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ABSTRACT To simulate the complex behavior of power systems, operators frequently rely on models. The
task of model identification and validation becomes important in this context. The validity of the models
has a direct influence on operator’s decisions and actions. In other words, erroneous or imprecise models
lead to erroneous predictions of the systems’ behavior which may result in unwanted operator’s actions.
This paper addresses the challenge of model structure choice for modeling and parameter identification
in power systems. Three types of model structures are analyzed: 1) physical principle-based modeling;
2) black-box modeling (NARX, transfer function, Hammerstein–Wiener model); and 3) combination of
physical and black-box modeling. This analysis has been performed using real grid measurements and
available knowledge about a static VAR compensator (SVC) connected to the U.K.’s transmission network
and operated by National Grid. The SVC’s modeling is presented in the context of a generalized modeling
and identification algorithm, that is offered as a guideline for engineers. The model validity issues of the
identified SVC models that include modeling uncertainty are discussed.

INDEX TERMS Black-box model, identification, model structure selection, parameter estimation, power
system modeling, static VAR compensator.

I. INTRODUCTION
A. MOTIVATION
Mathematical modeling and parameter estimation of electric
power grid components are important for power system oper-
ators [1]. An operator’s ability to predict large blackouts [2]
becomes a challenge when the models of real power system
components contain uncertainties or deviations from their
actual (real) observed behavior. This challenge is due in
part by the complexity power system components, such as
those of controllers and power electronic devices (e.g. Static
VAR Compensator (SVC)). An SVC [3], [4], which is com-
prised by a controlled combination of discretely and continu-
ously switched VAR sources, introduces complex non-linear
dynamics. A SVC’s dynamic transient response may contain
unknown nonlinearities that are created by automated switch-
ing. In addition, the structural ambiguity of SVC appears due
to the manufacturers secret ‘‘know-how’’.

Any lack of knowledge about the system has to be com-
pensated by using mathematical data-based modeling, fol-
lowing the system identification cycle that is shown in Fig. 1.

The system identification cycle deals with a problem of build-
ing a mathematical model based on the available information
about the system.

The two main parts of the cycle are defined by: (1) deci-
sions made by computer, and (2) decisions made by the engi-
neer (Fig. 1), where the most challenging step is the model
structure choice. The chosen model’s structure will predefine
what properties of themodel can be identified (frommeasure-
ments) and what behavior can be reproduced (by simulation).

Methods of model structure selection and parameter iden-
tification can be generally classified into two groups:

1) Physical principle-based modeling [3], and
2) Black-box mathematical modeling [6]–[8].
The physical principle-based modeling approach is well

established in power system modeling. It is generally con-
sidered as more reliable due to its ability to reproduce the
physical behavior of the system. However, with the advent
of digital systems in control of physical processes, the power
system components are governed by a combination of phys-
ical laws and control flows. Such components introduce
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FIGURE 1. System identification cycle: computer’s tasks (black) and
engineer’s tasks (blue) [5].

additional complex nonlinearities to the overall system. Thus,
an engineer has to create a model that is sufficiently rich to
reproduce such complex behavior. The families of flexible
mathematical models that have no physical interpretation, but
aim to describe input-output relationships of the system, are
known as black-box models [6].

B. LITERATURE REVIEW
Among the many identification studies in power systems,
the most relevant ones, that have been performed for SVC
modeling, are summarized next. Authors in [9] present exam-
ples of transfer function identification including an SVC
using the Prony TFI method. However, in comparison to our
work, model order selection is not considered, meaning that
the model structure is predefined in [9]. In contrast, our work
addresses model order selection explicitly.

Seminal works have been pursued for SVC optimal control
design using fuzzy logic-based algorithms [10], [11], and
the tuning of its control parameters, considering predefined
model structures [12], [13]. The nonlinear approximator used
in these works is based on number of heuristic rules. The
fuzzy logic-basedmodeling and identification requires tuning
of fuzzy rule structure, and more attention to the ‘‘curse
of dimensionality’’ problem is necessary that may be chal-
lenging for practicing engineers [14]. The methods that are
presented in the proposed work do not experience such diffi-
culties, as they do not depend on heuristics.

Advanced first principle-based models were developed
using measurements and physical SVC characteristics
in [3], [15]–[19]. The latter is possible only when com-
plete or nearly-complete knowledge about the system
(including an access to experiment design and exhaustive

measurement gathering) is possible. In contrast, our work
aims to address a more common circumstance, that is under
incomplete information (i.e. limited model information and
limited measurements). The nonlinear behavior of the SVC
has been captured in [20] using advanced control designs to
damp oscillations, but assuming a fixed standard model of the
SVC is fully known. Differently, this work aims to study the
identification of an SVC model that is largely unknown (i.e.
for which there is only limited modeling information and
measurements, that is, under incomplete information).

Harmonics present in sinusoidal signals has been evalu-
ated using Fast Fourier-based algorithms [21] for reactive
power compensation. In contrast, this article present differ-
ent approaches for detailed model phasor-model identifica-
tion using RMS voltage and current signals. In such type
of models, harmonics are not of interest, but the dynamics
are.

The problem of model structure choice for identification
has been investigated extensively in the control and system
identification communities [5], [7]. However, in respect to
all the reviewed works [10]– [21], these practices have not
yet been studied, applied and adopted in the power systems
community.

C. CONTRIBUTION
This paper compares and discusses model structure choice
methods in the context of a modeling and parameter iden-
tification cycle that can be applied for the modeling of
power system components. These methods are physical
principle-based modeling; and black-box mathematical mod-
eling (Nonlinear AutoRegressive Exogenous (NARX) [22],
Transfer function [23], Hammerstein-Wiener model [5]).
In addition, the combination of physical principle-based and
black-box modeling is proposed. All the case studies have
been performed by modeling a Static VAR Compensator, for
which real measurements from the grid were available, while
the information about the physical system and control flow
that governs its behavior was limited (or incomplete).

Furthermore, this article discusses how modeling uncer-
tainty can be considered by an engineer: by evaluating the
validity of a model, it is possible to justify the model’s accep-
tance. Using Static VAR Compensator model case study,
the paper reveals a number of important issues that should
be addressed during the identification process, and proposes
possible solutions.

D. PAPER ORGANIZATION
The remainder of this article is structured as follows.
Section II offers a modeling problem formulation using the
SVC’s measurement data. Section III compares model struc-
ture choice methods. Section IV describes the identification
methodology and validity criteria used for the proposed mod-
els. Section V presents the modeling methodology which is
applied for the SVC’s modeling problem. Section VI dis-
cussesmodel acceptability issues. SectionVII sums up results
and draws conclusions.
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FIGURE 2. Physical principle-based SVC model.

FIGURE 3. SVC RMS current.

FIGURE 4. SVC RMS voltage.

II. STATIC VAR COMPENSATOR MODELING
PROBLEM FORMULATION
The system identification problem can be formulated as:
identify the system’s model in a way that it reproduces the
system behavior known from a description of the system and
collected measurement data.

The Static VAR Compensator system (Fig. 2) is a com-
bination of a shunt capacitor bank and a thyristor-controlled
shunt reactance aimed to inject reactive power for controlling
the voltage at the directly connected bus-bars or remote bus-
bars. For the SVC example used here, the system description
provided by National Grid, was limited to name-plate data for
the thyristor-controlled reactor (TCR) (reactive power gener-
ated), thyristor-switched capacitors (TSC) and mechanically-
switched capacitor (MSC). In addition, the SVC is voltage
controller with a droop of 4% under balanced operation con-
ditions is applied. Because the provided measurements that
were received correspond to a transient response, and they do
not include reactive power measurements on the controlled
bus bar, the voltage set point is assumed to be fixed.

The provided measurements include the SVC’s cur-
rent (Fig. 3) and voltage (Fig. 4), recorded after a single
phase (IB) fault occurred. During the voltage dip the thyristor-
switched capacitors are activated to limit the voltage drop.

FIGURE 5. IEEE SVC Type 1 [4].

The dynamics of the SVC become active and they can be
identified from the provided measurements. The sampling
time of the recordings is 0.0001 s (i.e. 10 kHz).

III. MODEL STRUCTURES
In the identification cycle (see Fig. 1), the choice of possible
model structures is no doubt the most important and the
most difficult step for an engineer. In this section, different
modeling approaches are discussed.

A. PHYSICAL PRINCIPLE-BASED MODELING
The most common modeling method is grounded on the
established laws of physics that are considered axiomatic.
On this level of modeling, no empirical model assump-
tions or fitting parameters are made [24].

For the particular SVC the limited information, available
to National Grid (who operates the SVC), leads to the use of
the basic IEEE SVC regulator model [4] (see Fig. 5).

In power systems the main issue the engineer faces
with such type of modeling is partially available (lim-
ited) or unavailable information about the structure of the
component and the system as a whole. There are several
reasons for that: a) component producers protect their ‘‘know-
how’’, b) the system is old and installations/changes to the
components are poorly documented, c) control systems at
different levels of control hierarchy become digital with com-
plex logical actions, some dependent on operator’s decisions;
to list a few.

This model structure choice has been guided by the avail-
able information about the SVC system. In this case, only a
droop that defines the voltage dependency on reactive power
set point was known. However, the known physical charac-
teristics of SVC [3] can help to define the range of the time
constants. To sum up, the set of parameters to be identified in
this case is θ = [KR,TR].

B. BLACK-BOX MODELING
Observing the SVC’s response, it can be concluded that the
transient characteristics of the SVC RMS current and volt-
age (Fig.3, 4) show a non-linear behavior combined with the
linear component of a set of differential equations (involving
the under-damped transient oscillatory behavior of at least
two complex modes). This gives ground to apply mathe-
matical (black-box) modeling methods for the SVC’s model
identification.

VOLUME 5, 2017 22659



T. Bogodorova, L. Vanfretti: Model Structure Choice for a Static VAR Compensator Under Modeling Uncertainty

FIGURE 6. Hammerstein-Wiener (HW) model.

1) HIGH ORDER TRANSFER FUNCTION MODEL
Usually SVC dynamics involve different time-scales and
include their voltage regulator [25], consequently, a high
order transfer function model is appropriate in this case. If the
relation between input and undisturbed output can be written
as a linear difference equation, and the disturbance consists
of white measurement noise [5], then the ARX model can be
expressed using an Output-Error (OE) model structure of the
form:

y(t) =
B(q)
F(q)

u(t − nk )+ e(t)

F(q) = 1+ f1q−1 + . . .+ fnf q
−nf

B(q) = b1q−1 + . . .+ bnbq
−nb (1)

The unknown values are the transfer function parameters
θ = [b1 b2 . . . bnb f1 f2 . . . fnf ] and transfer functions of order
nb, nf , nk .

2) HAMMERSTEIN-WIENER MODEL
In order to include the nonlinear dynamic behavior that
is observed in the measurements, the Hammerstein-Wiener
model is exploited (Fig.6).

The OE model structure (1) is included in the linear block,
while the input nonlinearity by a piecewise linear function:

w = 8(u, θpwl) = (u− ui)
(wi+1 − wi)
(ui+1 − ui)

+ wi (2)

where {wi ≤ |w| ≤ wi+1; ui ≤ |u| ≤ ui+1}i=1..k are the limits
of the input x and output nonlinearity y values for each inter-
val; k - number of beakpoints; θpwl = [{u1,w1}, . . . {uk ,wk}]
- identified parameters.

From the physical principle-based modeling in Fig. 5
susceptance variation limits introduce to model the SVC’s
saturations. These limits are modeled using the saturation
function (3) that has been introduced as output nonlinearity
in the Hammerstein-Wiener model.

y = S(x,Bmax ,Bmin) =


x(t), if Bmin < x(t) < Bmax
Bmax , if x(t) ≥ Bmax
Bmin, if x(t) ≤ Bmin

(3)

Observing the current measurement (Fig. 3), the upper
bound given by the Bmax value is reached during the event.

3) NONLINEAR AUTOREGRESSIVE eXogenous (NARX)
MODEL
This model represents the system’s linear and nonlinear
behavior as a sum of an ordinary ARX and the complex
wavelet function over a set of chosen regressors. The non-
linear ARX model (Fig.7) includes two parts:

FIGURE 7. Nonlinear AutoRegressive eXogenous model.

• Regressors from the current u(t) and past input val-
ues u(t − 1), u(t − 2), . . . , u(t − mu) and past output
data y(t − 1), y(t − 2), y(t − 3), . . . , y(t − my); while
letting x = [y(t − 1), y(t − 2), y(t − 3), . . . , y(t −
my), u(t), u(t − 1), u(t − 2), . . . , u(t − mu)] be a 1× m
vector of regressors.

• A nonlinearity estimator that maps regressors to the
model output, shown in Fig. 7.

The nonlinear ARX model estimator is given by:

ŷ(t|θ ) = [−a1,−a2, . . . ,−ana , b1, b2, . . . , bnb ] ∗ x
T
+ d

+0(x, θNL), (4)

where θL = [a1a2 . . . anab1b2 . . . bnb ]
T - parameters of

ARX linearity estimator, na - number of past output terms,
nb - number of past input terms, d - a scalar offset.
In this case, the nonlinear behavior is represented by the

wavenet function 0(x, θNL) [26]:

0(x, θNL) = as1 f (bs1 ((x − r)Q− cs1 ))

+ . . .+ asns f (bsns ((x − r)Q− csns ))

+ aw1g(bw1 ((x − r)Q− cw1 ))

+ . . .+ awnwg(bwnw ((x − r)Q− cwnw )) (5)

where f (z) = e−0.5zz
T
is a scaling function, g(z) = (m −

zzT )e−0.5zz
T
is a wavelet function, z - 1 × q vector with

q - number of x components used in the scaling and wavelet
functions; Q -m×q projectionmatrix; r - (1×m) mean values
of regressor vector; as (ns× 1), bs (ns× 1), cs (ns× q vector)
- scaling parameters; aw (nw × 1), bw (nw × 1), cw (nw × q) -
wavelet parameters. θNL = [Q, r, as, bs, cs, aw, bw, cw] -
parameters of nonlinearity estimator. The number of units is
equal to the sum of scaling (ns) and wavelet (nw) coefficients.
When estimating a nonlinear ARX model, the model

parameter values θ = [θL , θNL , d] are computed.

IV. PARAMETER IDENTIFICATION AND MODEL
VALIDATION CRITERIA
The optimization criterion to be met in the all the model
structure choices is the minimisation of the mean squared
error (MSE) between measured and simulated outputs:

θ̂N = argmin
θ

1
N

N∑
i=1

(yi(t)− ŷi(t|θ ))2 (6)

where yi(t) - measured response, ŷi(t|θ ) - estimated response,
N - number of samples. In the sequel, the output yi or ŷi
dependency on time t and parameters θ will be omitted.
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FIGURE 8. SVC connected to grid model.

The goodness of fit criterion to evaluate how well the
estimated model response fits to the measured output is
quantified in percentage of the two curves’ alignment as
Normalized Mean Squared Error (NMSE) (7):

Fit = NMSE(θ, y) =
(
1−

√
1
N

∑N
i=1(yi − ŷi)2√

1
N

∑N
i=1(yi − ȳi)2

)
100% (7)

where ȳi - mean value of the response.
The Akaike information criterion (AIC), applied to model

order selection, includes the minimization of MSE and a
model complexity penalty [27], [28]. One of its versions can
be formulated in the following way:

AIC(ρ) = Nln(MSE(θ ))+ ρn (8)

where n - number of system parameters (characterizing the
order of the system) and ρ - regularization coefficient, which
is usually equal to 2.

The algorithm for parameter identification [29] is used
herein to meet the optimization criterion by iteratively adjust-
ing model parameters when the chosen model structure and
optimization algorithms (search methods)1 are given.

V. RESULTS
In this section the results of applying the model identification
methodology discussed above is presented. There are several
modeling scenarios discussed:

A First principle modeling (Section V-A)
B Black-box modeling (Sections V-B, V-C, V-D)
C Combination of both A and B models (Section V-E)

A. PHYSICAL FIRST PRINCIPLE-BASED MODELING
To reproduce the actual (real) power system behavior using
the physical principle modeling approach, a power system
model developed using Modelica was built [30]. The model
contains an SVC Type 1 connected via a transmission line
and transformer to a 400 kV substation (Fig. 8). A single
phase fault is applied to the transformer from the SVC side on
bus B2. The equivalent of the external grid has been modeled
as an infinite bus.

The parameters (KR,TR) range is [20..100] (corresponding
to a droop from 5% to 1%) and [20..150] ms [31]. Assum-
ing that BSVC is proportional to the current injection with a
voltage of 1 p.u. measured at the bus bar B1, the parameter
estimation results are summarized in Table 1.

1The choice of the search methods is out of scope of this paper. However,
for more information, refer to [5], [14].

TABLE 1. Estimated parameters for the IEEE SVC Type 1.

FIGURE 9. Simulated physical principle-based model output against the
measured SVC RMS voltage. The legend corresponds to the cases
in Table 1.

FIGURE 10. Simulated physical principle-based model output against the
measured SVC RMS current. The legend corresponds to the cases
presented in Table 1.

As shown in Table 1, seven different initial parameter
conditions have been set to identify the parameter val-
ues (KR, TR) that correspond to the minimal MSE in the
chosen initial parameter range ([KR](0), [TR](0)). The MSE
values have been evaluated using both the SVC’s voltage and
current outputs (Figs. 9, 10).

Considering estimated outputs of the SVC voltage and
current (Figs. 9, 10) together with the results in Table 1,
several observations can be made. As expected, the rise in
the slope of the current is influenced mainly by the gain KR
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FIGURE 11. Model OE(nb, nf , nk ) order choice using AIC and NMSE
criteria.

value. The higher the gain, the faster the rise (or a steeper
slope). On the contrary, the falling slope depends on the time
constant TR that defines the speed of exponential decay before
reaching a steady-state condition. The first order transfer
function can’t reproduce the oscillatory behavior shown by
the measurements. Nevertheless, the average descent curve
is obtained. Summing up, the slower descent and higher gain
from the initial values in Case 7 (Table 1) gives the best
estimates in terms of minimizing the MSE (6). This model
is summarized in Table 2.

B. HIGH ORDER TRANSFER FUNCTION
To achieve a better model output, a higher order transfer
function is used next as amodel structure. Themodel is linear,
but saturation can be added in series as separate function to
model the nonlinearity. In the case of OE model structure (1),
the most important decision for an engineer is the choice of
model’s order. The aim is to obtain the best fit possible while
keeping the model order as low as possible. For this purpose,
an experiment on the model order selection has been carried
out by employing two criteria of goodness of fit: the Akaike
information criterion (AIC) (8), and the NMSE (7) (or Fit (%)
on the plots).

In Fig. 11 the rapid fall of the AIC value indicates
an improvement on the model’s fitness. This occurs start-
ing with the model order of nb = 2, nf = 2,
nk = 0 (x-axis). Therefore, three models (oe220:
OE(2, 2, 0), oe230:OE(2, 3, 0), oe340:OE(3, 4, 0)) show
a good fit.OE(2, 3, 0) model is added to Table 2. Considering
the fitting results of the SVC’s current in Fig. 12, all of
the three aforementioned models give a better representa-
tion of the dynamics when comparing with the SVC Type
1 model (Fig. 10), but it requires improvements to capture the
nonlinear behavior of the system (see Sections V-C, V-D).

C. HAMMERSTEIN-WIENER (HW) MODEL
The Hammerstein-Wiener model (Fig. 6) includes input
and output nonlinearities together with a linear component.
In Section V-B, one of the models that show the best fit was of
nb = 2, nf = 3, nk = 0 order. Therefore, it was selected as a

FIGURE 12. Simulated OE(nb, nf , nk ) model output against measured
SVC RMS current.

FIGURE 13. HW model: NMSE (Fit,%) and MSE dependency on the
number of breakpoints.

FIGURE 14. HW model with piecewise linear input and saturation
function output compared to the measured SVC RMS current.

linear component. The output nonlinearity has been modeled
using a saturation function with upper/lower limits equal
to ±1.27 p.u.. The remaining (unexplained) dynamics are
modeled using an input piecewise linear function. However,
the latter has to be defined by the number of break points k
and their location (xi, yi)i=1..k (2). Input xi values are SVC
voltage measurements, while yi are the nonlinearity values.
To choose the appropriate number of break points of the

piecewise linear function (2), a study on dependency of the
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TABLE 2. Numerical experiment results.

FIGURE 15. NARX: Fit,% dependency on number of wavenet units.

goodness of fit metric (and MSE) on the number of break
points has been performed (see Fig. 13). The principle used
to make a choice is to obtain a simple model (aiming for
the minimum number of break points) capable of providing
a high goodness of fit (and small MSE). In Fig. 13 the
steep rise of the fit (in percentage) occurs when 5 break
points of the piecewise linear function are included. After
5 break points, the fit value does not change drastically.
Therefore, the 5 break points piecewise linear function can
be considered as an adequate number of points to model
the nonlinearity. To increase certainty in the choice of the
model, three models with k = 5, k = 7 and k = 10 break
points of the piecewise linear function have been compared
(Tables 3, 4, 5 and Fig. 14). As expected, the model with k =
10 break points (see Table 2) has reproduced the dynamics
better than those of k = 5 and k = 7.

D. NONLINEAR AUTOREGRESSIVE eXogenous (NARX)
MODEL
The NARX model is designed by applying a wavelet net-
work (wavenet) function to an input vector of regressors.
Two input parameters are required to define the model struc-
ture before the estimator identifies other parameters auto-
matically. The order of the linear function (discussed in
Section V-B) and the number of wavenet units (ns + nω) (5).
The latter has been evaluated in terms of the maximization of
the goodness of fit (Fit (%)) and shown in Fig. 15. In Fig. 15
two values in the range of the analyzed wavenet units values

FIGURE 16. NARX models output from 17 and 38 wavenet units
compared to the measured SVC RMS current.

are of interest. Both models with (ns + nω = 17) and
(ns + nω = 38) wavenets units with the highest fit have
been compared on their ability to capture the dynamics of
measurements in the SVC current output (Fig. 16). Themodel
comprised by 17 units is capable to represent the oscillation
frequencies more precisely than the 38 units model. The
simplest (lower order model) is always preferred. In this case
the (ns+nω = 17) units model is the best choice (see Table 2).
The linear ARX part has been chosen with the criteria of
having the lowest order that provides a high fitness.

E. COMBINATION OF MODELS
The physical principle-based model (Section V-A) is able to
reproduce the main physical properties of SVC system, even
though it doesn’t include all the observed dynamics for the
particular measured event. In contrast, the black-box mathe-
matical model is capable to reproduce the system dynamics of
the event with good fitness (Fig. 14, 16). The ability to com-
bine both models is advantageous in the sense of preserving
both an insight about the system physical properties together
with the best goodness of fit.

To this aim this section proposes to design a switch that
will allow to substitute the physical model with one of the
other models in Table 2, when needed. The steady-state
operation can be represented by the well established IEEE
SVC Type 1 model, while transient dynamics excited in
the event have to be modeled by the richer mathematical
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FIGURE 17. Switch operational principle combining two model types.

models presented in the previous sections (e.g. HW model
or NARX).

The operational principle of the switch (Fig. 17) takes a
derivative of the voltage input signal and decides to switch
between the IEEE SVC Type 1 model and a mathematical
model when the voltage derivative crosses a given threshold
defined by an engineer.

To realize the switch the following aspects need to be
considered. First, the input is a nonlinear function that is not
differentiable across the entire time span. The solution to this
issue is to compute numerically the derivative with the sub-
stitution of infinity by a large number to limit the derivative
values to certain real-valued bounds. The operation of the
switch does not require precise derivative values (unless it
influences the switch’s operation). The threshold value (ε) is
chosen equal to 0.05 andmodeled using a dead zone function.
Second, it is necessary to avoid the switching before the

steady-state is reached. When small deviations or oscilla-
tions around the steady-state point are still present in the
system (Fig. 4), the voltage derivative oscillates around zero.
This is solved by implementing a direct discrete FIR filter
of order equal to the signal’s sampling frequency multiplied
by the time window over which the steady-state is reached.
In other words, the filter finds the cumulative sum of the
derivative value over the time window.

Finally, the output filtered dead zoned derivative signal,
when not equal to zero, activates the switch from the IEEE
SVC Type I model to the SVC NARX model (Fig. 18).
In Fig. 18 the combined model’s output compared to mea-
surements is presented. The observed fitness (Fig. 18) and
evaluated model validation criteria (Table 2) show better per-
formance than all other studiedmodels (see Sections V.A-V.D).

VI. DISCUSSION
The most difficult decision that an engineer is responsible for
is model acceptance (Fig. 1). When this can not be achieved,
an engineer should list all the concerns on the model’s quality
in terms of validation metrics and case studies. If the model

FIGURE 18. Combined model: switch operation and model response.

TABLE 3. Break points (BP) values of k = 5 (2) (Fig. 6).

TABLE 4. Break points (BP) values of k = 7 (2) (Fig. 6).

is accepted, the conditions when the model is valid should
also be defined. All the limitations and advantages of the
model have to be carefully listed. The quantitative methods
and metrics used in this work can be used for these purposes.

Incomplete modeling information and/or measurement
limits the system properties that are reproduced by a model.
To obtain a precise model (in this case for the SVC), a highly
dynamic input excitation signal u(k) (Vref or Vmeas Fig. 2)
needs to be available. Alternatively, proper excitation sig-
nal design [32], [33] allows to gather as much information
about the system as possible. In the particular case studies
(Sections II, V), all the chosen model structures have been
chosen for the only available measurements (Fig. 3, 4)
and the limited information available to the grid operator
itself (National Grid). The assumption is that the all possible
dynamics have been excited. No doubt that when the experi-
ment design is controlled by an engineer, better certainty for
the estimated model can be given.

One more issue that has to be taken into consideration is
the change of the operation point after an event (Fig. 10).
It can be estimated by computing power flow values or by
back calculating them from the available measurements [5].
In this paper, it was assumed (from information available
fromNational Grid) that the steady-state operation conditions
did not change after the event.

The proposed combined model allows to use mathematical
black-box model (i.e. NARX in this study) when the first
principle-basedmodel fails to capture the dynamics present in
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TABLE 5. Break points (BP) values of k = 10 (2) (Fig. 6).

the grid. These dynamics are excited by the events that force
the system deviate from near steady-state operation. Consid-
ering the fitness criteria defined in this paper, the method is
superior to all other methods that are compared in Table 2.

VII. CONCLUSION
In this paper, methods for model structure choice in power
system component model identification have been discussed.
The traditional physical principle-based modeling approach
gives a good representation only in the absence of uncer-
tainty. Meanwhile, when the knowledge of the system or its
component is limited, the physical principle modeling fails
to reproduce the system dynamics in the model. Therefore,
mathematical black-box and grey-box modeling techniques
can be exploited. This work proposed to combine both model
types, using the simplest one when the dynamics of the sys-
tem are not excited, i.e. in steady-state operation. Meanwhile,
more complex mathematical nonliner models can be used
when nonlinearities arise. All the case studies (Table 2) have
been illustrated using the RMS voltage and current recordings
and incomplete modeling information of an SVC operated by
National Grid.

APPENDIX
Output-Error (OE) model structure: The selected model nb =
2, nf = 3, nk = 0. The assumption is that there is no delay (nk = 0).

B(q) = 0.0003645− 0.0003644q−1;

F(q) = 1− 2.959q−1 + 2.917q−2 − 0.9587q−3

NARX: Model parameter values θ = [θL , θNL , d]:
Standard regressors corresponding to the orders: na = 2, nb =
2. θL = [a1 a2 b1 b2] = [0.3770 − 0.0087 0.0028 0].
Nonlinear regressors: u(t − 1), u(t − 2) Nonlinearity estimator
θNL = [Q, r, as, bs, cs, aw, bw, cw]: Q = [0 0; 0 0;−6.5 −
2700.9;−6.5 2700.9]; r = [0.2813 0.2813 0.9709 0.9709];
wavenet with 17 units: scaling ns = −2.7301 × 10−4 and
wavelet nw = 10−3 × [0.3035 − 0.0489 − 0.0344 −

0.1723 − 0.0203 − 0.0271 0.0696 0.0588 − 0.0179 0.0150 −
0.0076 0.0080 0.0335 0.0121 − 0.0766 0.0210] coefficients.

A scalar offset d = 0.2814.
Hammerstein-Wiener models that defined by θpwl are presented

for order k = 5 (Table 3), k = 7 (Table 4), k = 10 (Table 5):
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