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ABSTRACT The perturbations are the disturbances of motion presented in the plant inputs which affect the
motion of the output and states. In this paper, a sliding mode regulator is recommended for the perturbations
attenuation in the plant output and states. The novelty of the advised regulator is that it does not employ an
observer for the perturbations estimation; consequently, it is more compact. The asymptotic stability of the
regulator is ensured via the Lyapunov approach. The mentioned regulator is employed in two tank plants
prototypes.

INDEX TERMS Regulator, sliding mode, perturbations, tank plants prototypes.

I. INTRODUCTION
The perturbations attenuation in the plant output and states
has been recently studied. The perturbations attenuation is
required since the perturbations can affect the sensors, actu-
ators, plants, or regulators, causing accidents or unnecessary
costs. Since a regulator is employed to get that all the plant
states reach constant behaviors, a regulator for the pertur-
bations attenuation is an important and current topic, in the
theory and applications.

There are some works about the stable regulation for the
perturbations attenuation. In [1]–[4], methods for the per-
turbations detection in plants are addressed. The geomet-
ric approach for the perturbations attenuation in perturbed
plants is studied in [5] and [6]. In [7]–[10], active pertur-
bation rejection regulators of plants with perturbations are
advised. Slidingmode regulators for plants with perturbations
are recommended in [11]–[13]. In [14]–[17], stable regula-
tors for the perturbations attenuation are focused. H-infinity
regulators of perturbed plants are addressed in [18]–[22].
In [23]–[26], several kind of regulators for perturbed plants
are discussed. The aforementioned development shows that a
regulator for the perturbations attenuation is a novel topic.

From the above research, in [1], [2], [4], [7], [8], [10],
[11], [13], [14], [16], [22], and [24], several kind of observers
are employed for the perturbations estimation, and these esti-
mated perturbations are taken into account in the mentioned
regulators as the perturbations compensation. It must be
desired to design a regulator for the perturbations attenuation

in which an observer is not required due to it must makes the
development more compact.

In this development, a method is explained for the pertur-
bations attenuation in the plant output and states. For this
purpose, the next three improvements in the recommended
regulator are taken into account:

1) Contrary with the interesting and mentioned works, the
advised regulator does not employ an observer for the
perturbation estimation. In this regulator, the sliding
mode behavior is employed as the perturbations com-
pensation. The improvement to employ a regulator and
not an observer based regulator, is that it makes the
advised method more compact.

2) The sliding mode regulator has an issue in the slid-
ing mode surface due to it sometimes requires many
derivatives of the plant [27], [28]. The difference of
this study with respect to the previous methods is that
the recommended regulator does not employ the sliding
mode surface. It also makes the advised method more
compact.

3) The Lyapunov technique is employed to ensure the sta-
bility of the slidingmode regulator for the perturbations
attenuation. The recommended approach only requires
the boundedness of perturbations.

This document is organized as follows. Section 2 explains
the perturbed plants, they will be used for the regula-
tor design. The sliding mode regulator for the perturba-
tions attenuation in the plant output and states is advised
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in Section 3. In Sections 4, and 5, the slidingmode regulator is
employed in two tank plants prototypes. Section 6 describes
conclusions and suggests future development directions.

II. THE PERTURBED PLANT
Take into account the next perturbed plant:

·
x = Ax + Bu+ Bp

y = Cx (1)

where x ∈ <n are the states, u ∈ <m are the regulator inputs,
y ∈ < is the output, p ∈ <m are the perturbations. A ∈ <n×n,
B ∈ <n×m, and C ∈ <1×n are matrices representing the maps
A :<n→ <n, B :<m→ <n, and C :<n→ <, respectively.

The reference model is:
·
xr = Axr
yr = Cxr (2)

where xr ∈ <n are the reference states and yr ∈ < is the
reference output.

The output error is:

ỹ = y− yr
ỹ = Cx̃ = C (x − xr ) (3)

where ỹ ∈ < is the output error and x̃ ∈ <n are the states
errors.

III. THE SLIDING MODE REGULATOR
A. THE REGULATOR DEVELOPMENT
In this section, a regulator will be developed based on the
assumption that the output y is measured, but the perturba-
tions p are not measured.
The next sliding mode regulator is recommended:

u = −B∗L̃y− B∗Ksgn(̃y) (4)

where u ∈ <m are the regulator inputs, ỹ ∈ < is the output
error, K ∈ <n is a constant vector which is chosen after,
L ∈ <n is a constant vector, sgn(·) ∈ < is the signum map,
B∗ ∈ <m×n is the pseudo-inverse of B ∈ <n×m.
The purpose of the regulator (4) is that the output y of the

perturbed plant (1) should converge to the reference output
yr of the reference model (2) employing the output y. See
the Fig. 1.
Remark 1: Please note that the behaviors of the perturba-

tions p are not measured in the described regulator due to it
only requires the measure of their upper bound.

B. THE STABILITY ANALYSIS
In this section, states of the sliding mode regulator applied
to the perturbed plants are ensured to be stable by using the
solution of the Lyapunov strategy.

Subtracting the reference model (2) to the model (1) and
employing the states errors (3):

·
x −

·
xr = A (x − xr )+ Bu+ Bp
·

x̃ = Ãx + Bu+ Bp (5)

FIGURE 1. The sliding mode regulator.

Substituting the sliding mode regulator (4) into (5) and
employing the output error (3) forms the closed loop regu-
lator:

·

x̃ = Ãx + Bp− L̃y− Ksgn(̃y)
·

x̃ = [A− LC] x̃ + Bp− Ksgn(̃y)
·

x̃ = Asmr x̃ + Bp− Ksgn(̃y) (6)

where Asmr = A− LC , p is described in (1).
The next Theorem shows the stability of the advised sliding

mode regulator.
Theorem 1: States of the sliding mode regulator (4), used

for the perturbations attenuation in the plant (1) are asymp-
totic stable; then, states errors x̃ comply:

‖̃x‖2 ≤ ρe−σ t ‖̃xi‖2 (7)

where x̃i are the initial conditions of x̃, ρ = λmax(T )
λmin(T )

, σ =

λmin(WT−1), |Bp| ≤ Bp and Bp
sgn(C) ≤ K , p are the perturba-

tions described in (1), ‖·‖ is the Euclidean norm in <n and |·|
is the absolute value, T ∈ <n×n and W ∈ <n×n are positive
matrices which comply the next equality:

ATsmrT + TAsmr = −W (8)

where Asmr is described in (6).
Proof: Take into account the next candidate Lyapunov

element:

Vsmr = x̃TT x̃ (9)

Taking into account (6), the derivation along the solution
of (9) is:

·

V smr =
·

x̃
T
T x̃ + x̃TT

·

x̃
·

V smr = x̃T
(
ATsmrT + TAsmr

)
x̃ + 2̃xTTBp− 2̃xTTKsgn(̃y)

(10)

Taking into account ATsmrT + TAsmr = −W of (8) in (10),
it is:

·

V smr = −x̃TWx̃ + 2̃xTTBp− 2̃xTTKsgn(̃y) (11)
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Since (3), sgn(̃y) = sgn(Cx̃) = sgn(C)sgn(̃x), and taking into
account that x̃T sgn(̃x) = |̃x|T , it is:

·

V smr = −x̃TWx̃ + 2̃xTTBp− 2̃xTTKsgn(C)sgn(̃x)
·

V smr = −x̃TWx̃ + 2̃xTTBp− 2 |̃x|T TKsgn(C) (12)

Taking into account |Bp| ≤ Bp and Bp
sgn(C) ≤ K of (7), it is:

·

V smr ≤ −x̃TWx̃ − 2 |̃x|T T [Ksgn(C)− Bp]
·

V smr ≤ −x̃TWx̃ (13)

(13) can be expressed as:

·

V smr ≤ −σVsmr (14)

where σ = λmin(WT−1). From (14), it is recognized that
the states of the regulator employed in perturbed plants are
asymptotic stable. Taking into account (14), its solution is
gotten as:

eσ t
·

Vsmr ≤ −eσ tσVsmr

eσ t
·

Vsmr + eσ tσVsmr ≤ 0
d
dt

(
eσ tVsmr

)
≤ 0

t∫
0

d
dτ

(
eστVsmr

)
dτ ≤ 0

eστVsmr
∣∣t
0 ≤ 0

eσ tVsmr − Vsmri ≤ 0

eσ tVsmr ≤ Vsmri
Vsmr ≤ e−σ tVsmri (15)

where Vsmri are the initial conditions of Vsmr . Taking into
account the definition of (9) in the last equality of (15) it is:

λmin(T ) ‖̃x‖2 ≤ x̃TT x̃ = Vsmr
≤ e−σ tVsmri = e−σ ti x̃Ti T x̃i ≤ λmax(T )e−σ t ‖̃xi‖2

H⇒ ‖̃x‖2 ≤
λmax(T )
λmin(T )

e−σ t ‖̃xi‖2 (16)

where x̃i are the initial conditions of x̃. By using ρ =
λmax(T )
λmin(T )

of (7), the equality (7) is proved.
Remark 2: The solvability of the mentioned regulator is

that the solution of the equation (8) gives the gain L which
is employed in the regulator (4) to reach the perturbations
attenuation in the perturbed plant (1).

In the next two sections, the sliding mode regulator of (4)
called SMR will be compared with the geometric regulator
of [6] called GR in two experiments. The root mean square
error (MSE) for the output and states will be exploited, it is:

MSE =

 1
T

T∫
0

x2dτ


1
2

(17)

where x2 =
n∑
j=1

x̃2j for the states errors, or x2 = ỹ2 for the

output error.

IV. THE THERMAL PLANT
This plant consists of three interconnected tanks [6]. It is
understood that the liquid enters to the tank with a fixed tem-
perature, it sends the tank liquid to a determined temperature.
The valves allow a discharge of liquid outside the plant. The
purpose is to keep the liquid temperature in the tanks in a
desired value.

Fig. 2 shows the thermal plant prototype which is
employed to get the real data of perturbations and to validate a
model. Angular keys with barrel type of 1/2 inch are adapted
as valves. Servo motors of 0.1 revolutions per minute are
employed to move the valves. An aluminium resistance of
200 W and 120 V is employed to hot the water. Temperature
sensors LM35 are employed to get the temperature measures.
AnArduinomicrocontroller is employed to send the tempera-
ture measures to a personal computer. The personal computer
is employed to receive and to save the temperature measures.

FIGURE 2. The thermal plant prototype.

Fig. 3 shows the thermal plant diagram where t02, t03 are
the temperatures of the water which fall in the tanks 1, 3 (◦C),
t1, t2, t3 are the temperatures of the water for the tanks 1, 2,
3 (◦C), f1, f2, f3 are the flows of the water for the tanks 2,
3 (m3/s), C1, C2, C3 are the calorific capacities of the water
for the tanks 1, 2, 3 (kcal/m3oC), and w1, w2 are the heating
energy employed in the tanks 2, 3 (kcal/m3).
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FIGURE 3. The thermal plant diagram.

The model of the thermal plant in states space is: ẋ1ẋ2
ẋ3

 = A

 x1x2
x3

+ B1 [ u1u2
]
+ B2

[
p1
p2

]

y = C

 x1x2
x3

 (18)

where:

A =


−
f1
C1

0 0

0 −
f2
C2

0

f1
C3

f2
C3

−
f1 + f2 + f3

C3



B1 =


0 0
1
C2

0

0
1
C3

, B2 =


0 0
f2
C2

0

0
f3
C3


C =

[
0 0 1

]
p1 = t02, p2 = t03 are the plant perturbations, u1 = w2, u2 =
w3 are the plant inputs, x1 = t1, x2 = t2, x3 = t3 are the plant
states, and y is the plant output. If f1 = f2 = f3 = 1 m3/s and
C1 = C2 = C3 = 1000 kcal/m3oC, then the plant matrices
are:

A =


−

1
1000

0 0

0 −
1

1000
0

1
1000

1
1000

−
3

1000



B = B1 = B2 =


0 0
1

1000
0

0
1

1000


C =

[
0 0 1

]
(19)

The regulability of the plant (18), (19) is analyzed as:

R =

 B
AB
A2B



=



0 0 0
1

1000
0 −

1
1000000

0
1

1000
1

1000000
0 0 0

0
1

1000000000
0

−
3

1000000
−

1
250000000

9
1000000000


(20)

Since the rank ofR in (20) is 2, 2 states of the plant are able to
be regulated and 1 state of the plant is not able to be regulated,
it will be seen in the experiments.

In this experiment, the dynamic model of the thermal
plant is given by the equality (1), (18), 39.15 ◦C, 39.15 ◦C,
39.15 ◦C are chosen as the initial conditions for the plant
states x1, x2, x3. The perturbations are p1, p2 are real data
taken from 0 s to 10 s. The reference output is yr = 39.25 ◦C.

The purpose of the GR is that the plant output y
of (1), (18) should converge to the reference output yr of (2)
with the regulator of [6] using the output y = x3. The GR is
given with the factor L =

[
1 1 1

]T .
The purpose of the SMR is that the plant output y

of (1), (18) should converge to the reference output
yr of (2) with the regulator of (4) using the output
y = x3. The SMR is given by the equalities (4)

with the factors B∗ =
[
0 1000 0
0 0 1000

]
, L =

 1
1
1

,
K =

 0.04
0.04
0.04

. The Lyapunov equality (8) is satis-

fied with T =

 333.67 −166.33 −166.33
−166.33 333.67 −166.33
−166.33 −166.33 332.17

, W = 1.0 0.0 0.01251
0.0 1.0 0.01251

0.01251 0.01251 1.013

. Taking into account the

Theorem 1, the states of the regulator are asymptotic stable
with factors ρ = 982.32 and σ = 1.9822× 10−3.
Fig. 4, 5, and 6 show the perturbations, states, and output

for the regulators where P are the perturbations, DR are the
desired references, GR is the geometric regulator, and SMR
is the sliding mode regulator. Table 1 shows the MSE for the
regulators using (17).
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FIGURE 4. Perturbations for the experiment 1.

FIGURE 5. States for the experiment 1.

TABLE 1. The MSE for the regulators.

From Fig. 4, 5, and 6, it can be seen that the SMR improves
the GR due to the output and states in the first get better
perturbations attenuation than in the second, also it can be
seen that states 2 and 3 are regulated while the state 1 is not
regulated, it is due to the analysis (20) which proved that the
plant is not completely able to be regulated. From Table 1,
it can be shown that the SMR achieves better accuracy when
compared with the GR due to the MSE for the first is smaller
than for the second.

V. THE HYDRAULIC PLANT
This plant consists of three interconnected tanks [5]. It is
understood that a fixed amount of liquid enters to the tank,
it sends the tank liquid to a determined liquid level. The valves
allow a discharge of liquid outside the plant. The purpose is
to keep the liquid levels in the tanks in a desired value.

FIGURE 6. The output for the experiment 1.

Fig. 7 shows the liquid-level plant prototype which is
employed to get the real data of perturbations and to val-
idate a model. Angular keys with barrel type of 1/2 inch
are adapted as valves. Servo motors of 0.1 revolutions per
minute are employed to move the valves. Ultrasonic sensors
HC-SR04 are employed to get the level measures.
An Arduino microcontroller is employed to send the level
measures to a personal computer. The personal computer is
employed to receive and to save the level measures.

Fig. 8 shows the liquid-level plant diagram, where R1, R2,
R3 are the resistances of the valves 1, 2, 3 (m2/s), C1, C2, C3
are the capacitances of the tanks 1, 2, 3 (m2), h1, h2, h3 are
the liquid levels in the tanks 1, 2, 3, and q1, q2 are the liquid
inputs to the tanks 1, 2.

The model of the hydraulic plant in states space is: ẋ1ẋ2
ẋ3

 = A

 x1x2
x3

+ B [ u1
u2

]
+ B

[
p1
p2

]

y = C

 x1x2
x3

 (21)

where:

A =


−

1
R1C1

0 0

0 −
1

R2C2
0

1
R1C3

1
R2C3

−
1

R3C3



B =


1
C1

0

0
1
C2

0 0


C =

[
0 0 1

]
(22)

x1 = h1, x2 = h2, x3 = h3 are the plant states, u1 = q1,
u2 = q2 are the plant inputs. If R1 = R2 = R3 = 0.5 m2/s
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FIGURE 7. The liquid-level plant prototype.

FIGURE 8. The liquid-level plant diagram.

and C1 = C2 = C3 = 0.5 m2, then the plant matrices are:

A =

−4 0 0
0 −4 0
4 4 −4


B =

 2 0
0 2
0 0


C =

[
0 0 1

]
The regulability of the plant (21), (22) is analyzed as:

R=

 B
AB
A2B


=

 1
0.5 0 −8.0 0 32.0 0
0 1

0.5 0 −8.0 0 32.0
0 0 8.0 8.0 −64.0 −64.0

 (23)

FIGURE 9. Perturbations for the experiment 2.

Since the rank of R in (23) is 3, the 3 states of the plant are
able to be regulated, it will be seen in the experiments.

In this experiment, the dynamic model of the hydraulic
plant is given by the equality (1), (21), 0 m, 0 m, 0 m are
chosen as the initial conditions for the plant states x1, x2, x3.
The perturbations are p1, p2 are real data taken from
0 s to 10 s. The reference output is yr = 0.08 m.

The purpose of the GR is that the plant output y of (1),
(21) should converge to the reference output yr of (2) with
the regulator of [6] using the output y = x3. The GR is given
with the factor L =

[
10 10 10

]T .
The purpose of the SMR is that the plant output y

of (1), (21) should converge to the reference output
yr of (2) with the regulator of (4) using the output
y = x3. The SMR is given by the equality (4) with

the factors B∗ =

[ 1
2 0 0
0 1

2 0

]
, L =

 10
10
10

, K = 0.08
0.08
0.08

. The Lyapunov equality (8) is satisfied with T = 9.9673× 10−2 −2.5327× 10−2 −2.5327× 10−2

−2.5327× 10−2 9.9673× 10−2 −2.5327× 10−2

−2.5327× 10−2 −2.5327× 10−2 7.1895× 10−2

,
W =

 1.0 0.0 −6.0× 10−6

0.0 1.0 −6.0× 10−6

−6.0× 10−6 −6.0× 10−6 0.99998

. Taking
into account the Theorem 1, the states of the regulator are
asymptotic stable with factors ρ = 3.3528 and σ = 7.9997.
Fig. 9, 10 and 11 show the perturbations, states, and output

for the regulators where P are the perturbations, DR are the
desired references, GR is the geometric regulator, and SMR
is the sliding mode regulator. Table 2 shows the MSE for the
regulators using (17).

From Fig. 9, 10, and 11, it can be seen that the SMR
improves the GR due to the output and states in the first get
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FIGURE 10. States for the experiment 2.

FIGURE 11. The output for the experiment 2.

TABLE 2. The MSE for the regulators.

better perturbations attenuation than in the second, also it can
be seen that states 1, 2, and 3 are regulated, it is due to the
analysis (23) which proved that the plant is completely able
to be regulated. From Table 2, it can be shown that the SMR
achieves better accuracy when compared with the GR due to
the MSE for the first is smaller than for the second.

VI. CONCLUSIONS
In this work, the usefulness of the sliding mode approach
is shown for solving the perturbations attenuation issue.
The results showed that the sliding mode regulator achieves
better perturbation attenuation when is compared with the

geometric regulator. It is important to remark that the pertur-
bationsmeasurement is not required. This work represents the
theoretical and application basis for developing the perturba-
tions attenuation issues, for being able afterwards to perform
an implementation in functioning plants. In the future, other
kind of regulators will be designed for the perturbations
attenuation, the adaptive learning will be combined with the
advised regulator, or the trajectory tracking issue will be
studied [29]–[32].
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