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ABSTRACT The problem of influence maximization (IM) in a social network is to determine a set of
nodes that could maximize the spread of influence. The IM problem has been vitally applied to marketing,
advertising, and public opinion monitoring. Although recent studies have studied the IM problem, they are
generally greedy or heuristic-based algorithms, which are time consuming for practical use in large-scale
social networks. Based on the observation that structural hole nodes usually are much more influential than
other nodes, in this paper, we develop a structure-hole-based influence maximization algorithm (SHIM)
with an emphasis on time efficiency. The SHIM algorithm utilizes structure hole information to significantly
decrease the number of candidates of seed nodes. To measure the structure importance of nodes, we propose
an structure hole value calculate algorithm to calculate the structural hole value of nodes.We prove the SHIM
is NP-hard and propose a structure-based greedy algorithm to select seeds with wide influence spread and
high structural hole value. We conduct experiments on real data sets to verify our algorithm’s time efficiency
and accuracy, and the experimental results show that comparing with the existing algorithms, our algorithms
are much more efficient and scalable.

INDEX TERMS Social network, influence maximization, structural hole, greedy algorithms.

I. INTRODUCTION
The social network is a complicated structure composed
of social individuals and relationships between them.
Large scale online social networks like Sina Weibo,
Tencent Wechat and Facebook have attracted millions of
users recently [1], [2]. People would like to use social net-
works to communicate or diffuse information. For example,
a company develops a new product, they want to advertise
the product in a certain social network. The company has a
limited budget so they can only give free sample products to
a small number of users. They hope that the initial users could
influence their friends to use the products, and their friends
could influence their friends’ friends. Through the word-
of-mouth effect, a large number of users finally adopt the
products.Influence maximization is a fundamental research
problem in social networks [3], [4]. It selects a set of k
nodes as seeds in order to maximize the propagation of ideas,
opinions and products etc al.
The problem of Influence maximization is #P-hard, the

widely used baselinemethods for computing influence spread
are based on Monte Carlo simulation or heuristic algorithms.

Most of the existing methods only take consider of the influ-
ence on nodes and propagation probability on edges, while
ignoring the structure feature of nodes in social networks.
In fact, structure positions act as bridge between individuals
of different communities and have more control over infor-
mation diffusion.

The absence of ties between two parts of social network is
called structural holes. The notion forms the basis of theory
of structure holes. Two parts can only make connections indi-
rectly by the connection to the third individual. In this case,
there is a hole between these two parts in terms of structure,
which is called structural hole [5]. The third individual is
called structural hole spanner. For example, in the social
network as shown in Fig.1, node a occupies a bridge position
between two different groups A and B.

However, nodes might not be selected as seed node by
the traditional influence maximization algorithms if their
influence or propagation probability are low in the traditional
propagation model.

In order to improve the time efficiency and maxi-
mize the influence spread in large online social networks,
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FIGURE 1. Example of structure holes between two groups.

we develop Structural Holes based Influence Maximization
algorithm (SHIM). The intuition behind SHIM is opinion
leaders play a key role in spreading information within a
community, while structure hole spanners are more important
for spreading information between communities. In SHIM,
we first identify structure hole spanners whose structure hole
value above the given threshold. And then we compute the
influence capability of each structure hole spanners. At last,
we select the top-k seeds by combining the structure hole
value and influence value. By this way, a large amount of non-
structure hole spanners can be filtered out and the network
scale can be shrank a lot. Furthermore, the spread of informa-
tion can be improved by combination of structure hole value
and influence value.

The aim of the existing influence maximization algorithms
is to maximize the spread of influence and they mainly focus
on the efficiency and accuracy of proposed algorithms. Few
of them consider the privacy protection problem during the
information diffusion process. In fact, due to the structural
hole spanner nodes are much more influential than other
nodes, they are more likely to be the information leakage
nodes. Therefore, if we don’t want to leak privacy information
during the targeting advertising, we can revise our structure
holes-based influence maximization algorithm by incorporat-
ing the information contents and the attitude (like or dislike)
of user nodes.

The contributions of this paper are as follows:
• We propose SHIM: structural hole theory-based algo-
rithm to solve the problem of influence maximization.

• We propose Algorithm1 to compute the structural hole
value of nodes based on Spectral graph theory which is
a useful tool in clustering and graph partition.

• We prove the problem of influence maximization is NP-
hard and propose a greedy algorithm which is presented
in Algorithm2 to solve it.

• We conduct experiments to verify the time efficiency
and influence spread of our algorithm.

The rest of this paper is organized as following: Section 2
discusses the related work of influence maximization algo-
rithms and the structure holes theory. Section 3 gives
the definition of influence maximization problem and

structure hole value. The structural holes based influence
maximization algorithm and greedy algorithm will be pre-
sented in Section 4. The experimental results and analysis
will be reported in Section 5. Finally, the conclusion will be
drawn in Section 6 as well as the future work.

II. RELATED WORKS
A. INFLUENCE MAXIMIZATION (IM)
Domingos and Richardson [6] are the pioneers who
study influence maximization problem in social net-
works. Kempe and David [7] modeled influence maximiza-
tion problem as a discrete optimal problem and proved its
NP-hardness. They proposed greedy algorithm with approx-
imation ratio of (1-1/e).

Greedy algorithms need to perform several Monte Carlo
Simulations in every epoch of seeds selecting iteratively,
which leads to expensive costs and low efficiency when the
number of nodes is very large. Leskovec et al. [8] presented
CELF algorithm, an improved greedy algorithm. CELF was
70 0 times faster than basic greedy algorithm. Chen et al. [3]
proposed NewGreedy algorithm to filter out those nodes
with little contributions for information propagation. Several
researches aim to design heuristic algorithm to improve com-
puting efficiency [9], [10]. Although efficiency of heuristic
algorithms is high, the approximation ratio is not guaranteed.
Xiao-Dong [11] proposed a parallel influence maximization
algorithm BUTA which has much shorter running time than
greedy algorithms on cost of sacrifice of accuracy.

There are also many algorithms considering different types
of IM problems by extending classic influence models. For
example, topic-aware IM [12], [13] considers the influence
diffusion under topic models; location-aware IM [14]–[16]
focuses on maximizing the influence spread in certain spatial
areas; and conformity-aware IM [17] considers users’ confor-
mity tendencies in the influence estimation; real-time IM [18]
considers the stream influence maximization problem for
dynamic social networks; Privacy ware IM [19]–[21] con-
siders the Privacy-Preserving problem during the information
diffusion in social network.

B. STRUCTURAL HOLE
Structural holes theory is a sociological concept which is
proposed by Burt [22]. Burt proved that the person who
owns the structural hole has great advantages of control and
information diffusion. Zhang et al. [23] solved the struc-
tural hole finding problem by Fiedler vector in Laplacian
matrix and designed DGSH algorithm to detect structural
holes. Xiao-Ping and Yu-Rong [24] used domain struc-
tural holes to detect most influential nodes and proposed
N-Burt algorithm to accurately evaluate importance of nodes.
However, they didn’t evaluate the information propaga-
tion probability of nodes and thus the spread of selected
nodes is not the most wide. Lou et al. [25] took advan-
tage of information propagation probability to mine struc-
tural holes and designed HIS and MaxD model to find
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structural holes owners. Their methods relied on cluster-
based network.

In order to overcome the shortcomings of the above influ-
ence maximization algorithms, in this paper we exploited
structural hole theory to the influence maximization problem
and proposed SHIM algorithm to find k seeds.

III. PREMILINARIES
In this Section, we will introduce the model of structural
hole based influence maximization problem, including the
specific graph model, the information propagation model
and the measurement of influence spread. We also prove the
NP-hardness of the problem in this Section.

A. GRAPH MODEL AND PROPAGATION MODEL
The social network can be treated as a directed graph G(V, E,
W, S), here V stands for the set of vertices and E is the set
of edges. In the context of social network, V can be treated
as users and E can be treated as relations between them,
such as friendship or trust relation. W is weights on edges
representing influential probabilities among users. S is set of
structural hole values corresponding each node.

Independent Cascading (IC) Model and Threshold Model
are two widely used propagation model in social network.
In this paper, we use IC Model as our propagation model. In
IC model, each node has two states: active or inactive. If node
u is activated in the t-th time step, it’ll activate its neighbors in
the next time step, whichmeans each active node has only one
chance to activate its neighbor nodes. P(u, v) is the probability
of node v be activated by node u.
Let S0 be the seeds set, all nodes in S0 are in active state

at the first time step. The information diffusion process is as
following in IC model: St−1 is the set of nodes which are
active in the (t-1)-th step, and St is the set of nodes which
are active in the t-th step. In the(t + 1)-th step, each node u
in St tries to activate its neighbor node v with probability of
P(u, v). If such activation is successful, then v changes state
from inactive to active. Otherwise, node u cannot activate v
anymore. Repeating the above process until no node in the
network can be activated.

B. PROBLEM STATEMENT
We use σ (S) to represent the influential spread of seed set S.
The influential spread of seed nodes can be quantified by the
number of nodes that will be activated by the seeds under the
above propagation model. Given a social network graph G(V,
E, W, S), a positive integer k , positive real number α(0 ≤
α ≤ 1), α(1 − α) represents user’s preference, which shows
the proportion of preference for the structure feature of nodes
(resp. preference for the influence of the node). Then the
structural hole theory based Influence maximization problem
is to find a set of seed nodes under the IC model so that the
nodes in the seed set are all structural holes and the seed node
set has the most influence spread.

In the problem of influence maximization, Margin Gain
(MG) of influential value function σ (∗) is influential gain by

activating a node vi as initial active node based on the current
active nodes set S. as described in the following formula:

σvi (S) = σ (S ∪ {vi})− σ (S) (1)

Theorem 1: Structural Hole Theory based Influence Max-
imization problem (SHTIM) is NP-hard.

Proof: As defined above, SHIM can be regarded as
Set Covering Problem. Set Covering Problem is defined as
follow:

Set A = {a1, a2, a3, · · · , ax}, Set S = {S1, S2, S3 · · · , Sy}
where Si is a subset of A, S contains all subsets of A.
The question is whether a set S’ exists satisfying that the

size of S’ is k and S’ covers all elements in A. Consider-
ing SHTIM, we construct a directed bipartite graph which
contains A and S, as described in Fig.2, where A is the set
of nodes which can be activated, S is the initial seeds set
(ui ∈A, vi ∈ S’).

FIGURE 2. Directed bipartite graph.

Set covering problem is a problem of decision whether we
can get a subset of size k, information can be propagated from
these seed nodes in S to all other nodes in A.

C. STRUCTURAL HOLES
Structural holes are nodes which function as bridge in social
networks. For example, as shown in Fig.3, node 2 and node 3
are bridge nodes and if delete them, the graph will be divided
into two unconnected parts. Such nodes are called structural
hole nodes. they are connected by few neighbor nodes, but the
network will be separated and the information propagation
will be locked if these nodes are deleted. To decide whether
a node is a structural hole node, we define a real number
SH to evaluate the probability of a certain node be structural
hole. In order to compute the SH, we will give introduce some
notions first, then we will describe the solution in details.

1) ADJACENT MATRIX
Given a network graph, the adjacent matrix is a widely used
data structure to represent the network. The element aij of the
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FIGURE 3. Structural holes in green circles.

adjacent matrix A can be computed as the following way:

A =

{
aij = if E(i, j) = 1
0 otherwise

(2)

2) DEGREE MATRIX
The degree matrix D is a diagonal matrix formed by the
following way:

D =

{
di = pi if i = j
0 otherwise

(3)

where pi =
n∑
j=1

aij.

3) LAPLACIAN MATRIX
With the help of the Adjacent Matrix and the Degree Matrix,
we define the Laplacian matrix as follows:

L = D− A (4)

FIGURE 4. The Eigen value of the Laplacian matrix.

L has many properties, we can compute the Eigen value
and eigenvector of matrix L as shown in Figure 4. The second
smallest Eigen value and its eigenvector (also called Federal
vector) as shown in Figure 5. We use the absolute values in
Federal vector to map to nodes in Fig.6. The node which
corresponds to the second smallest value is the best struc-
tural hole node and we defined the value as structural hole
value SH.

SH = min
2
{|F |} (5)

FIGURE 5. The Federal vector of the Laplacian matrix.

FIGURE 6. The Structural hole value of nodes in social network.

we can compute SH of a node based on the above formula,
different structural hole node has different SH which can be
seen from Fig.6.

IV. STRUCTURAL HOLES BASED INFLUENCE
MAXIMIZATION ALGORITHM
In this section, we first propose an algorithm called structure
hole value calculate (SHVC) to compute the SH value for
each node in network graph, we also analyze the complexity
of this algorithm; then we present a Structure-based Greedy
algorithm to solve Structural Hole Theory based Influence
Maximization problem. Last, we analyze the time complexity
of the greedy algorithm.

A. COMPUTATION OF STRUCTURAL HOLES VALUE
Because the structure of node is needed to be considered
when selecting the seed node, we need to know the Structure-
Hole value(SH) of node. We design SHVC algorithm to
calculate SH for each node. As shown in Algorithm1, given
network graph G, we first set SH to 0 for all nodes (Line 1)
and use the Federal vector to determine the optimal structure
hole node in the current graph. Then we calculate and update
the SH of this optimal structure hole node (Line 2-5). And
then the value of the characteristic component is set to 1, and
it is ignored in the next calculation (Line 6-7). And then back
to Line 4 until calculating SH of all structural holes(Line 8-9).
The pseudo-code is presented as follow:

Now we give analysis on the time complexity of SHVC
algorithm. The cost of building matrix for a graph is O(n2).
The cost of constructing degree matrix and adjacent matrix
is 2O(n2). The cost of constructing laplacian matrix is O(1).
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Algorithm 1 SHVCalculate (SHVC)
Input: G(V, E,W,S), θ
Output: G1
1) u.SH=0, ∀u ∈ V ;
2) Build the Laplacian Matrix LG;
3) Get the Federal vector F;
4) u←min2{|F[i].value |} 1 ≤ i ≤ n;
5) u.SH =min2{|F[i].value|};
6) F[i].value=1;
7) V=V-{u};
8) while(V 6= ∅)
9) GoTo Line 4
10) for ∀u ∈ V do
11) G1←G\{u|u.inf< θu.SH=0};
12) return G1.

The line 4-5 to compute eigenvalue needs O(m+n) according
to QR [26]. Therefore, the total time of finding the first
structural hole node is 2O(n2)+O(1)+O(m+n)=O(n2). Then
the algorithmwill iteratively find the next structural hole node
until the end. The cost of finding the first structural hole node
is the most because the scale of networks in a new epoch is
smaller than the previous one. We assume that the network is
intense in which every node will be structural hole node, then
finding all structural hole nodes will take O(n3) which is the
upper bound of the algorithm.

B. THE GREEDY INFLUENCE MAXIMIZATION ALGORITHM
In this paper, we call algorithm2 SG for short. Firstly, we
use the SHVC algorithm to calculate the SH of each node
and narrow down the candidate set. After getting the hole
value of all nodes, we combine the structural holes attribute
and nodes influence to remove those nodes which are less
influential than the given threshold and non structural holes.
We can select seeds on a smaller new graph. We define α
(0 < α < 1) as the weight of structure. The larger α means
we pay more attention to the structural influence of a node.
We combine structural hole value and the influence of nodes
to select seeds. The pseudo-code is described as follows:

The time complexity of SHVC is O(n3). The time com-
plexity of SG is O(kRn3), here R is the times of Monte-Carlo
Simulation. The comparison of our algorithm with traditional
greedy algorithm will be given in next section.

V. EXPERIMENTS AND ANALYSIS
In this section, we verify the efficiency and correctness of
our algorithms by conducting a set of experiments on two
datasets.

A. EXPERIMENT SETTING
1) DATASET
We use Twitter [27] and RayLeague [28] as our datasets.
As listed in Table I, we select 10 thousands nodes and 342732
edges fromTwitter and 16 thousands nodes and 235440 edges
from RayLeague.

Algorithm 2 Structure-Based Greedy (SG)
Input: G(V, E,S,W), k, α,θ
Output: S ( |S| = k)
S=∅
G1(V1,E1,W1,S)←SHVCalculate(G,θ );
for i = 1 to k do
4) CIv = 0; (v∈V)
5) for j = 1 to R do
6) for all v∈V do
7) σv(S)= σv(S)∪{v}-σ (S)
8) CIv = CIv+αSHv+(1-α)σv(S)
9) end for
10) end for
11) vmax=maxCIv/R
12) S=S∪{ vmax}
13) end for
14) return S.

TABLE 1. Experiments Dataset

2) EXPERIMENTS ENVIRONMENT
All experiments are conducted on Ubuntu-kylin16.04
with C++. The machine settings are: Intel(R) Core(TM) 2
Duo CPU, 2GB RAM.

TABLE 2. Structural Holes Detection Algorithms

Firstly, we compare the structural hole finding algorithm
presented in this paper called SHF with the existing structural
holes detection algorithms (DGSH, HIS, MaxD) as shown
in table II in terms of time complexity. Secondly, we ana-
lyze how the alpha and theta values will influence the algo-
rithm performance like time and influence range. Lastly, we
compare our Structure-based Greedy algorithm with CELF,
NewGreedy, traditional Greedy and Degree Discount algo-
rithm as shown in table III in terms of time complexity and
influential range of seeds. In all experiments, the total rounds
of Monte Carlo simulation is set to be 20000.
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TABLE 3. Influence MAXIMIAZTION Algorithms

FIGURE 7. The time cost of structural hole detection algorithms.

B. EXPERIMENT RESULTS
1) STRUCTURAL HOLE DETECTION ALGORITHMS
We compare the performance of SHF, DGSH, HIS andMaxD
in terms of time cost. We select 1000 nodes and the cor-
responding 12214 edges from Twitter. We select the first
K = 100 detected structural hole nodes and compare them
with nodes detected from existing algorithms. As shown
in Fig.7, our SHF is the fastest one among all the structural
hole detecting algorithms. This is because SHF builds the
laplacian matrix and uses the Federal vector to determine
the optimal structure hole node which can save a lot of
time.

2) EFFECTS OF ALPHA AND THETA
In this part, we evaluate influence range by varying the
values of alpha and theta. We conduct experiments on
RayLeague which contains 262111 nodes and 1234877
edges. We first select K=100 nodes with theta = 0.001
and comparing influential range and time cost with different
alpha. The results are shown in Fig. 8(a). When alpha is
closed to 0.5, the influence range reached to the maximum.
However, alpha has no effect on time costs when selecting
seeds.

In addition, we use the same dataset and set alpha to be 0.5,
K = 100 to evaluate the effect of theta on performance. As
shown in Fig.8(b),when theta is in range of 0.001 to 0.1, a bet-

FIGURE 8. (a). The effect of alpha on algorithm performance.
(b). The effect of theta on algorithm performance.

ter performance will be got in terms of time and influential
range.

3) COMPARE OF DIFFERENT INFLUENCE
MAXIMIZATION ALGORITHMS
The first group of experiments aims to compare the traditional
influence maximization algorithms with our proposed struc-
tural hole theory-based influence maximization algorithm in
terms of time costs and influential range.We select 500 nodes
and 1246 edges from Twitter and RayLeague respectively.
We set theta as 0.001, alpha is 0.5. Experiments results are
shown in Fig.9 to Fig.10, we compare the influential range
of seeds from the above algorithms. As described in Fig.9(a)
and Fig.9(b), our algorithm can influencemore nodes because
it considers nodes structure in network, nodes which occupy
structural hole are better than non structural hole to propagate
information.
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FIGURE 9. (a).Results on Twitter Dataset. (b).Results on RayLeague
dataset.

The second group of experiments is designed to compare
the time efficiency of various algorithm. MG algorithm is the
fastest algorithm in which approximation ratio is guaranteed
at present. From Fig.10(a) and Fig.10(b), we can see that
our algorithm cost less time than MG. Therefore, according
the above group of experiments, we can infer that our SG is
better thanMG in terms of time efficiency and results quality.
As we can see, CELF has the perfect time efficiency while the
seeds from CELF is not the best because it doesn’t care about
structural features.

To reduce time cost of iteratively computing the structural
hole values of nodes SH, we adopt dynamic programming
technique which can decrease the time complexity to O(n).
Although SG costs more time than CELF, CELF is better
than SG in selecting seeds. In fact, people hope to get the
widest influential range by sacrificing some running time.
The results show that our structure hole theory-based influ-
ence maximization algorithm has faster speed and larger
influential range.

FIGURE 10. (a). Time cost of different algorithm on Twitter Dataset.
(b). Time cost of different algorithm on RayLeague Dataset.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose an novel algorithm to solve the
problem of influence maximization based on structure hole
theory. We defined the most influential nodes to be nodes
that both have the strong ability of propagation and are struc-
tural hole nodes. We prove that structure hole theory-based
influence maximization problem is NP-hard. To evaluate
the structural importance of nodes in networks, we propose
SHVC to compute SH of nodes. To solve the structure hole
theory-based influence maximization problem, we propose
Structure-based Greedy (SG) to select nodes which have
strong ability of propagation and are with larger SH as seeds.
We conduct experiments to verify the time efficiency and
accuracy of our algorithm. Results on Twitter and RayLeague
show that comparing with existing algorithms, our algorithm
can solve influence maximization problem effectively and
improve not only the influential range but time efficiency.

Social networks keep updating which makes the structural
feature of nodes in networks keep changing. In the future,
we’ll extend our structure hole theory-based influence max-
imization algorithm to large scale dynamic networks and
improve the scalability of our algorithm.
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