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ABSTRACT IoT generates considerable amounts of data, which often requires leveraging cloud computing
to effectively scale the costs of transferring and computing these data. The concern regarding cloud
security is more severe because many devices are connected to the cloud. It is important to automatically
monitor and control these resources and services to efficiently and securely deliver cloud computing.
The writable virtual machine introspection (VMI) technique can not only detect the runtime state of a
guest VM from the outside but also update the state from the outside without any need for adminis-
trator efforts. Thus, the writable VMI technique can provide the benefit of high automation, which is
helpful for automated cloud management. However, the existing writable VMI technique produces high
overhead, fails to monitor the VMs distributed on different host nodes, and fails to monitor multiple
VMs with heterogeneous guest OSes within a cloud; therefore, it cannot be applied for automated and
centralized cloud management. In this paper, we present CloudVMI, which is a writable and cross-
node monitoring VMI framework that can overcome the aforementioned issues. CloudVMI solves the
semantic gap problem by redirecting the critical execution of system calls issued by the VMI program
into the monitored VM. It has strong practicability by allowing one introspection program to inspect
heterogeneous guest OSes and to monitor VMs distributed on remote host nodes. Thus, CloudVMI can
be directly applied for automated and centralized cloud management. Moreover, we implement some
defensive measures to secure CloudVMI itself. To highlight the writable capability and practical usefulness
of CloudVMI, we implement four applications based on CloudVMI. CloudVMI is designed, implemented,
and systematically evaluated. The experimental results demonstrate that CloudVMI is effective and practical
for cloud management and that its performance overhead is acceptable compared with existing VMI

systems.

INDEX TERMS Virtual machine introspection, cloud management, security monitoring.

I. INTRODUCTION

Cloud computing and IoT are tightly coupled because cloud
computing can offer several advantages to IoT, such as
on-demand, broad network access, resource pooling, rapid
elasticity, and measured services. We observe considerable
growth in cloud-based services for devices, and much of
this growth is from Amazon Web Services, Google, and
Microsoft, such as the Amazon Echo service that uses
a cloud computing service to handle voice control for
connected devices. Although IoT technology is creating

tremendous benefits, new security risks are also intro-
duced to the front-end devices and to the back-end cloud
services.

Virtual machines (VMs) are an essential building block
of TaaS (Infrastructure as a Service) in the cloud, through
which primary cloud resources and services are provided
to the cloud users. Thus, effectively managing the VMs
within a cloud is one of the key requirements for the reli-
able delivery of cloud computing [1]. The virtual machine
introspection (VMI) [2] technique was proposed to monitor
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the state of a guest VM from the outside, which brings many
benefits, such as strong isolation, higher-level privileges, high
stealthiness, and so forth. Thus, the VMI technique has been
used for intrusion detection [3]-[5], malware analysis [6], and
memory forensics [7], and it is a critical and indispensable
component for cloud management [8].

As we know, the semantic gap [9] problem is the
key challenge of VMI, which is the problem of how to
obtain the high-level OS semantics (e.g., data structure and
process) from the low-level bits and bytes in physical mem-
ory. To date, many solutions have been proposed to solve
the semantic gap problem, such as LibVMI [10], Virtuoso
[11], and VMST [12], among others. In particular, the con-
cept of writable VMI was first proposed in Exterior [13],
in which the semantic gap is bridged by redirecting key
kernel data accesses of the introspection program into the
memory of the monitored VM. The writable VMI can not
only inspect the state of the guest VM but also update the
state from the outside without any need for administrator
efforts.

Thus, the writable VMI not only shares all of the benefits
of the read-only VMI technique, such as strong isolation and
higher-level privilege, but also brings another unique benefit
of high automation [14]. This means that it can automatically
respond to events in the guest OS without the requirement
of any user privileges of the guest OS. For instance, when
an intrusion is detected inside a guest OS, it should be
responded to in a timely manner to ensure the security of
the guest OS. The current solutions are normally to deploy
an automated response program with root privilege inside the
guest OS to respond to the intrusion. However, any in-guest
response program can be disabled by attackers because they
run at the same privilege level. Conversely, the writable VMI
technique can automatically respond to events in the guest OS
from outside of this guest OS without any in-guest response
program and root privileges.

Therefore, writable VMI is in principle suitable for auto-
mated VM management. However, the current solution of
writable VMI in Exterior [13] cannot be applied to the
complex cloud environment due to the limitations of over-
head and practical usefulness. In terms of overhead, Exterior
introduces 23x overhead on average for the introspection
tools compared with the same tools running inside the
guest OS, which causes a substantially longer response time
for introspection, thus making it unable to achieve real-time
monitoring. Without real-time monitoring, Exterior will most
likely fail to respond to short-lived events, such as ephemeral
malicious processes.

In terms of practical usefulness, on the one hand, mod-
ern cloud applications typically span across multiple VMs,
thus requiring a distributed application-level monitoring view
across system boundaries [15]. However, Exterior cannot
achieve cross-node monitoring, which means that it cannot
monitor VMs that run on different host machines. Thus,
Exterior cannot provide a more accurate and holistic monitor-
ing view of VMs and applications to offer centralized cloud
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management. On the other hand, the monitoring program exe-
cuted in Exterior cannot monitor the monitored VMs that run
different guest OSes from the monitoring VM, which means
that the guest OS of the monitoring VM must be exactly the
same as the guest OS of the monitored VM. However, a cloud
deployment typically contains large amounts of VMs that
run heterogeneous OSes. Therefore, in Exterior for example,
in the case that a host runs ten guest VMs with different OSes,
the administrator has to create ten monitoring VMs to monitor
these guest VMs, which is too impractical to be applied to
cloud management.

To address the aforementioned concerns, we introduce
CloudVMI, a writable and cross-node monitoring framework
for the cloud. CloudVMI solves the semantic gap prob-
lem by using a system call (syscall for short) redirection
mechanism, which redirects the execution of key syscalls
issued by the introspection process into a process inside
the monitored guest VM. Inside the monitored guest VM,
the code of the guest OS will be reused to executed redirected
syscall as usual. Since the syscall interface in different OSes
is backward compatible, CloudVMI supports the introspec-
tion program in inspecting VMs with different guest OSes,
which greatly improves the generality of VMI tools. More-
over, CloudVMI uses network communication to transfer
the redirection syscall request; thus, it can achieve cross-
node monitoring. However, CloudVMI is architecturally not
sufficiently secure because it faces some security threats
due to the reuse of the code in the untrusted guest OS.
To ensure the security of CloudVMI, we analyze all potential
security threats and implement some protective measures to
defend against them. To further highlight the capabilities of
CloudVMI, we develop four applications based on its proto-
type for automated cloud management.

In summary, we make the following contributions in this
paper:

o We develop CloudVMI, which is a writable and cross-
node virtual machine introspection framework, by redi-
recting the key syscall execution of the monitoring
program into the process inside the monitored
guest VM. CloudVMI has two merits compared with
existing writable VMI techniques: lower overhead and
practical usefulness, including strong generality and the
capability of cross-node monitoring.

« We analyze all potential security threats in CloudVMI,
and we implement some effective protection measures to
defend against these security threats based on memory
protection and consistency checking.

o We build four practical applications based on CloudVMI
to demonstrate automated cloud management and cloud
analytics, including rootkit detection and recovery,
network topology discovery, real-time resource monitor-
ing, and virus file scanning.

o« We have implemented the entire system prototype
based on the Linux kernel and KVM virtualization
platform. We have performed an empirical evaluation
based on legacy Linux utilities. The experimental results
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demonstrate that CloudVMI is effective and practical
and that it only introduces a negligible performance
overhead.

The remainder of this paper is organized as follows.
Section II presents related work. Section III describes the
system overview of CloudVMI. Section IV elaborates the
detailed design of CloudVMI. Section V describes the appli-
cations implemented to demonstrate CloudVMTI’s capability.
Section VI presents the evaluation results. Section VII dis-
cusses the limitations of our work. Section VIII presents the
conclusion.

Il. RELATED WORK

The concept of VMI was first proposed in the Livewire [4]
system, which can monitor the memory state and register
state of a guest OS from the outside. XenAccess [16] was
developed as the monitoring library for the Xen hypervisor,
which can be used to monitor the memory state and disk state
of guest VMs with Linux and Windows kernels. LibVMI [10]
was designed to make the VMI tools work across multiple
virtualization platforms (e.g., Xen and KVM) to monitor
guest VMs with Linux and Window kernels. However, Lib-
VMI fails to support the functionality of disk introspection;
thus, introspection tools, such as 1s and df, cannot be
provided based on it. All of these works require detailed
pre-knowledge (i.e., memory layout) of a guest OS before
introspection, which means that updating or patching a guest
OS will make existing monitoring be incompatible.

Rather than requiring the detailed pre-knowledge of a
guest OS, Virtuoso [11] captures the internal syscalls of a
guest OS or instructions of the application in a guest OS to
generate a VMI program that can run outside of the monitored
VM to realize the same function as internal procedures in the
guest OS. Process out-grafting (Pog) [17] migrates a suspect
process from a guest VM to a trusted VM, in which a legacy
security tool (e.g., st race) is used to monitor the behavior
of the migrated process. Process implanting (PI) [18] injects
a process execution into a monitored VM, in which the
execution result of the injected process will be fed back to
a trusted VM. VMST [12] and Exterior [13] redirect key
kernel data accesses to the kernel memory of the monitored
VM, by which the legacy utilities, such as ps and 1smod,
can be directly used as the introspection tools without any
modifications. Specifically, Exterior first proposes and imple-
ments a writable VMI framework. All of the above works
have bridged the semantic gap without any pre-knowledge
of guest OSes, but all of them introduce significant overhead
and cannot monitor guest VMs that run on different host
machines. Moreover, certain works lack generality.

Recently, two systems, HYPERSHELL [19] and Shadow-
Context [20], have been proposed to bridge the semantic gap
via the syscall redirection technique. Both of these systems
introduce less overhead and can monitor VMs with hetero-
geneous OSes. However, HYPERSHELL is only used for
single VM management from the outside in an automated
manner, and it cannot be used for any security-related VMI
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applications due to the lack of any security protection mea-
sures. Conversely, ShadowContext is secure enough to defend
against some real-world attacks based on some defensive
measures. However, it can provide neither the capability of
writable VMI nor disk introspection. Moreover, neither of
these systems can monitor VMs distributed on different host
machines.

Compared to current VMI techniques ([4], [10]-[13],
[16]-[20]), CloudVMI is more suitable for automated cloud
management due to its writable capability and practical
usefulness.

Ill. SYSTEM OVERVIEW

A. MAIN IDEA

The primary goal of our work is to offer a writable and cross-
node VMI framework with lower overhead for automated and
centralized cloud management. With CloudVMI, we achieve
this goal by redirecting the execution of the key syscall issued
by the introspection process into the monitored VM, which
can solve the semantic gap problem. Since VMM has the
highest privilege that controls all virtualized hardware of the
guest VM, it can force a guest OS to execute any syscall when
the VM exits.

With syscall redirection, an introspection process will be
initialized in a monitoring host machine, with part of its
syscall execution being redirected into the monitored VM,
which can be located on the same host as the monitoring
host or on a different host. Thus, the introspection process will
be executed across two process contexts, with one in the mon-
itored VM and the other in the monitoring host machine. The
introspection process itself will only execute those syscalls
that will not contribute to the inspection of a guest state or the
update of a guest state. In contrast, the syscalls that are critical
to the inspection and update of a guest state will be redirected
into the monitored VM.

In addition, since the syscall interface in different OSes
is backward compatible unless it is intentionally made
different [21], the VMI tool executed in CloudVMI can
monitor heterogeneous OSes as long as this VMI tool is
compatible with these OSes. Therefore, CloudVMI has high
generality of monitoring, which greatly improves the practi-
cal usefulness of VMI tools. Furthermore, in the Linux sys-
tem, the legacy native utilities (e.g., ps, lsmod, uname)
are implemented based on a series of syscalls. Thus, these
legacy programs can be reused as the introspection tools
executed in CloudVMI without any modifications. This reuse
of legacy programs will greatly improve the efficiency of
monitoring and reduce the difficulty of developing VMI
programs.

Figure 1 shows a holistic monitoring architecture to illus-
trate how CloudVMI achieves the aforementioned goal of
cross-node monitoring. As shown in Figure 1, there are a
monitoring host machine with the monitoring controller mod-
ule and the global hash table and two remote host machines
that host the monitored VM. Inside the monitoring host
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FIGURE 1. Cross-node monitoring architecture for cloud.

machine (MHM), the administrator can run a VMI program to
monitor any target VM even though this VM runs on a remote
host machine (e.g., HM1 and HM2).

As shown in Figure 1, MHM will build a communication
channel with any monitored host machine via the monitoring
controller to transfer the syscall redirection message and cor-
responding parameters. For instance, when the administrator
needs to monitor guest VM1 that runs on HM1, a communi-
cation channel will be built between MHM and HM 1. Then,
through the global hash table that contains the location infor-
mation about guest VMs in the cloud, a VM can be selected
as the monitored VM. Finally, the administrator can run an
introspection program to monitor this remote VM. Therefore,
with the monitoring controller in MHM, the administrator
can monitor those VMs that are distributed on remote host
machines, thereby achieving cross-node monitoring.

Assumption: In the CloudVMI architecture, we only focus
on the x86 architecture and Linux OS with kernel-based
virtual machine (KVM) hypervisor. Additionally, we assume
that the monitoring host machine, the host machines except
the VMs hosted by them, and the VMM are trusted. To ensure
correct syscall execution in different versions of Linux ker-
nels, we further assume that the syscall interface cannot be
intentionally made different, which means that all guest OSes
have a compatible syscall interface. In addition, our architec-
ture needs to rely on a process inside the monitored VM to
execute redirected syscalls, and some code will be injected
into the monitored VM from the VMM. Thus, we assume
that cloud tenants will not reject the code injection from
the VMM.

B. SYSTEM ARCHITECTURE

The detailed architecture of CloudVMI is shown in Figure 2.
CloudVMI consists of six components: monitoring controller,
re-syscall selector, monitored VM selector, re-syscall redi-
rection, re-sys process builder, and security defense. All the
components are not inside the guest OS; thus, there is no need
to modify the code of the monitored guest OS. Consequently,
CloudVMI achieves full transparency [22].

VOLUME 5, 2017

Monitored VM

User

Space User

Space  Re-sys Process User Process

-
?
-

VMI Process

Q
Monitoring |
(ps)

Controller

Global
Hash Table

Library
Space

¢

Re-Syscall
Redirection

Security Re-sys Process
Defense Builder

Monitored
VM Selector
VMM

Host Machine ‘

Re-Syscall
Selector

Space

Kernel ‘

Monitoring Host Machine

FIGURE 2. System architecture of CloudVMI.

The monitoring controller and re-syscall selector are
located in the monitoring host. The former controls the mon-
itoring of VMs within the cloud such that CloudVMI can
achieve the goal of cross-node monitoring in the cloud. The
latter intercepts each syscall of an introspection process and
redirects certain important syscalls to the target monitored
VM determined by the monitoring controller.

The remainder of these components are located in the
KVM on the monitored host. The monitored VM selector
records and synchronizes all VMs’ information in each mon-
itored host to the global hash table inside the monitoring host,
and it will build a communication channel with the monitor-
ing host when the monitoring controller has selected a target
VM that is hosted in it. The re-sys process builder selects a
process inside the guest OS as a re-sys process to execute a
redirected syscall and feed back the execution results to the
introspection process. re-syscall redirection prepares related
redirected syscall parameters and injects a syscall into the
re-sys process to start syscall execution. Security defense
defends against all security threats to ensure the security
of syscall execution and the reliability of the introspection
results. The detailed description of these components will be
provided in Section IV.

When the cloud administrator wants to monitor a guest
VM that runs on the remote host machine, before a VMI
starts to run on the monitoring host, the administrator needs to
leverage the re-sys process builder to select and initialize the
re-sys process inside each monitored VM. Then, the admin-
istrator can determine any target VM through the monitor-
ing controller and the monitored VM selector. Subsequently,
a communication channel between the monitoring host and
monitored host will be built to transfer the syscall redirection
request and syscall parameters. Finally, the administrator can
run an introspection program in the monitoring host to moni-
tor the target VM. The execution of the redirected syscall will
be accomplished in the re-sys process that has been selected
inside the target VM. There are five steps involved in a syscall
redirection:
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Step 1 When a syscall of the introspection process enters the
library space of the monitoring host OS, the re-syscall
selector will intercept this syscall. If this syscall
does not need to be redirected, it will be directly
trapped in the kernel space of the monitoring host OS.
Otherwise, the re-syscall selector transfers the syscall
number and the related parameters to the remote
host through the communication channel built by
the monitoring controller. Then, the introspection
process suspends execution in the monitoring host
until the redirected syscall finishes execution in the
target VM.

Step 2 Inside the remote VMM, re-syscall redirection lis-
tens for the syscall redirection request. Once the
re-syscall redirection receives a syscall redirection
request from the monitoring host, including the cor-
responding syscall number and parameters, it will
prepare the syscall data for the re-sys process inside
the monitored VM by assigning these parameters to
the corresponding CPU registers.

Step 3 Before the re-sys process starts to execute in the target
VM, security defense secures the execution of the
re-sys process. Then, the re-sys process is trapped in
the kernel space of the monitored guest OS to execute
the redirected syscall based on the transferred syscall
number and parameters.

Step 4 During the execution of the re-sys process, if any
kernel state update occurs to the guest OS, the re-sys
process will directly update its kernel memory. If any
user-space state update occurs, re-syscall redirection
will transfer this updated syscall data back to the
monitoring host based on the built communication
channel.

Step 5 After syscall finishes execution in the monitored VM,
re-syscall redirection transfers the message and
updated syscall data back to the monitoring host to
resume the execution of the introspection process in
the monitoring host. Then, the introspection process
continues its execution in the monitoring host OS.

TABLE 1. Security threats.

Surface Attack Vector | Attack Method
Code Modify the injected code
User Space Data Tamper with the buffer
Control Flow Use ptrace to hook syscalls
Code Break the kernel image
Kernel Space Data DKSM and DKOM
Control Flow Hook the syscall

C. THREAT MODEL

We assume that all host OSes and VMM s in the cloud are
trusted; however, the monitored guest VM is untrusted, which
will face a variety of real-world security threats. Thus, the
re-sys process executed in an untrusted VM will be inse-
cure, which will directly affect the security of CloudVMI.
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Table 1 summarizes the attack surface in our threat model.
As shown in this table, all security threats can mainly be
divided into the two following categories.

1) USER SPACE

The re-sys process that runs inside the untrusted VM faces a
variety of security threats in the user space of the target VM.
First, some communication code needs to be added into the
code segment of securityTable for intercepting the exit point
of the redirected syscall execution. Thus, user-space mal-
wares could modify this code to subvert the normal execution
of the re-sys process, thereby tampering with CloudVMIL.
Second, some memory buffers will be allocated to store the
syscall parameters; thus, the malwares can manipulate the
data in this buffer to tamper with the results of introspec-
tion by overwriting the wrong data back into the buffer.
Finally, the malwares can use the pt race syscall to register
a callback to intercept the control flow of the re-sys process,
thereby subverting the introspection results.

2) KERNEL SPACE

In modern Linux OSes, all syscalls are handled inside the ker-
nel space. Thus, when a syscall executes in an untrusted VM,
it will suffer the subversion of kernel integrity, which includes
the code, control flow, and data structure. First, malicious
code can be injected by kernel rootkits into the kernel image
of the guest OS [23], which can subvert the correct execution
of the re-sys process. Second, most rootkits (approximately
96% [24]) hijack the syscalls’ control flow of existing pro-
cesses by modifying the interrupt descriptor table (IDT),
syscall table or other kernel function pointers to implement
their malicious code for hiding vicious activities. Finally,
some kernel rootkits can directly manipulate kernel data
structures (DKSM) [25] and kernel objects (DKOM) [26] to
subvert introspection, under which the introspection results
will be incorrect.

IV. SYSTEM DESIGN
In this section, we present the detailed design of the compo-
nents in CloudVMI that were introduced in Section III.

A. TARGET VM SELECTION

1) TARGET VM SELECTOR

To select any VM as the monitored target VM, we have
to know the destination address of the monitored host and
monitored VM. Thus, inside each VMM, we create a local
hash table to record such information of all VMs, including
the destination addresses of each VM and the local host
machine. This hash table will be updated in a timely manner
as the VMs are booted and shutdown. To build a communi-
cation connection with the monitoring host machine, these
VMs’ information must be transferred and synchronized to
the monitoring host machine. Thus, once anew VM is booted,
the latest local hash table will be transferred to the monitoring
host for updating the information of VMs within a cloud.
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Subsequently, when managers select a target VM in the mon-
itoring host machine, the information in the local hash table
will be used to build a communication connection between
the monitoring host and the monitored host. Then, the VMM
can further determine the target VM in the monitored host
based on the local hash table.

2) MONITORING CONTROLLER

Correspondingly, inside the monitoring host, we must know
all VMs, including local VMs and remote VMs, that run
on the different hosts. Thus, we create a global hash table
to record all VMs’ information in a cloud. The contents in
this global hash table come from the local hash table inside
each host machine. The target VM selector in each host will
timely transfer the latest data to this global hash table such
that managers can select any VM in the cloud. Before cloud
managers run a VMI program in the monitoring host OS, they
can select any VM as the target VM by accessing this global
hash table. Once the target VM is determined, the monitoring
host machine will build a communication connection with
the monitored host machine that the target VM is located on.
Immediately after the communication channel is built, a man-
ager can run a VMI program to monitor the target VM.
Moreover, this constructed communication connection will
be used to transfer the syscall redirection message and its
corresponding syscall parameters between the introspection
process and the re-sys process inside the target VM.

B. RE-SYS PROCESS BUILDER

To execute a redirected syscall inside the monitored VM,
we have to select an in-guest process as the re-sys process to
execute the redirected syscall. Although we could randomly
select a user-space process inside the monitored VM, the
re-sys process should meet two essential requirements in con-
sideration of security and practicality. On the one hand, since
the re-sys process is used to execute the redirected syscall,
it cannot be a critical user-space process. Otherwise, it would
affect the normal execution of the guest OS. On the other
hand, as discussed in Section III-C, the re-sys process could
be preempted (or traced) by a process (or pt race syscall)
with higher privilege, which would disturb the execution of
the re-sys process. Thus, we should select an unimportant
user-space process with a high privilege as the re-sys process.

As we know, an init process with PID 1 is a common
user-space process with supervisor (highest) privilege, and it
is only used during the initialization phase of the OS. Thus,
this init process meets the two requirements mentioned
above. To find the i nit process inside a monitored guest OS,
we search it by injecting a getpid syscall into the current
process in the monitored OS and inspecting the value returned
by getpid to determine whether this value is 1.

Moreover, to notify the introspection process to resume the
execution in the monitoring host, we need to intercept the
exit point of the redirected syscall in the monitored OS. For
this purpose, we inject a sensitive instruction (e.g., CPUID)
into the code segment of the re-sys process immediately after
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it has been selected. The injected instruction will cause the
guest OS to become trapped in the VMM, in which we can
simply find the exit point of the redirected syscall execution.

In addition, the re-sys process depends on the syscall
parameters from the introspection process. Thus, we need
to pass the corresponding syscall parameters to the moni-
tored VM. Moreover, when the re-sys process finishes exe-
cution, we need to transfer the updated data back to the
monitoring host if there is any memory update. For this
purpose, for the monitored VM located remotely, we allocate
ablock of buffer in the monitored OS for the re-sys process to
obtain the syscall parameters from the monitoring host. For
the monitored VM located locally, to avoid too much data
being transferred between the monitored VM and monitoring
host, we allocate a block of buffer in a shared memory to
transfer the syscall parameters between them.

However, since the virtual addresses used by the intro-
spection process in the monitoring host OS may not be the
same as the virtual addresses used by the re-sys process in
the monitored OS, we create a mapping relation between the
allocated buffer and the re-sys process’s address space. Then,
when the re-sys process needs to access a virtual address
from the monitoring host OS, it will access the corresponding
address parsed through the mapping relation.

In addition, the re-sys process runs inside an untrusted VM,
which could be attacked by malwares or rootkits. Once it is
tampered with, the introspection process will obtain incorrect
results. Thus, we must take some security measures to defend
against those attacks. The defensive mechanism is introduced
in detail in Section IV-E.

C. RE-SYSCALL SELECTOR

The key idea of CloudVMI is to redirect the syscalls of the
introspection processes in the host OS into the monitored
VM to bridge the semantic gap. We use the dynamic library
interposition technique [27] to intercept each syscall issued
by an introspection process in the library space of the mon-
itoring host OS. In this way, the administrator can enable
the functionality of introspection in the host OS by using the
LD_PRELOAD parameter for introspection tools.

Once a syscall is intercepted, CloudVMI will determine
whether this syscall should be redirected. As we know,
not all syscalls should be redirected because certain redi-
rected syscalls would inadvertently crash an in-guest pro-
cess or cause unexpected results. For example, if the execve
syscall is redirected, it will most likely change the in-guest
process image permanently. Thus, we have systematically
examined all syscalls (more than 300 syscalls in total)
to define a detailed redirection policy by modifying and
recompiling a new g1l1ic library, and we classify syscalls that
need to be redirected into the following three categories.

1) Inspection only. The purpose of introspection is only to
obtain current guest OS states and perform inspection,
such as getpid, uname, time, getuid32,
olduname, newuname and so on, which will be
redirected.
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TABLE 2. System call redirection policy.

Type System Call

Redirect Policy

time, getpid, getuid32, sync, uname,
getppid, getgid32, getegid32, getuid32, umask,

Inspection-only clock gettime, olduname, newuname, getrlimit, Redirect
g g
gettimeofday, getpriority, syslog, getxattr, lgetxattr

nice, kill, rename, setpgid, sethostname, .

Update-only settimeofday, delete _module, sysctl, route, renameat, Redirect
open, read, write, close, link, unlink, stat, fstat,

. access, ioctl, fentl, dup, dup2, symlink, readdir, fchmod, .

Mix-dependency p, CUPS, Sy Redirect

socketcall, ipc, init_module , llseek, getdents, chown, ftruncate64,
stat64, Istat64, fstat64, getdent64, fentl64, fstatatfs64, fchmodat

Others

Relation to process, memory: exit, fork, waitpid, clone,
execute, mmap, mmap2

No Redirect

2) Update only. Similar to inspection only, there are many
syscalls, such as kill, nice, sysctl, route
and so on, which can dynamically modify kernel states
of the guest OS. These update-only syscalls will be
redirected.

3) Mix-dependency. Unlike inspection only and update
only, some syscalls, such as open, write,
getdent64 and so on, form a syscall dependency
because they need to interrelate to accomplish some
operations. For instance, when a process reads a file
using a file descriptor that depends on the return value of
the open syscall, a dependency relationship is formed
between open and read. Thus, we stipulate that
any syscall interrelated with a redirected syscall must
be redirected. To trace the dependency among these
syscalls, we utilize dynamical taint tracing to taint the
result of the redirected syscalls; then, any syscall that
uses this tainted value will be redirected.

Except for the above three types of syscalls, the remaining
syscalls will be executed by the introspection process as usual
in the host. Table 2 shows this particular redirection policy.

D. RE-SYSCALL REDIRECTION

When a syscall redirection request arrives, the re-sys process
will be scheduled to execute this syscall. Before the syscall
begins executing, CloudVMI needs to build the in-guest
execution environment required by this redirected syscall.
Specifically, CloudVMI must set the corresponding values
of current registers. CloudVMI reads the syscall parameters
from the allocated buffer and assigns these values to the
current corresponding registers (e.g., setting the value of the
EAX register to the syscall number).

Subsequently, CloudVMI injects a syscall into the re-sys
process to start to execute the syscall based on the cur-
rent CPU registers. For the syscall injection, we depend on
Intel’s VT technique to inject an artificial software interrupt
(e.g., int 0x80) into the re-sys process through an event
injection from the VMM.

E. SECURITY DEFENSE

In Section III-C, we analyzed all potential security threats
in an untrusted VM. In this section, we introduce defensive
measures against those threats.
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1) USER SPACE

a: CODE INTEGRITY

A malware could tamper with the code of the re-sys process.
To defend against this attack in the user space, we leverage
the memory virtualization technique (i.e., EPT) to protect the
memory area of the re-sys process from being accessed by any
process. When the re-sys process accomplishes initialization,
we first locate its address space in EPT, and then we directly
isolate this address space by disabling the write privilege of
the code segment of the re-sys process. Compared with the
common page table inside a VM, EPT in the VMM is more
secure, and it cannot be tampered with by any in-guest attack,
even with root privilege.

b: DATA INTEGRITY

The buffer that stores the data referenced by redirected syscall
parameters could be tampered with by user-space malwares to
manipulate the execution results of the re-sys process through
rewriting data back into the buffer. However, it is very diffi-
cult for an attacker to alter the buffer. First, no malware can
alter the execution results of a redirected syscall by preempt-
ing the re-sys process because of our EPT isolation and the
highest privilege of the re-sys process. Second, the memory
location of the buffer is randomly allocated, and no malware
can locate it. Thus, the buffer is sufficiently secure even
though we do not take any protection measures.

c: CONTROL FLOW INTEGRITY

Since we select the init process with the highest priority
as the re-sys process, it cannot be preempted by any user
process, and it cannot be traced or controlled by any process.
Thus, the malwares cannot intercept the control flow of the
re-sys process by using a pt race syscall.

2) KERNEL SPACE

a: CODE INTEGRITY

To manage attacks to kernel code integrity launched by rootk-
its, we leverage the file signature to detect whether the kernel
code is broken. If a kernel is broken, then the VM will be
rebooted for reloading the guest OS with an unbroken image.

b: DATA INTEGRITY
Existing VMI frameworks are vulnerable to DKSM [25]
and DKOM [26] attacks. CloudVMI also does not have any
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effective way to defend against such attacks, which is beyond
the scope of CloudVML

¢: CONTROL FLOW INTEGRITY

Many prototype systems have been proposed to check and
protect the integrity of the static global variables of the guest
kernel, such as HyperCheck [28], ModChecker [29], and
HUKO [30]. However, these measures need the help of other
components, such as SMM (system management mode);
thus, they cannot be directly applied to our system to defend
against kernel rootkit attacks. As analyzed in Section III-C,
most kernel rootkits change the syscall control flow to imple-
ment malicious activities (e.g., hiding malicious processes)
by hijacking IDT, syscall table, or kernel function pointers.

Since the addresses related to the syscall control flow
(sys-addresses for short) are generally static [13], we design
a consistency check mechanism to compare the values of
the static sys-addresses to determine whether the syscall
control flow has been changed. First, we obtain the orig-
inal sys-addresses from the VMM layer when each guest
VM is booted, and we store them in the VMM. Then, before
the re-sys process executes any redirected syscall, the same
sys-addresses will be obtained again to compare with the
sys-addresses saved in the VMM. If any difference is found,
CloudVMI will issue warning information about the broken
syscall control flow to the introspection process after it fin-
ishes execution.

Consequently, the consistency check can reveal the correct-
ness of the introspection results, which helps the adminis-
trators discover the existence of kernel rootkits in a timely
manner. Additionally, these saved sys-addresses could be
used for rootkit intrusion recovery to ensure the security of
the monitored VM by replacing current changed addresses
with saved addresses in the VMM.

TABLE 3. Key features of applications.

Features AResponse | VScan | HMon | NTopo
Writability N N
Cross-node
Monitoring v v
Disk
Introspection v v

V. APPLICATIONS

In this section, we describe four concrete applications imple-
mented on top of CloudVMI. These applications highlight the
features of CloudVMI, including writable capability, cross-
node monitoring, and disk introspection.

In Table 3, we highlight the key features of four applica-
tions: AResponse, VScan, HMon, and NTopo. AResponse
is an application that can detect the hidden activities of the
rootkits inside the monitored VMs; in particular, it can further
automatically respond to the hidden activities without any
administrator efforts. VScan is a disk virus scanner, and it
can scan the disk file of monitored VMs from the outside.
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It can also automatically remove the virus files from the
outside without any manual operations. HMon is a cloud-
wide resource monitoring application that can monitor the
resources of VMs distributed on multiple host machines.
Thus, it can provide a more holistic view for cloud monitor-
ing. NTopo is for the discovery of network topology in the
cloud, which can discover a real-time network connectivity
between different VMs or applications.

A. AResponse

AResponse is a security application for rootkit detection and
recovery. On the one hand, it can timely discover the hidden
activities of the rootkits, such as hidden processes and hid-
den modules, inside the monitored VM. On the other hand,
when the hidden activities are discovered, AResponse will
automatically remove them from the compromised VM with-
out any administrator efforts. Compared with traditional
automated response programs that are deployed inside the
VM, AResponse has two merits. (1) It is more secure
because it cannot be tampered with by any in-guest malwares.
(2) It does not need the user login and root privilege of the
guest VM to remove the discovered rootkits, which offers
high automation.

For the monitored VM, AResponse periodically inspects
its runtime states by running the ps and 1smod utilities in
CloudVMI. When AResponse receives warning information
about a broken control flow, it will perform a cross-view
comparison between the current results and previous trusted
results to find the hidden processes and modules, respectively.
Once a hidden process is detected, AResponse will immedi-
atelyrunki11 toremove it. Similarly, when a hidden module
is detected, it also runs rmmod to remove it.

However, removing the hidden activity is just a response
and not a recovery. Most kernel rootkits hijack the syscall
control flow to hide in-guest activities by modifying the
sys-addresses. Thus, once a hidden activity is detected,
the sys-addresses will be broken (except for DKSM and
DKOM attacks). Fortunately, the original sys-addresses have
been saved in the VMM when a guest OS is booted, as dis-
cussed in Section IV-E.2. Thus, AResponse will further
recover the integrity of a syscall control flow of the monitored
VM after removing the hidden activities by replacing current
inconsistent sys-addresses with the sys-addresses saved in
the VMM.

To validate whether AResponse can discover the hidden
processes and automatically remove them from the compro-
mised VM, we first ran AResponse in the monitoring host to
monitor a VM and obtain its process list. Then, we installed
a kernel rootkit adore—ng inside this VM to hide an active
in-guest process. As shown in Figure 3, warning information
about broken control flow is shown in the current output
of AResponse, and a process with PID 1687 is included
in the previous output but not in the current output. Thus,
we can conclude that AResponse successfully discovers a
hidden process inside the monitored VM. When a hidden
process is found, AResponse will execute the kil1l utility
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Previous output of AResponse:

PID TTY TIME CMD

1 ? 00:05:59 init

2 ? 00:00:00 kthreadd
1686 pts/1 00:00:00 su
1687  pts/1 00:00:00 bash

Current output of AResponse:

PID TTY TIME CMD

1 ? 00:05:59 init

2 ? 00:00:00 kthreadd
1686 pts/1 00:00:00 su
Syscall Control Flow Has Been Broken!

FIGURE 3. Hidden process discovered by AResponse.

to remove it. To validate its effectiveness, we developed an
in-guest program kps executed inside the monitored VM to
traverse the kernel task_struct.tasks list and output
all the pids of the monitored VM. Consequently, the process
with PID 1687 is not included in the set of pids, which
proves that AResponse is effective for automatically remov-
ing the hidden process.

B. VScan

VScan is a hypervisor-level virus scanning application that
runs outside of the monitored VM. Since CloudVMI uses
syscall redirection to bridge the semantic gap, some legacy
security tools that are implemented depending on syscalls
can be executed in the monitoring host for security anal-
ysis. In fact, VScan is built over the popular open source
anti-virus project ClamAV [31]. VScan can directly execute
the clamscan utility in the monitoring host to scan files
inside the monitored VM. Compared with the traditional
ClamAV tool executed inside the monitored VM, VScan has
two unique merits. (1) VScan has a negligible impact on
the monitored VM when it is executed in the monitoring
host, which will not affect the normal running of applications
inside the monitored VM. (2) Since VScan is executed in the
monitoring host, it will not be affected by additional VMexit
caused by disk I /0. Thus, it will improve the efficiency of
virus scanning with lower overhead.

VScan further provides the capability to automatically
remove virus files based on the writable capability of
CloudVMI. Before VScan begins scanning, we can create a
scanning rule with remove arguments. When VScan finds
a virus file inside the monitored VM, it will automatically
remove this file from the compromised VM. Furthermore,
VScan can scan multiple VMs distributed on multiple host
machines, which can provide the capability of centralized
VM management for the cloud.

To validate the capabilities of virus scanning and virus
removal in VScan, we copied approximately 165 megabytes
of files with two virus files (i.e., eicar.com and
eicarcom.zip) under a test directory (e.g., /home/
test). Then, we ran the clamscan utility inside the moni-
tored VM to scan this directory. Subsequently, we ran VScan
with a remove argument in the monitoring host OS to

21970

In-VM: clamscan /home/test

/home/test/eicar.com: Eicar-Test-Signature FOUND
/home/test/eicar_com.zip: Eicar-Test-Signature FOUND

—————— SCAN SUMMARY — v
Infected file: 2

Data scanned: 145 MB
Time: 63.5 sec

VScan

/home/test/eicar.com: Eicar-Test-Signature FOUND
/home/test/eicar.com: Removed
/home/test/eicar_com.zip: Eicar-Test-Signature FOUND
/home/test/eicar_com.zip: Removed

- SCAN SUMMARY e

Time: 50.3 sec

FIGURE 4. VScan finds and removes the virus files.

scan the same directory. The result of in-VM scanning and
VScan is shown in Figure 4. Clamscan spends approxi-
mately 63.5 seconds to scan all files, and the two virus files
are both found in /home/test. VScan spends less time,
50.3 seconds, to scan all files. Moreover, VScan automati-
cally removes the two virus files found in the monitored VM,
which confirms that VScan is effective in removing virus
files from the outside based on the writable capability of
CloudVMI.

C. HMon

HMon is a real-time resource usage monitoring application
for the cloud, and it can monitor the resource usage of a
guest VM, similar to what the Linux top utility provides.
However, compared with the in-guest top utility in Linux,
HMon has two enhancements for the cloud. First, most
cloud applications typically span across multiple VMs and
host machines, thereby requiring a holistic view of resource
usage [15]. Thanks to the feature of cross-node monitoring
in CloudVMI, HMon can monitor multiple guest VMs in
the cloud. Thus, it can provide a holistic monitoring view
of resource usage. Second, HMon operates outside of the
monitored VM; thus, it can provide a VMM-level monitoring
view rather than a system-level monitoring view. For exam-
ple, it is able to know the resource usage of each VM on
the host or each process on the host. To obtain a holistic
view, we can successively calculate the resource utilization
of the host (RUH), each VM (RUYV), all VMs (RUV*), and
each process on the VM (RUPV). Then, we can calculate the
resource utilization of each VM on host (RUVH) and each
process on host (RUPH) according to RUH, RUV, RUV* and
RUPV. Equation 1 and Equation 2 show this calculation.

RUV,

RUVIH = x RUH (1)
RUV %
RUP

RUPH = x RUVIH )
RUV;

HMon monitors the resource usage of guest VMs by run-
ning legacy tools (e.g., pstree and free) to collect the
runtime states of VMs, such as the usage of CPU or mem-
ory. To achieve close-to-real-time monitoring [32], HMon
should collect these runtime states with a high frequency.
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The frequency of monitoring will influence the performance
overhead of the monitored VM. If it is too high, then it will
cause a large amount of overhead. If it is too low, it cannot
meet the requirement of real-time monitoring. Thus, we have
to make a trade-off between overhead and real-time monitor-
ing. HMon can dynamically adjust the frequency according
to the resource utilization. For instance, when CPU usage
is low, we argue that the VM is most likely secure; then,
HMon will reduce the monitoring frequency. Conversely,
when CPU usage is high, the VM may be suffering from an
attack because the malwares or intrusion will cause a drastic
increase in CPU usage. Accordingly, HMon will increase the
frequency of monitoring to achieve real-time monitoring.

top - 22:23:23 Up 6 min, 3users, Load average: 1.89, 1.22, 0.56
Tasks: 112 total, 2 runnin g, 198 sleeping, 0 stopped, 2 zombie

Cpuls): 93.1%us, 5.2sy, 0.3%ni, O0.0%id, O.Ctwa, 1.3hi, 0.0%si, 0.0%st
Mem: 1034528k total, 236868k used, 797660k free, 31456k buffers

Swap: 901112k total, ok used, 901112k free, 11938tk cached

PID USER PR NI VIRT RES SHR S %CPU SMEM  TIME COMMAND

1 root 20 € 20% 715 620 R83.7 0.1 4:37.16 irit
839 root 30 1€ 1708 732 544D 4.6 0.1 0:04.23 updatech.mlocat
2001 root 20 26284 1415340 S 4.3 1.5 0:25.13 Xerg

1675 xgp 20 78872 11n8824 5 3.1 I.1 0:05.11 grome-terminal

Mem: 1034528k total, 236620k used, 797908k free 31236k buffers
Swap: 961112k total, ok used, 901112k free

USER PID %CPU ¥MEN ~ VSZ  RSS TTY
root 166.6 0.6 2036 716 ?
root 1839 6.3 0.6 1708 732 7 RN  03:22 0:04 /usr/bin/updatadb.mlocate

root 1001 6.3 1.4 21864 15344 tty7 Ss+ 03:16  0:25 /usr/bin/Xorg :0 -br -verbose -audit © -novtsw
itch -auth /var/run/gdm3/auth-for-Debian-gdm-UpyylUy/database -nolisten tcp vt7

xgp 1614 2.8 1.5 97320 16504 ? S 03:17 0:10 nautilus

xgp 1675 1.6 1.1 78872 11436 ? SL  03:18 0:05 gnome-terminal

STAT START  TIME COMMAND
Rs  ©3:16  4:37 init [2]

FIGURE 5. Above: in-VM top; Below: HMon.

Figure 5 shows the execution result of HMon compared to
the result of in-VM top in the same VM. As shown, the out-
put between in-VM t op and HMon is almost identical, which
proves that HMon is effective.

D. NTopo

NTopo is a cloud-oriented network topology analyzer of
VMs or applications, and it can discover the network connec-
tivity across VMs running on multiple host machines within
a cloud or across applications running on multiple VMs.
Compared with traditional network monitoring tools based
on SNMP, which require the agent to be deployed inside the
monitored VM, NTopo is executed outside of the VM with-
out the need of an inside agent, which is non-invasive and
sufficiently secure because it will not face the attack threats
caused by in-VM malwares. Based on the network topology
provided by NTopo, we can further offer other potential use
cases, such as managing and optimizing network connectivity
and locating and solving network problems [33].

For each VM in the cloud, NTopo extracts the information
of per-process network connection by running legacy net-
work management utilities (e.g., net st at). This connection
information mainly contains the socket type and state and
the source and destination IP addresses. As NTopo traverses
all VMs, the entire network status information is collected,
and NTopo will further handle the collected states to generate
the network topology. In addition, NTopo further extracts
counts of received, transferred, and dropped messages to
discover network traffic statistics for each VM.
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To validate the capability of network topology discovery
provided by NTopo, we constructed 4 test VMs on different
host machines. These VMs include (1) a logServer VM, which
stores the logs from a remote log client; (2) a logClient VM,
which produces logs and sends local logs to the logServer VM
based on the rsyslog service; (3) a localLog VM, which
only produces logs and stores them in the local database;
and (4) a logAnalyzer VM, which obtains and analyzes logs
from the other three VMs based on the httpd service.
Then, we ran NTopo in the monitoring host to discover the
network connection between these 4 VMs. Figure 6 shows the
network topology generated by NTopo between these 4 VMs.
As shown, NTopo discovers all the network connections
among these VMs.

i
rsyslog rsyslog |
|
I
httpd httpd :
Wl j

i
! :
i httpd httod 1
| i

LogAnalyzer VM Loglocal VM

FIGURE 6. Discovery of network topology.

VI. EVALUATION
We have performed an empirical evaluation of our Cloud-
VML In this section, we report our experimental results. All
of our experiments were performed on an Intel (R) Core i5
2.40 GHz CPU with Intel hardware virtualization support and
8 GB of memory.

Below, we present four aspects of the evaluation results.
First, Section VI-A describes the effectiveness of CloudVMI
in terms of its unique capabilities of writable and cross-node
monitoring. Section VI-B presents the performance impact
to the VMI programs by comparing the overhead of the VMI
applications using CloudVMI with the same programs exe-
cuted inside the monitored VM and the overhead comparison
between CloudVMI and LibVMI. Moreover, this section also
presents the performance impact caused by CloudVMI on the
monitored VM. Section VI-C shows the practical usefulness
of CloudVMI by running a VMI tool to monitor multiple
VMs with different guest OSes distributed on multiple hosts.
Finally, Section VI-D presents the security of CloudVMI.

A. EFFECTIVENESS

In this section, we evaluate the effectiveness of CloudVMI
to determine whether it can construct the in-VM semantic
view from the outside. Since native Linux system utilities
can be used as introspection tools without any modifica-
tion, we selected 14 typical native tools (shown in Table 4)
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TABLE 4. Effectiveness evaluation of CloudVMI. Local-VM means that the
monitored VM is located on the monitoring host. Remote-VM means that
the monitored VM is located on the remote host.

Categories Utilities | Local-VM | Remote-VM
ps v v
uname -a v v
Ismod v v
free Vv vV
Read-only netstat v v
iostat Vv Vv
vmstat v v
date v v
mpstat Vv Vv
rmmod Vv vV
route v v
Writable sysctl v v
nice Vv vV
hostname v v

as the benchmarks. To highlight the writable capability of
CloudVMI, we classified these programs into two categories:
one is Read-only, which can only inspect the state of
the monitored VM, and the other is Writable, which can
update the state of the VM. In addition, to examine whether
CloudVMI can monitor the remote VMs that run on different
hosts, we used these native tools to monitor the Local-VM
that is located on the monitoring host and Remote-VM that is
located on a different host from the monitoring host.

The concrete experiments were performed through the
following steps. First, we ran each native program inside
the monitored Local-VM and Remote-VM. Then, the same
tool was immediately executed in the monitoring host OS
using CloudVMI to monitor the Local-VM and Remote-VM.
Finally, we compared the two pairs of results of the same suite
of tools (i.e., Local-VM vs host and Remote-VM vs host) and
checked whether they are the same in regards to semantics.
As shown in Table 4, CloudVMI successfully constructs the
in-VM semantic view from the outside.

B. PERFORMANCE OVERHEAD

Since the execution of an introspection process in CloudVMI
will be divided into two process contexts, the introspection
process itself in the monitoring host OS and the re-sys process
in the monitored VM, we have to test two aspects of perfor-
mance overhead. The first is the overhead of the introspection
tools executed in the monitoring host. The second aspect is
the performance impact to the monitored VM. We present
these two types of overheads.

1) OVERHEAD OF THE INTROSPECTION TOOLS
In this experiment, we reused the native tools selected in
4 to test the overhead imposed by CloudVMI. Specifically,
we used the gettimeofday function to retrieve a wall-
clock time with microsecond accuracy. To improve the accu-
racy, we ran each of them 100 times in the monitoring host
and monitored VM to respectively compute the average exe-
cution time and performance slowdown.

We first ran these native programs inside the monitored
VM and calculated the average execution time. Then, we also
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ran these programs in the monitoring host using CloudVMI
to monitor a Local-VM that ran on the monitoring host and
a Remote-VM that ran on a different host to calculate the
average execution time.

As shown in Table 5, CloudVMI introduces approximately
2.51x overhead on average when it is used to monitor the
Local-VM and approximately 7.19 x overhead when it is used
to monitor the Remote-VM. This overhead mainly comes
from the following two aspects. The first is the data exchange
and synchronization between the monitoring host and mon-
itored VM, and the second is the consistency check before
the re-sys process executes each redirected syscall. We can
find that the overhead of native programs when monitoring
Local-VM is considerably less than the overhead when mon-
itoring Remote-VM. The main reason for this result is that
CloudVMI uses the shared memory rather than the commu-
nication channel to transfer the syscall parameters. Although
CloudVMI introduces approximately 7.19x overhead when
it monitors Remote-VM, the execution time spent by Cloud-
VMl is in milliseconds. Compared to the time (approximately
6 seconds to list processes) spent in Virtuoso [11], the over-
head of CloudVMI to native programs is negligible.

To further explain that the impact introduced by CloudVMI
to native programs is acceptable for the cloud, we use the
VMI tool LibVMI [10], which is the most commonly used
VMI tool, to compare the performance impact to native pro-
grams. Since LibVMI cannot be used to monitor the VM that
runs on a different host, we ran two typical VMI programs
(i.e., vmi_process_list, vmi_module_process)
provided by LibVMI itself to monitor a local VM. Addi-
tionally, we ran corresponding native programs (i.e., ps,
1smod) in the monitoring host using CloudVMI to mon-
itor the same local VM. Table 6 shows the results of
LibVMI and CloudVMI, and as shown, CloudVMI has
almost the same overhead as LibVMI when running ps and
vmi_process_list. However, LibVMI spends approxi-
mately 2.5 seconds to run vmi_module_1ist, but Cloud-
VMI only spends 1.138 milliseconds to run 1smod, which
has considerably less overhead compared to LibVMI. Thus,
this experimental result demonstrates that our CloudVMI is
acceptable for the cloud due to the low overhead.

2) PERFORMANCE IMPACT ON THE MONITORED VM

The performance impact on the VM falls into two scenarios.
The first is to select and initialize the re-sys process before the
redirected syscall is executed, which is called redirection ini-
tialization. The second is the redirected syscall execution that
occurs in the re-sys process, which is called redirection exe-
cution. These two phases inevitably introduce a performance
penalty to the running workloads at the monitored VM.
Thus, if the monitored VM is not running during either the
redirection initialization phase or the redirection execution
phase, there will not be any performance overhead, which
is called native VM. To quantify the overhead from these
two scenarios, we used the standard micro-benchmarks and
macro-benchmarks to measure the overhead. We ran these
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TABLE 5. Overhead using CloudVMI. Native Program stands for the average execution time inside the monitored VM. Local-VM stands for monitoring
local VM located on the monitoring host. Remote-VM stands for monitoring remote VM located on a different host.

Utilities Native Program (ms) | Local-VM (ms) | Slowdown(X) | Remote-VM (ms) | Slowdown(X)
ps 7.685 24.862 2.24 121.193 14.77
uname 0.102 0.254 1.49 0.708 5.94
Ismod 0.186 1.138 5.12 1.839 8.89
free 0.067 0.427 5.37 0.969 13,46
netstat 11.882 25.089 1.11 50.724 3.27
iostat 0.862 4.065 3.72 10.860 11.60
vmstat 0.280 1.184 3.23 2.704 8.66
date 0.265 0.345 0.30 0.682 1.57
mpstat 0.483 3.137 5.49 4.023 7.32
rmmod 0.289 0.500 0.73 1.050 4.19
route 1.192 1.552 0.30 10.355 7.69
sysctl -w 0.016 0.022 0.38 0.034 1.13
nice 0.090 0.276 2.07 0.749 7.32
hostname 0.050 0.231 3.62 0.742 4.84

2004

1/} Redirection Initialization
[E%5%2 Redirection Execution

1509 ¢

100

Performance Overhead (%)

50

FIGURE 7. Test result of micro-benchmarks.

TABLE 6. The overhead comparison of VMI programs between CloudvVMI
and LibvMmI.

Framework VMI Tool Time(ms)
. vmi_process list 23.084
LibVMI vmi_ module Iist 2531.764
ps 24.862
CloudVMI Tsmod .38

benchmarks during redirection initialization and re-process
execution, and we calculated the performance slowdown by
comparing the execution time running during redirection ini-
tialization and redirection execution with the execution time
running during the timespan of the native VM.

a: MICRO-BENCHMARKS
To evaluate the primitive-level performance slowdown,
we used LMBench, which is a micro system perfor-
mance evaluation tool in bandwidth and response time.
We mainly focused on the overhead of the process cre-
ation (fork proc),C library function (sh proc), context
switches (ct xsw), I/O-related operations (File Create),
and memory-related operations (e.g., bcopy and Mem
read).

As presented in Figure 7, for the redirection initialization
phase, the large overhead primarily comes from the intercep-
tion of the getpid syscall. However, this overhead cannot
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affect the monitored VM. In contrast, for the redirection
execution phase, it introduces considerably less overhead
because there is no syscall interception.

b: MACRO-BENCHMARKS

We used four real-world workloads to quantify the per-
formance slowdown at the macro level: bzip, kbuild,
memcached and Apache.

Redirection Initialization
100+ Redirection Execution

804

60

_
Z
'

Performance Overhead (%)

Lk

bzip kbuild memcached Apache

FIGURE 8. Test result of macro-benchmarks.

As presented in Figure 8, for the redirection initialization
phase, the overhead mainly comes from the frequent VMex it
caused by the getpid syscall interception. Hence, the work-
loads that include numerous I/O operations such as kbuild,
memcached, and Apache will incur relatively large over-
heads. Regardless, the overhead with the maximum value
of 89% in the case of memcached will not significantly
affect the normal operation of the monitored VM. In contrast,
during the redirection execution phase, all workloads have
substantially less overhead because of less VMexit.

C. PRACTICALITY

In this section, we examine whether CloudVMI can be used to
monitor multiple VMs with heterogeneous OSes even though
these VMs run on different host machines. We used 4 physical
nodes, including one monitoring host, and two VMs on each
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TABLE 7. Test result of the generality.

Linux Distribution | Kernel Version | Succeed?

Ubuntu 9.04 2.6.28-11 v
Ubuntu 12.04 3.2.30 N
openSUSE 11.4 2.6.37.1 v
openSUSE 12.1 3.1.0-1.2 v
Debian 5 2.6.26-1 v
Debian 6 2.6.32-5 v
CentOS 4 2.6.9-89 v
CentOS 5 2.6.18-308 v

host (i.e., 8 VMs in total). Each VM ran heterogeneous guest
OSes, most of which are the mainstream Linux distributions,
including Debian, openSUSE, CentOS, and Ubuntu. Then,
we ran a native program (e.g., ps) in the monitoring host
OS using CloudVMI to monitor these monitored VMs. The
test result is presented in Table 7, and as shown, CloudVMI
is completely compatible with all of the guest OSes. Thus,
because the syscall interface is seldom changed, CloudVMI
has high generality, and it is practical to be applied in cloud
environments.

D. SECURITY

As described in Section ITI-C, CloudVMI faces some security
threats from the user space and kernel space of the moni-
tored VM. To evaluate the security properties, we constructed
one user-space malware and some kernel rootkits to simulate
potential attacks.

1) USER-SPACE MALWARES

In the user space, we attempt to use the ptrace syscall
to trace the execution of the re-sys process for overwriting
the code injected into the re-sys process. The experimental
result indicates that this operation is not allowed, and the
code of the re-sys process cannot be changed. The reasons
for this result mainly include two aspects. The first is that
the re-sys process has the highest privilege that cannot be
allowed to be traced or intercepted by the ptrace syscall
(e.g., PTRACE_SYSCALL). The second is our EPT isolation
mechanism that can defend against any modification to the
memory pages of code segment. Thus, CloudVMI is suffi-
ciently secure to defend against all user-space malwares.

2) KERNEL ROOTKITS

Most of the kernel rootkits hijack the syscall control flow by
hooking the static kernel function pointers, including IDT,
syscall table or other function pointers. In Section V-A, our
consistency check mechanism can help AResponse discover
the kernel rootkit and hidden process. In this experiment,
we further took 7 common kernel rootkits and tested them
with our consistency check mechanism. Not surprisingly,
as presented in Table 8, the consistency check performs
incredibly well, and it can successfully discover the control
flow of a broken syscall, which means that CloudVMI can
discover kernel rootkits and the control flow of syscalls in
a timely manner. Thus, CloudVMI is also secure to defend
against kernel rootkits.
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TABLE 8. Rootkit detection with the consistency check mechanism

Rootkit Target Attack Object | Succeed?
Synapsys Hooking Syscall table v
suckit-2 Hooking Syscall table v
kbdv3 Hooking Syscall table Y
kbeast-v1 Hooking Syscall table Y
override Hooking Syscall table vV
hookswrite Hooking IDT table vV
int3backdoor | Hooking IDT table vV

VII. DISCUSSION AND LIMITATIONS

Although CloudVMI can successfully bridge the semantic
gap to offer the writable and cross-node VML, it still has some
limitations.

First, we have assumed that the syscall interface in the
monitoring host and monitored VM is backward compatible.
If there is any difference in the syscall interface between
them, CloudVMI will be invalid. For instance, if a monitored
VM uses a randomized syscall interface [21], then the redi-
rected syscall issued by the introspection process will not be
executed correctly by the re-sys process inside the monitored
VM because of the different syscall number. Rather, we can
perform a syscall translation between the monitoring host
and monitored VM even though they have different syscall
interface, and this would be a future work.

Second, we inject a getpid syscall from the VMM into
a guest VM to select the init process as the re-sys process.
However, this operation produces two side effects to the mon-
itored VM. On the one hand, CloudVMI cannot be executed
until the re-sys process is selected and completes the initial-
ization; thus, this initialization phase will increase the startup
time of CloudVMI and introduce a performance impact on
the monitored VM. On the other hand, some communication
code needs to be injected into the re-sys process during the
initialization phase, which increases the scope of malware
attack in the user space. By contrast, there is a better choice
to select a kernel thread inside the monitored VM rather than
a user-space process as the re-sys process.

Third, CloudVMI can only monitor VMs with the Linux
kernel. In other words, when the monitoring host or moni-
tored VM run another OS (e.g., Windows), CloudVMI will be
invalid. Thus, to monitor VMs with Windows is considered as
a future work.

Finally, we have implemented some security defense mea-
sures to defend against most security threats in the user space
and kernel space of the monitored VM. However, we still do
not have any measure to detect and defend against DKOM
and DKSM attacks, and both of them threaten the security of
CloudVMI and affect the results of VMI. How to effectively
defend against DKOM and DKSM attacks is also considered
as a future work.

VIil. CONCLUSION
We propose CloudVMI, a writable and cross-node monitor-
ing virtual machine introspection framework, in which the
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semantic gap is bridged via the syscall redirection. CloudVMI
can be used to monitor multiple VMs with heterogeneous
OSes even though these VMs run on different hosts, and it
further provides a writable VMI capability that can update the
state rather than only inspect the state of the monitored VM.
Thus, CloudVMI is suitable for centralized and automated
cloud management. Moreover, it is sufficiently secure to
defend against a variety of attacks. We also built four typical
applications on top of our prototype, namely, AResponse,
VScan, HMon and NTopo, which highlight the features of
CloudVMI. We evaluated CloudVMI in terms of effective-
ness, overhead, practicality, and security. The experimental
results demonstrate that CloudVMI introduces acceptable
overhead for the introspection tools and has less performance
impact on the monitored VM.
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