacity tests, the average capacity of
9.818Ah was selected as the benchmark battery capacity for
SOH assessment. The battery SOH degrades with the increas-
ing number of cycles, resulting in changed peak values and
position. The relationship between the peak value/position
and SOH is shown in Fig. 5 and Fig. 6, respectively.
Therefore, the peak value and peak position voltage can be
extracted as indicative HFs for battery SOH estimation.
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Based on the grey correlation analysis presented in
Ref. [32], the SOH can be selected as Y reference sequence,
while the peak value and peak position voltage can be
regarded as Xi comparative sequences as shown below.

Xi = {xi(k)| k = 1, 2, · · · , n} (8)

Y = {y(k)| k = 1, 2, · · · , n} (9)

where i = 1, 2, . . . ,m,m is the number of comparative
sequence, n is the length of comparative sequence or refer-
ence sequence.

Correlation coefficient ξi(k) can be calculated,

ξi(k) =
min
i

min
k
|y(k)− xi(k)| + ρmax

i
max
k
|y(k)− xi(k)|

|y(k)− xi(k)| + ρmax
i

max
k
|y(k)− xi(k)|

(10)

where ρ ∈ [0, 1] is a resolution factor. So correlation degree
of Xi comparative sequence and Y reference sequence shows

ri =
1
n

n∑
k=1

ξi(k), k = 1, 2, · · · , n (11)

where ri ∈ [0, 1], when ri approximates to 1, the relevance
of Xi and Y is high.
Calculation results show that the relevance of peak value

and SOH is 0.6383, and the relevance of peak position and
SOH is 0.6086. Thus, the relevance of peak value and SOH is
higher, namely, peak value as HF is better than peak position
which is also demonstrated in the following section.

IV. MODEL BASED ON GAUSSIAN PROCESS REGRESSION
The Gaussian process is defined as a collection of random
variables,

S = { (xi, yi)| i = 1, 2, · · · , n} = (X, y) (12)

where xi ∈ Rd is the input matrix, and yi ∈ R is the output
indexed by xi. The stochastic process is characterized by the
probability distribution for each finite subset of variables f (·):
Rd 7→ R in a consistent manner. A Gaussian process f (x) can
be fully described by its mean µ and covariance matiax 6,
which is defined as

f (x) ∼ N
(
µ,62

)
=

1√
(2π )d |6|

exp
{
−
1
2
(x− µ)T 6−1 (x− µ)

}
(13)

In the Gaussian process regression model, the mean value
is zero, and the covariance function can be the squared expo-
nential covariance function, the Mattern class of covariance
function or the neural network covariance function.

The squared exponential covariance function (SEISO):

k(xp, xq) = σ 2
f exp

(
−
1
2

(
xp − xq

)T M (
xp − xq

))
(14)

whereM is the covariance scale matrix.

Generally, M =

 λ
−2

. . .

λ−2

,
Thus, Eq. (14) can be further reformulated as

k(xp, xq) = σ 2
f exp

(
−

1
2λ2

∣∣xp − xq
∣∣2) (15)

The squared exponential kernel is a stationary kernel since
the correlation between points is purely a function of the
difference in their inputs, xp-xq.
The Mattern class of covariance function has many forms,

and the common form (M3ISO) is

k(xp, xq) = σ 2
f

(
1+

√
3
∣∣xp − xq

∣∣
λ

)
exp

(
−

√
3
∣∣xp − xq

∣∣
λ

)
(16)

The neural network covariance function (NN) is

k(xp, xq)

= σ 2
f sin

−1

 x̄Tp · λ
−2
· x̄q√(

1+ x̄Tp · λ−2 · x̄p
) (

1+ x̄Tq · λ−2 · x̄q
)


(17)

where x̄p =
[
1
xp

]
, x̄q =

[
1
xq

]
. xp and xq represent two

different inputs, and the covariance function parameters σf
and λ control the y-scaling and x-scaling, respectively.

There are some free parameters in the covariance functions,
that is, θ = [σf , σn, λ]. Generally, the hyper parameters
are needed to be optimized by marginal likelihood function
p(y|X , θ ) as shown in Eq. (14).

p(y| x, θ ) =
1

(2π )
n
2 |α|

1
2

× exp
{
−
1
2
yTβ

}
α = cov(x)+ σ 2

n I, β = (cov(x)+ σ 2
n I)
−1y (18)

where I is the unit matrix with d dimensions, d is the number
of training data sets, and cov(x) represents the covariance
of x.
Based on the conjugate gradient method, the hyper param-

eters θ can be obtained with the maximization of the log-
likelihood function given by

L(θ ) = log p(y| x, θ ) = −
1
2
yTβ −

1
2
log(|α|)−

n
2
log(2π )

(19)

Given the effect of noise, the target y can be described
as y = f (x) + ε, where ε is the white Guassian noise,
and ε ∼ N (0, σ 2

n ). If f (x) is a Gaussian process, the joint
distribution of limited observations from y is also a Gaussian
process. Once a posterior distribution is derived, it can be
used to estimate predictive values for the test data points.
The following equations describe the predictive distribution
for GPR.
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Prior:[
y
y∗

]
∼ N

(
0,
[
K(x)+ σ 2

n I k(x∗)
k(x∗)T cov(y∗)

])
(20)

k(x∗) = [k(x∗, x1), k(x∗, x2), · · · , k(x∗, xn)]T (21)

Posterior:

y∗ = k(x∗)T [K(x)+ σ 2
n I]
−1y (22)

cov(y∗) = k(x∗, x∗)+ σ 2
n − k(x∗)T[K(x)+ σ 2

n I]
−1k(x∗)

(23)

y∗ ∼ N
(
ȳ∗, cov(y∗)

)
(24)

where (x,y) represents the training points, x∗ and y∗ stands
for the test inputs and prediction values, and y∗ is the mean
prediction value.

When Z∼N(u,σ 2
n ), the confidence interval with (1−α) con-

fidence level is written as [u− zα/2σ , u+ zα/2σ ]. Generally,
zα/2 = 1.96 when (1− α) = 0.95. So in the GPR model, the
confidence interval with 95% confidence level is described as
follow: [

y∗−1.96
√
cov(y∗), y∗+1.96

√
cov(y∗)

]
(25)

A. CONJUGATE GRADIENT METHOD
The Gaussian process regression is used to establish the SOH
model with the HFs as the inputs and the SOH estimation as
the output. The hyper parameters are calculated by the con-
jugate gradient method, which possesses good convergence
property. A set of conjugate directions are constructed by
the gradient of known points, and the hyper parameters are
optimized with the maximization of the objective function.
The flowchart of the proposed GPR model is shown in Fig. 7.
(1) Two characteristic parameters, namely the peak value

and peak position, are extracted as the health factors
from the incremental capacity curves. Combining with
battery SOH, two sample collections are made up, and
respectively are (peak value, SOH) and (peak position,
SOH).

(2) The training data (x,y) and test data (x∗, y∗) are
screened out from the two sample collections as men-
tioned above.

(3) For the training, the GPR model is proposed and the
SOH estimation is given by

y ∼ N (0,K(x)+ σ 2
n I) (26)

which conforms to the Gaussian distribution.
(4) Based on the conjugate gradient method, the hyper

parameters θ0 = [σf , σn, λ] can be obtained with the
maximization of the log-likelihood function as shown
in Eq. (15). The proper search direction is chose as

dk =

{
−∇L(θk )+ βk−1dk−1 k ≥ 1
−∇L(θk ) k = 0

βk−1 =
∇L(θk )T · ∇L(θk )
∇L(θk−1)T · ∇L(θk−1)

(27)

FIGURE 7. The flow chart of Gaussian Process Regression model for
battery SOH estimation.

The searching step size is calculatedwith theminimiza-
tion of L(θk + αkdk)

L(θk + αkdk ) = min
α≥0

L(θk + αdk ) (28)

until meeting the stop condition.

‖∇L(θk )‖ ≤ ε (29)

(5) SOH estimation is completed by new input x∗ and
output y∗ with the confidence interval given by

y∗ ∼ N
(
ȳ∗, cov(y∗)

)
(30)

B. MULTI-ISLAND GENETIC ALGORITHM
Genetic Algorithms have been successfully applied to a vari-
ety of optimizaiton problems [33], [34]. The multi-island
genetic algorithm (MIGA) represents an iterative procedure
evolving a population of individuals that correspond to can-
didate solutions. During each generation, the individuals in
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FIGURE 8. The flow chart of MIGA-GPR model for battery SOH estimation.

the current population are rated based on the fitness func-
tion, and a new population of candidate solutions is formed
through reproduction operators, such as selection, crossover,
mutation, and migration. The MIGA can keep the diver-
sity of population through migration and avoid local prema-
ture converge, and has an obvious advantage in searching
the global optimal solution relative to the conventional GA.
Therefore, the MIGA is introduced here to optimize the
hyper parameters of the GPR model. The resultant MIGA-
GPR model for battery SOH estimation is presented
in Fig. 8.

Three kinds of kernel functions (i.e., SEISO, M3ISO and
NN) are analyzed here, and the hyper parameters are encoded
using the grey code with an initial population size of 200,
a islands number of 5, a crossover probability factor of 0.7,
a mutation probability factor of 0.01 and a migration prob-
ability factor of 0.1. The maximum iteration is set 30. The
log-likelihood function comparing CG and post-optimization
by the MIGA is shown in Table 2. The value of L(θ ) has a
descent trend after the hyper parameters optimization by the
MIGA. The SOH estimation results with SEISO, M3ISO and
NN are shown in Fig. 9, Fig. 10 and Fig. 11, respectively.

TABLE 2. The log-likelihood function comparing between CG and MIGA.

FIGURE 9. The SOH estimation results with SEISO. (a) Peak value as
health factor. (b) Peak position as health factor.

C. RESULTS AND ANALYSIS
Quantitative indicators are employed to assess the SOH pre-
diction accuray. They are the max error ε1, the mean error ε2,
the max relative error ε3, the mean relative error ε4, the
maximum width of confidence interval ε5, the average width
of confidence interval ε6, the maximum width ratio of confi-
dence interval ε7, and the average width ratio of confidence
interval ε8.

ε1 = max {|ȳi − yi|}, ε2 =
1
n

n∑
i=1

|ȳi − yi|

ε3 = max
{∣∣∣∣ ȳi − yiyi

∣∣∣∣}× 100%

ε4 =
1
n

n∑
i=1

∣∣∣∣ ȳi − yiyi

∣∣∣∣× 100%

ε5 = max
∣∣ȳ+i − ȳ−i ∣∣, ε6 =

1
n

n∑
i=1

∣∣ȳ+i − ȳ−i ∣∣
ε7 = max

∣∣∣∣∣ ȳ+i − ȳ−iyi

∣∣∣∣∣× 100%
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TABLE 3. Quantitative indicators of SOH estimation results with SEISO, M3ISO and NN based on MIGA-GPR model.

FIGURE 10. The SOH estimation results with M3ISO. (a) Peak value as
health factor. (b) Peak position as health factor.

ε8 =
1
n

n∑
i=1

∣∣∣∣∣ ȳ+i − ȳ−iyi

∣∣∣∣∣× 100%

ȳ+i = y∗i + 1.96
√
cov(y∗i )

ȳ−i = y∗i − 1.96
√
cov(y∗i ) (31)

where ȳ+i , ȳ
−

i , ȳi and yi are the upper limit, the lower limit,
the predicted value and the true value, respectively.

FIGURE 11. The SOH estimation results with NN. (a) Peak value as health
factor. (b) Peak position as health factor.

The first four quantitative indicators (ε1, ε2, ε3, ε4) are
used to evaluate the SOH estimation error. And, the other
quantitative indicators (ε5, ε6, ε7, ε8) are used to assess the
reliability and stability of the proposed SOH model based on
the confidence interval. The SOH estimation results under the
SEISO, M3ISO and NN are shown in Table 3. The smaller
the width of confidence interval is, the more stable the SOH
estimation would be. It can be seen that the stability property
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TABLE 4. Six battery cells with different SOH.

FIGURE 12. The SOH estimation results of six battery cells with different
aging levels.

of SEISO is better than that of M3ISO and NN due to smaller
width of the confidence interval. Considering the estimation
error and confidence interval, the SEISO was selected as the
kernel function. Comparing the peak value with the peak
position, it is clear that the peak value as the HF yields better
performance. This is also validated by the grey correlation
analysis in Section III.

Additionally, six battery cells with different aging levels
were used to further evaluate the proposed SOH estimaiton
model. Their actual capacities were measured to calculate
the true SOH values. The measrued capacities and the cor-
responding peak values of IC curves are listed in Table 4. It is
worth noted that No. 1 cell is a fresh cell with a measured
capacity larger than its rated one, which renders a SOHmeter-
ing larger than 100%. The proposed MIGA-GPR model was
then used to estimate the SOH based on the partial charging
data with the peak value as the HF. As shown in Fig. 12, it can
be seen that the MIGA-GPR model exhibits a good accuracy
of SOH prediction with a maximum error of 3.5%.

V. CONCLUSION
This paper presents a battery SOH estimation method based
on the Gaussian process regression (GPR) and the multi-
island genetic algorithm (MIGA). Firstly, the incremental
capacity analysis (ICA) method is used to extract the char-
acteristic parameters of constant-current charging process as
health factors (HFs) for SOH estimation, together with the
wavelet transform for filtering. Then ,the Gaussian process
regression is leveraged to approximate the complex relation-
ship between SOH and HFs (peak value and peak position),

and the multi-island genetic algorithm is used to globally
optimize the hyper parameters. The established GPR model
has the property of presenting confidence interval since it
can estimate SOH with the mean and variance values as
the uncertainty representations. The effects of different HFs
and kernel functions are also analyzed, and the results show
that the SEISO as kernel function with the peak value as
the HF would yield the best estimation performance. Finally,
the effectiveness of the proposed SOH estimation scheme is
verfied through the accelerated battery life test.
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