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ABSTRACT Advanced persistent threats (APTs) pose a grave threat to cyberspace, because they deactivate
all the conventional cyber defense mechanisms. This paper addresses the issue of evaluating the security
of the cyber networks under APTs. For this purpose, a dynamic model capturing the APT-based cyber-
attack-defense processes is proposed. Theoretical analysis shows that this model admits a globally stable
equilibrium. On this basis, a new security metric known as the equilibrium security is suggested. The impact
of several factors on the equilibrium security is revealed through theoretical analysis or computer simulation.
These findings contribute to the development of feasible security solutions against APTs.

INDEX TERMS Cyberspace, security, measurement, nonlinear dynamical systems, stability.

I. INTRODUCTION
Cyberspace has come to be an integral and indispensable
part of modern society. Day and night, massive data are
transmitted ceaselessly from host to host throughmultifarious
cyber networks [1], [2]. However, cyberspace is vulnerable
to a wide range of cyber threats. Sophisticated cyber perpe-
trators often exploit cyber attack techniques to achieve their
political, economic and military goals. In light of the risk
and consequence of cyber attacks, enhancing the security and
resilience of cyberspace has become an urgent task in the field
of information security [3]–[5]. As a proverb says, however,
you cannot manage if you cannot measure. Before a feasible
cyber security solution is worked out, the security of cyber
networks must be evaluated accurately [6]–[8].

Advanced persistent threats (APTs) are a newly emerg-
ing type of cyber attacks. With a clear goal, an APT
attack is highly-targeted, well-organized, well-resourced,
technologically-advanced, covert and persistent [9]–[11].
In sharp contrast withAPTs, all the conventional cyber threats
rely on limited available resources and hence can only be
conducted in the one-shot or repeated way, leading to a
time discontinuity. APTs pose an especially severe threat
to cyberspace, because they invalidate all the conventional
cyber defense mechanisms developed and implemented for

defending against one-shot or/and repeated cyber attacks.
Indeed, it was reported that, in the last decade, the num-
ber of the APT events all over the world was soaring [12].
To effectively withstand APTs, the security of the cyber
networks under APTs must be evaluated accurately. Due
to the time continuity of APTs, however, existing security
evaluation methods, which were developed to cope with
one-shot or repeated cyber attacks, are not applicable to
APTs [13]–[17]. Recently, Pendleton et al. [18] considered
the expected fraction of the compromised nodes in a cyber
network as a security metric of the network. However, as the
expected fraction is varying over time, the technical feasibil-
ity of the suggestion is questionable.

To measure the security of the cyber networks under APTs,
a mathematical model accurately capturing the APT-based
cyber attack-defense processes is requisite. In view of the
time continuity of APT attacks, the resulting model must
be dynamic and continuous-time, which can be studied with
the aid of the well-established theory on continuous-time
dynamical systems. By contrast, the mathematical models
characterizing one-shot cyber attacks are static, while the
models capturing the repeated cyber attack-defense processes
are discrete-time. The modeling technique of individual-
level dynamical systems, which has been applied to several
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areas such as the epidemic spreading [19]–[21], the mal-
ware spreading [22]–[29], the rumor spreading [30], [31] and
the viral marketing [32], is especially suited to the accu-
rate modeling and detailed analysis of the APT-based cyber
attack-defense processes, because the underlying structure
of the cyber network can be fully accommodated [33] and
hence the cyber attack-defenses processes can be described
more accurately. Towards this direction, a number of
APT-based cyber attack-defense models have been sug-
gested [34]–[37]. However, these models either assume that
the attacker is within the network [34]–[36] or assume that
the attack strengths to all the hosts are always the same [37].
In most cases, the attacker is outside the targeted cyber
network. Furthermore, the attacker may be strategic, that is,
he may attack different hosts in the network with separate
strengths. To our knowledge, to date no APT-based cyber
attack-defense model with a strategic external attacker has
been reported in literature.

This paper focuses on the evaluation of the security of
the cyber networks under APT attacks launched by strate-
gic external attackers. For this purpose, an individual-level
continuous-time dynamic model that accurately captures
the APT-based cyber attack-defense processes with strategic
external attackers is proposed. A detailed theoretical analysis
shows that the model admits a globally stable equilibrium.
This implies that, starting from any initial state, themodel will
approach the equilibrium. On this basis, a new security metric
of cyber networks, which is referred to as the equilibrium
security, is defined as the expected fraction of the compro-
mised nodes in the equilibrium. The impact of several factors
on the equilibrium security is determined through theoretical
analysis and computer simulation. These findings contribute
to our understanding of the security of cyber networks under
APTs as well as the development of feasible security solu-
tions against APTs.

The remaining materials are organized in this fashion.
Sections 2 and 3 describe and study an APT-based cyber
attack-defense model, respectively. Section 4 introduces the
notion of equilibrium security. The impact of different factors
on the equilibrium security is examined in Sections 5 and 6.
Finally, Section 7 closes this work.

II. THE MODELING OF THE CYBER ATTACK-DEFENSE
PROCESSES UNDER APTs
For the purpose of evaluating the security of cyber networks
under APTs, understanding the relevant cyber attack-defense
processes is requisite. And this is the goal of this section.

A. THE CYBER NETWORK AND ITS STATE
Consider a cyber network G = (V ,E) interconnecting a set
of hosts labeled 1, 2, · · · ,N , where every node stands for a
host, i.e., V = {1, 2, · · · ,N }, and for 1 ≤ i, j ≤ N (i 6= j),
(i, j) ∈ E if and only if the host i can deliver messages
directly to the host j through the network. Let A(G) =(
aij
)
N×N denote the adjacency matrix for the network, where

aij = 1 or 0 according as (i, j) ∈ E or not. Hereafter, it is

always assumed that the cyber network is strongly connected,
i.e., there is a directed path from any node of the network to
any other node. This assumption implies that the adjacency
matrix for the network is irreducible, i.e., it cannot be recast
as a block matrix of the form(

A11 A12
0 A22

)
(1)

through a series of row-row exchanges and the corresponding
column-column exchanges.

Suppose there is an attacker (an individual, a group or a
nation state, to name a few) who is outside of the cyber
network and will launch an APT attack on the network at time
t = 0, with the intent of taking over some or all nodes of the
network. Meanwhile, there is a defender (the owner or the
administrator of the network, say) who will protect the net-
work from the attack, with the goal of keeping the network
under control. Henceforth, it is assumed that, at any time,
every node of the network is either secure, i.e., under the
defender’s control, or compromised, i.e., under the attacker’s
control. Let Xi(t) = 0 and 1 denote that the node i is secure
and compromised at time t , respectively. Then the state of the
cyber network at time t is represented by the vector

X(t) = (X1(t),X2(t), · · · ,XN (t)). (2)

Let Si(t) and Ci(t) denote the probability of the node i being
secure and compromised at time t , respectively.

Si(t) = Pr{Xi(t) = 0}, (3)

Ci(t) = Pr{Xi(t) = 1}. (4)

As Si(t)+ Ci(t) ≡ 1, the vector

C(t) = (C1(t), · · · ,CN (t))T (5)

represents the expected state of the cyber network at
time t .

B. THE ATTACK AND DEFENSE STRATEGIES
In what follows, let || · ||1 denote the 1-norm of real vec-
tors. That is, for any a = (a1, · · · , an) ∈ Rn, we have
||a||1 =

∑n
i=1 |ai|.

The threat of an APT attack to the cyber network is
twofold: the external attack and the internal infection. The
external attack is led by the attacker, with the intent of
compromising the secure nodes of the network. The attack
strength to the secure node i is measured by αxi, where the
constant α > 0 stands for the attack level, i.e., the technical
level of the external attack, the constant xi ≥ 0 stands for
the amount of the resources (manpower, money, say) per unit
time consumed for attacking the node i. We refer to the vector
x = (x1, · · · , xN ) as an attack strategy. The amount of the
resources per unit time consumed for implementing the attack
strategy x is

∑N
i=1 xi = ||x||1 > 0.

The internal infection is caused by the compromised nodes
of the network, with the intent of compromising the secure
nodes of the network. At any time, the infection strength
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of the compromised node i to the secure node j is βaij,
where the constant β > 0 stands for the infection level,
i.e., the technical level of the internal infection. The expected
combined infection strength of all the compromised nodes
of the network to the secure node i at time t is measured by
f
(
β
∑N

j=1 ajiCj(t)
)
, where (a) f (0) = 0, because no internal

infection occurs almost surely unless currently there is a node
that is compromised with a positive probability; (b) f (x) ≤ x
for all x ≥ 0, because the combined infection strength of
all the compromised nodes to a secure node is bounded from
above by the sum of the infection strengths of all the com-
promised nodes to the secure node; (c) f is strictly increasing
and concave, because the combined infection strength of all
the compromised nodes to a secure node rises yet flattens
out with the increase of the sum of the infection strengths
of all the compromised nodes to the secure node; and
(d) for technical reasons, f is assumed to be twice continu-
ously differentiable. This set of conditions on the function f is
referred to as the generic conditions, and those functions that
satisfy the generic conditions are referred to as the generic
functions.

Also, the defense of the cyber network against the
APT attack is twofold: the prevention and the recovery. The
prevention aims to prevent the secure nodes of the network
from being compromised. The prevention strength of the
secure node i is measured by δyi, where the constant δ > 0
stands for the prevention level, i.e., the technical level of
the prevention, the constant yi > 0 stands for the amount
of the resources per unit time consumed for preventing the
secure node i. We refer to the vector y = (y1, · · · , yN ) as
a prevention strategy. The amount of the resources per unit
time consumed for implementing the prevention strategy y is∑N

i=1 yi = ||y||1.
The recovery is intended to recover the compromised

nodes of the network. The recovery strength of the com-
promised node i is gauged by γ zi, where the constant
γ > 0 stands for the recovery level, i.e., the technical level
of the recovery, the constant zi > 0 stands for the amount
of the resources per unit time consumed for recovering the
compromised node i. We refer to the vector z = (z1, · · · , zN )
as a recovery strategy. The amount of the resources per unit
time consumed for implementing the recovery strategy z is∑N

i=1 zi = ||z||1.
Furthermore, we refer to the combination of a prevention

strategy and a recovery strategy, denoted (y, z), as a defense
strategy. The amount of the resources per unit time consumed
for implementing the defense scheme (y, z) is

∑N
i=1 yi +∑N

i=1 zi = ||y||1 + ||z||1.
For later use, let us define three types of strate-

gies as follows. Let w = (w1, · · · ,wN ) denote an
attack/prevention/recovery strategy. The strategy is uniform
if all wi are identical. That is,

w = ||w||1 ·
(
1
N
,
1
N
, · · · ,

1
N

)
. (6)

The strategy is degree-first ifwi is linearly proportional to the
out-degree of the node i. That is,

w = ||w||1 ·

( ∑N
j=1 a1j∑N
i,j=1 aij

, · · · ,

∑N
j=1 aNj∑N
i,j=1 aij

)
. (7)

The strategy is degree-last if wi is inversely linearly propor-
tional to the out-degree of the node i. That is,

w = ||w||1 ·

 1∑N
j=1 a1j∑N

i=1
1∑N
j=1 aij

, · · · ,

1∑N
j=1 aNj∑N

i=1
1∑N
j=1 aij

. (8)

C. THE MODELING OF THE CYBER ATTACK-DEFENSE
PROCESSES UNDER APTs
For the purpose of modeling the cyber attack-defense pro-
cesses under APTs launched by strategic external attackers,
the following assumptions are made.
(A1) Due to the prevention and the external attack, at any

time the secure node i gets compromised at rate αxi
δyi

.
The rationality of this assumption lies in that the rate
is proportional to the attack strength and is inversely
proportional to the prevention strength.

(A2) Due to the prevention and the internal infection,
at time t the secure node i gets compromised at the rate
f
(
β
∑N

j=1 ajiCj(t)
)

δyi
. The rationality of this assumption lies

in that the rate is proportional to the expected combined
infection strength and is inversely proportional to the
prevention strength.

(A3) Due to the recovery, at any time the compromised
node i becomes secure at rate γ zi. The rationality of
this assumption lies in that the rate is proportional to
the recovery strength.

We are ready to model the APT-based cyber attack-defense
processes. Let 1t > 0 be a very small time interval. Fol-
lowing the above assumptions, we have that, for t ≥ 0 and
i = 1, · · · ,N ,

Pr{Xi(t +1t) = 1 | Xi(t) = 0}

=
1t
δyi

αxi + f
β N∑

j=1

ajiCj(t)

+ o(1t) (9)

and

Pr{Xi(t +1t) = 0 | Xi(t) = 1} = γ zi1t + o(1t), (10)

where the o(1t) terms stand for infinitesimals in 1t , i.e,
lim1t→0

o(1t)
1t = 0. Invoking the total probability formula,

rearranging the terms, dividing both sides by 1t , and letting
1t → 0, we get a dynamic model as follows.

dCi(t)
dt
=
αxi
δyi
−

(
αxi
δyi
+ γ zi

)
Ci(t)

+
1
δyi

[1− Ci(t)]f

β N∑
j=1

ajiCj(t)

 ,
t ≥ 0, i = 1, · · · ,N . (11)
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We refer to the model as the generic secure-compromised-
secure (GSCS) model, because the function f is a generic
function. The diagram of transitions of the expected state
of the node i under this model is shown in Fig. 1. The
GSCS model accurately captures the expected attack-defense
processes under APTs, provided the generic function f is
available.

FIGURE 1. Diagram of transitions of the expected state of the node i
under the GSCS model.

Let

� =
{
(c1, c2, · · · , cN )T ∈ RN

+ | ci ≤ 1, i = 1, · · · ,N
}
.

(12)

It is trivial to show that C(t) ∈ � for t ≥ 0.

III. A THEORETICAL ANALYSIS OF THE GSCS MODEL
It will soon be seen that the security of a cyber network
under APT attacks is closely related to the dynamics of the
relevant GSCS model. This section is dedicated to studying
the dynamical properties of the GSCS model.

A. PRELIMINARIES
For our purposes, some preliminaries are needed. For fun-
damental knowledge on differential dynamical systems,
see [38].
Lemma 1 (Chaplygin Lemma, See Theorem 31.4 in [39]):

Consider a smooth n-dimensional system of differential
equations

dx(t)
dt
= f((x(t)), t ≥ 0 (13)

and the corresponding system of differential inequalities

dy(t)
dt
≥ f((y(t)), t ≥ 0 (14)

with x(0) = y(0). Suppose that for any a1, · · · , an ≥ 0, there
hold

fi(x1 + a1, · · · , xi−1 + ai−1, xi, xi+1 + ai+1, · · · , xn + an)

≥ fi(x1, · · · , xn), i = 1, · · · , n.(15)

Then y(t) ≥ x(t) for all t ≥ 0.
For fundamental knowledge on fixed point theory, see [40].
Lemma 2 (Brouwer Fixed Point Theorem, See

Theorem 4.10 in [40]): Let D be a nonempty, bounded, closed
and convex subset of Rn, and let f : D→ D be a continuous
function. Then f has a fixed point.

For fundamental knowledge on matrix theory, see [41].
Let diag(ai) denote the diagonal matrix with diagonal entries

a1, a2, · · · , aN , and let col(ai) denote the column vector of
components a1, a2, · · · , aN . This work involves real square
matrices only. For a matrix A, let s(A) denote the maximum
real part of an eigenvalue ofA.A isMetzler if its off-diagonal
entries are all nonnegative.
Lemma 3 (Section 2.1 in [42]): Let A be an irreducible

Metzler matrix. Then the following claims hold.
(a) If there is a positive vector x such that Ax < λx, then

s(A) < λ.
(b) If there is a positive vector x such that Ax = λx, then

s(A) = λ.
(c) If there is a positive vector x such that Ax > λx, then

s(A) > λ.

B. TWO PRELIMINARY LEMMAS
For the GSCS model (11) and 1 ≤ i ≤ N , let

Ci =
αxi

αxi + γ δyizi
(16)

and

Ci =
αxi + f (β

∑N
j=1 aji)

αxi + γ δyizi + f (β
∑N

j=1 aji)
. (17)

The following two lemmas will be useful.
Lemma 4: Suppose the GSCS model (11) admits an

equilibrium C = (C1,C2, · · · ,CN )T . Then,

Ci ≤ Ci ≤ Ci, 1 ≤ i ≤ N . (18)

Proof: Straightforward calculations give

Ci =
αxi + f (β

∑N
j=1 ajiCj)

αxi + γ δyizi + f (β
∑N

j=1 ajiCj)
. (19)

The two claimed inequalities follow directly. �
Lemma 5: Let C(t) = (C1(t),C2(t), · · · ,CN (t))T be a

solution to the GSCS model (11). Then there are t0 > 0 and
c > 0 such that

min
1≤i≤N

Ci(t) ≥ c, t ≥ t0. (20)

Proof: Without loss of generality, assume xi0 > 0.
It follows from the GSCS model that

dCi0 (t)
dt

≥
αxi0
δyi0
−

(
αxi0
δyi0
+ γ zi0

)
Ci0 (t), t ≥ 0. (21)

Obviously, the comparison system

dui0 (t)
dt
=
αxi0
δyi0
−

(
αxi0
δyi0
+ γ zi0

)
ui0 (t), t ≥ 0,

(22)

with ui0 (0) = Ci0 (0) admits Ci0 > 0 as the globally stable
equilibrium. By Lemma 1, we have

Ci0 (t) ≥ ui0 (t), t ≥ 0. (23)

So,

lim inf
t→∞

Ci0 (t) ≥ lim
t→∞

ui0 (t) = Ci0 . (24)
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Thus, for any 0 < ε < Ci0 , there is t1 > 0 such that

Ci0 (t) ≥ Ci0 − ε, t ≥ t1. (25)

As G is strongly connected, there is ai0j0 = 1. Hence,

dCj0 (t)
dt

≥
1
δyj0

f
(
β
(
Ci0 − ε

))
−

[
1
δyj0

f
(
β
(
Ci0 − ε

))
+ γ zj0

]
Cj0 (t), t ≥ t1.

(26)

Obviously, the comparison system

dvj0 (t)
dt
=

1
δyj0

f
(
β
(
Ci0 − ε

))
−

[
1
δyj0

f
(
β
(
Ci0 − ε

))
+ γ zj0

]
vj0 (t), t ≥ t1

(27)

with vj0 (t1) = Cj0 (t1) admits
f
(
β
(
Ci0−ε

))
f
(
β
(
Ci0−ε

))
+γ δyj0 zj0

as the

globally stable equilibrium. By Lemma 1, we have

Cj0 (t) ≥ vj0 (t), t ≥ t1. (28)

So,

lim inf
t→∞

Cj0 (t) ≥ lim
t→∞

vj0 (t)

=

f
(
β
(
Ci0 − ε

))
f
(
β
(
Ci0 − ε

))
+ γ δyj0zj0

. (29)

In view of the arbitrariness of ε, we get that

lim inf
t→∞

Cj0 (t) ≥
f
(
βCi0

)
f
(
βCi0

)
+ γ δyj0zj0

> 0. (30)

The lemma follows by repeating the argument. �

C. THE EQUILIBRIUM
An equilibrium of a dynamical system is a state of the system
such that, when starting from the state, the systemwill always
stay in the state. Clearly, the equilibria of a dynamical system
are the most easily understood states of the system. The
first step toward the understanding of a dynamical system
is to determine all the equilibria of the system. The follow-
ing theorem determines the number of the equilibria of the
GSCS model (11).
Theorem 1: The GSCS model (11) admits a unique equi-

librium. Denote this equilibrium by C∗ = (C∗1 , · · · ,C
∗
N )

T .
Then C∗i > 0,Ci ≤ C∗i ≤ Ci, 1 ≤ i ≤ N.

Proof: Let

K =
N∏
i=1

[
Ci,Ci

]
. (31)

Define a continuous mapping H = (H1, · · · ,HN )T : K →
[0, 1]N as follows.

Hi(w) =
αxi + f (β

∑N
j=1 ajiwj)

αxi + γ δyizi + f (β
∑N

j=1 ajiwj)
,

w = (w1, · · · ,wN )T ∈ K . (32)

It is trivial to show that C is an equilibrium of the GSCS
model if and only if C is a fixed point of the mapping H.
Furthermore, it is easy to show that H maps K into itself.
It follows from Lemma 2 that H has a fixed point, denoted
C∗ = (C∗1 , · · · ,C

∗
N )

T . This implies that C∗ is an equilibrium
of the GSCSmodel. By Lemma 4,Ci ≤ C∗i ≤ Ci, 1 ≤ i ≤ N .
By Lemma 5, C∗i > 0, 1 ≤ i ≤ N .
The remaining thing to do is to show that C∗ is the unique

fixed point of H. On the contrary, suppose H has a fixed
point other than C∗. Denote this equilibrium by C∗∗ =
(C∗∗1 , · · · ,C

∗∗
N )T . Let

ρ = max
1≤i≤N

C∗i
C∗∗i

, (33)

i0 = arg max
1≤i≤N

C∗i
C∗∗i

. (34)

Without loss of generality, assume ρ > 1. Then

C∗i0 = Hi0 (C
∗) ≤ Hi0 (ρC

∗∗)

=
αxi0 + f (ρβ

∑N
j=1 aji0C

∗∗
j )

αxi0 + γ δyi0zi0 + f (ρβ
∑N

j=1 aji0C
∗∗
j )

<
αxi0 + f (ρβ

∑N
j=1 aji0C

∗∗
j )

αxi0 + γ δyi0zi0 + f (β
∑N

j=1 aji0C
∗∗
j )

≤
αxi0 + ρf (β

∑N
j=1 aji0C

∗∗
j )

αxi0 + γ δyi0zi0 + f (β
∑N

j=1 aji0C
∗∗
j )

< ρHi0 (C
∗∗) = ρC∗∗i0 , (35)

where the first inequality follows from the strict monotonicity
of f , and the second inequality follows from the concavity
of f . This contradicts the assumption that C∗i0 = ρC∗∗i0 .

Hence, C∗ is the unique fixed point of H. The proof is
complete. �
This theorem manifests that, when starting from the

state C∗, the GSCS model will always stay in the state. Due
to the complexity of the model, the location of C∗ is beyond
the reach.

D. THE GLOBAL STABILITY OF THE EQUILIBRIUM
In reality, the probability of a dynamical system being ini-
tially in one of its equilibria is often negligible. Therefore,
the second step toward the understanding of a dynamical sys-
tem is to examine the evolutionary trend of the system when
starting from any state other than the equilibria. An equilib-
rium of a dynamical system is globally stable if (a) when
starting from any state, the system will always approach the
equilibrium, and (b) when starting from a state near the equi-
librium, the system will always stay close to the equilibrium.
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From the qualitative perspective, the dynamics of a dynamical
system with a globally stable equilibrium is well understood.
The following theorem shows the qualitative dynamics of the
GSCS model.
Theorem 2: The equilibriumC∗ of the GSCS model (11) is

globally stable.
Proof: Let C(t) = (C1(t),C2(t), · · · ,CN (t))T be a

solution to the GSCS model. By Lemma 5, there are t0 > 0
and c > 0 such that

min
1≤i≤N

Ci(t) ≥ c, t ≥ t0. (36)

Let

Z (C(t)) = max
1≤i≤N

Ci(t)
C∗i

, t ≥ t0, (37)

z(C(t)) = min
1≤i≤N

Ci(t)
C∗i

t ≥ t0. (38)

Define a function V as

V (C(t)) = max{Z (C(t))− 1, 0} +max{1− z(C(t)), 0}.

(39)

It is easily verified that V is positive definite with respect
to C∗, i.e., (a) V (C(t)) ≥ 0, and (b) V (C(t)) = 0 if and
only if C(t) = C∗. Next , let us show that D+V (C(t)) ≤ 0,
t ≥ t0, where D+ stands for the upper-right Dini derivative
of V along C(t). To this end, we need to show the following
two claims.
Claim 1: D+Z (C(t)) ≤ 0 if Z (C(t)) ≥ 1. Moreover,

D+Z (C(t)) < 0 if Z (C(t)) > 1.
Claim 2: D+z(C(t)) ≥ 0 if z(C(t)) ≤ 1. Moreover,

D+z(C(t)) > 0 if z(C(t)) < 1. Here D+ stands for the lower-
right Dini derivative.

Proof of Claim 1: Choose k0 such that

Z (C(t)) =
Ck0 (t)
C∗k0

(40)

and

D+Z (C(t)) =
C
′

k0
(t)

C∗k0
. (41)

Then,

C∗k0
Ck0 (t)

C
′

k0 (t)

=
αxk0
δyk0

(
1− Ck0 (t)

) C∗k0
Ck0 (t)

− γ zk0C
∗
k0

+
1
δyk0

(
1− Ck0 (t)

) C∗k0
Ck0 (t)

f

β N∑
j=1

ajk0Cj(t)


≤
αxk0
δyk0

(
1− C∗k0

)
− γ zk0C

∗
k0

+
1
δyk0

(
1− C∗k0

) C∗k0
Ck0 (t)

f

β N∑
j=1

ajk0Cj(t)



≤
αxk0
δyk0

(
1− C∗k0

)
− γ zk0C

∗
k0

+
1
δyk0

(
1− C∗k0

)
f

β C∗k0
Ck0 (t)

N∑
j=1

ajk0Cj(t)


≤
αxk0
δyk0

(
1− C∗k0

)
− γ zk0C

∗
k0

+
1
δyk0

(
1− C∗k0

)
f

β N∑
j=1

ajk0C
∗
j

 = 0, (42)

where the second inequality follows from the concavity of f ,
and the third inequality follows from the monotonicity of f .
This implies D+Z (C(t)) ≤ 0. As the first inequality is strict
if Z (C(t)) > 1, we get that D+Z (C(t)) < 0 if Z (C(t)) > 1.
Claim 1 is proven.

The argument for Claim 2 is analogous to that for Claim 1
and hence is omitted. Next, consider three possibilities.
Case 1: Z (C(t)) < 1. Then z(C(t)) < 1 and

V (C(t)) = 1− z(C(t)). (43)

Hence,

D+V (C(t)) = −D+z(C(t)) < 0. (44)

Case 2: z(C(t)) > 1. Then Z (C(t)) > 1 and

V (C(t)) = Z (C(t))− 1. (45)

Hence,

D+V (C(t)) = D+Z (C(t)) < 0. (46)

Case 3: Z (C(t)) ≥ 1, z(C(t)) ≤ 1. Then

V (C(t)) = Z (C(t))− z(C(t)). (47)

Hence,

D+V (C(t)) = D+Z (C(t))− D+z(C(t)) ≤ 0. (48)

Moreover, the equality holds if and only if C(t) = C∗.
The theorem follows from the LaSalle Invariance

Principle. �
This theorem indicates that, regardless of the initial state,

the GSCS model will always approach the equilibrium C∗.
Therefore, the dynamics of the model is well understood
from the qualitative perspective. The following experiment
illustrates the time plot of the GSCS model.
Experiment 1: Consider the six instances of the GSCS

model, where G assumes one of the six trees shown in Fig. 2,
α = 0.05, β = 0.01, δ = 1, γ = 1, f (x) = x

1+x , ||x||1 = 1,
||y||1 = ||z||1 = 1

2 , x, y and z are all uniform. Fig. 3 shows
the time plot of the network state for each of these instances.
It can be seen that, for each of the instances, the expected state
of the network approaches the corresponding equilibrium.
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FIGURE 2. Six trees with six nodes and five edges. (a) G1. (b) G2. (c) G3.
(d) G4. (e) G5. (f) G6.

FIGURE 3. The time plot of the expected state of the network for each of
the six instances of the GSCS model, where G assumes one of the six
trees shown in Fig. 2, α = 0.05, β = 0.01, δ = 1, γ = 1, f (x) = x

1+x ,
||x||1 = 1, ||y||1 = ||z||1 =

1
2 , x, y and z are all uniform. It can be seen

that, for each of the instances, the expected state of the network
approaches the corresponding equilibrium.

IV. THE EQUILIBRIUM SECURITY OF CYBER NETWORKS
The goal of this section is to suggest a security metric of cyber
networks under APTs. Given a cyber network G = (V ,E)
and all the relevant factors, α, β, δ, γ , x, y and z. Consider
the corresponding GSCS model (11).

LetCG(t) denote the expected fraction of the compromised
nodes of the network G at time t .

CG(t) =
1
N

N∑
i=1

Ci(t), t ≥ 0. (49)

Further, define the point security of the network G at time t ,
denoted SG(t), as follows.

SG(t) = 1− CG(t), t ≥ 0. (50)

Clearly, we have 0 ≤ SG(t) ≤ 1.
Clearly, the higher the point security of a cyber network at

time t , the lower the expected fraction of the compromised
nodes of the network at time t will be, and hence the securer
the network will be at time t . So, the point security of a cyber
network at time t is an indicator of the security of the network
at time t . However, the availability of a point security as the
security metric of real-world cyber networks is very limited,
because it cannot characterize the network security from a

holistic perspective. Nevertheless, the notion of point security
provides an idea of measuring the security of cyber networks.

Let CT (G) denote the average of CG(t) over the time
horizon [0,T ].

CT (G) =
1
T

∫ T

0
CG(t)dt, T ≥ 0. (51)

Further, define the interval security of the network in the time
horizon [0,T ], denoted ST (G), as follows.

ST (G) = 1− CT (G), T ≥ 0. (52)

Clearly, we have 0 ≤ ST (G) ≤ 1.
The interval security of a cyber network in the time

horizon [0,T ] is a measure of the security of the network
in that time horizon, which applies to the situation where
the APT attack terminates at time T . To accurately estimate
an interval security, numerous data related to the network
state must be sampled densely, sent remotely and processed
quickly, which would be very expensive in terms of the com-
puting and network resources. Hence, the interval securities
are not good metrics of the security of cyber networks.

Let C(G) denote the limit of CT (G) when T →∞.

C(G) = lim
T→∞

CT (t) = lim
T→∞

1
T

∫ T

0
CG(t)dt. (53)

The existence of this limit follows from Theorem 2. Further,
define the infinite security of the network, denoted S(G),
as follows.

S(G) = 1− C(G). (54)

Obviously, we have 0 ≤ S(G) ≤ 1.
The infinite security of a cyber network is an index of

its security in the infinite time horizon [0,∞), which is
applicable to the situation where the APT attack will persist
forever. Still, the infinite security is not an ideal security
metric of cyber networks, because (a) due to the limited
attack resources, realistic APT attacks cannot persist forever,
and (b) the cost needed for estimating the infinite security of
a network would be prohibitive.

Let C∗(G) denote the expected fraction of the compro-
mised nodes of the network G when the model is in the
equilibrium C∗.

C∗(G) =
1
N

N∑
i=1

C∗i . (55)

The following result is a corollary of Theorem 2.
Theorem 3: Consider the GSCS model (11). Then

CG(t)→ C∗(G), t →∞. (56)

Now, let us define the equilibrium security of the
network G, denoted SE (G), as follows.

SE (G) = 1− C∗(G). (57)

Obviously, we have 0 ≤ SE (G) ≤ 1. By Theorem 3, we have
the following result.
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Theorem 4: Consider the GSCS model (11). Then

SG(t)→ SE (G), t →∞. (58)

This theorem reveals the close relationship between the
equilibrium security of a network and the point securi-
ties of the network: the equilibrium security is exactly the
limit of the point securities when the time approaches the
infinity.

Theorem 4 suggests that the equilibrium security is a can-
didate for the security metric of cyber networks. Compared
with the point securities, on one hand, the limit security
characterizes the inherent security property of a cyber net-
work from a holistic perspective. Compared with the interval
securities and the infinite security, on the other hand, the equi-
librium security can be estimated using far less sample data
and hence comsuming far fewer computing and network
resources. Additionally, the estimation of the equilibrium
security of a cyber network needs no knowledge of the tech-
nical levels, the generic function, and the attack and defense
strategies. Therefore, the equilibrium security is expected
to be a qualified metric of the security of cyber networks
under APTs.

V. THE IMPACT OF THE PARAMETERS ON THE
EQUILIBRIUM SECURITY
Clearly, the equilibrium security of a cyber network is
dependent upon the four technical levels, the attack strategy,
the prevention strategy, and the recovery strategy. These fac-
tors can be regarded as the parameters having influence on
the equilibrium security. So, the equilibrium security can be
written as

SE (G) = SE (G;α, β, δ, γ, x, y, z). (59)

This section is committed to examining the impact of all the
parameters on the equilibrium security of a cyber network.

A. A preliminary result
For a GSCS model, define an irreducible Metzler matrix,M,
as follows.

M = diag

β (1− C∗i ) f ′
β N∑

j=1

ajiC∗j

A(G)T

− diag

αxi + γ δyizi + f
β N∑

j=1

ajiC∗j

. (60)

To achieve our goal, the following lemma is necessary.
Lemma 6: The matrix M is invertible. Moreover, M−1 is

negative.
Proof: As the generic function f is concave, we have

f
′

β N∑
j=1

ajiC∗j

 ≤ f
(
β
∑N

j=1 ajiC
∗
j

)
β
∑N

j=1 ajiC
∗
j

. (61)

So,

MC∗ = diag

β (1− C∗i ) f ′
β N∑

j=1

ajiC∗j

A(G)TC∗

− diag

αxi + γ δyizi + f
β N∑

j=1

ajiC∗j

C∗

≤ diag

β (1− C∗i ) f
(
β
∑N

j=1 ajiC
∗
j

)
β
∑N

j=1 ajiC
∗
j

A(G)TC∗

− diag

αxi + γ δyizi + f
β N∑

j=1

ajiC∗j

C∗

= −col

αxi + f
β N∑

j=1

ajiC∗j

C∗i

 < 0. (62)

It follows from Lemma 3(a) that s(M) < 0. This implies that
M is invertible. As M is Metzler, irreducible and Hurwitz,
M−1 is negative [43]. �

B. THE IMPACT OF THE FOUR TECHNICAL LEVELS
Let us first examine the impact of the four technical levels on
the equilibrium security of a cyber network. Fot this purpose,
we need to understand the way that these factors affect the
equilibrium C∗ of the GSCS model. The following result
illuminates the impact.
Theorem 5: For the GSCS model (11), there hold

∂C∗

∂α
> 0, (63)

∂C∗

∂β
> 0, (64)

∂C∗

∂δ
< 0, (65)

and

∂C∗

∂γ
< 0. (66)

Proof: We prove the second inequality only, because
the remaining three inequalities can be shown analogously.
As C∗ is an equilibrium of the GSCS model, we have

Fi := αxi − (αxi + γ δyizi)C∗i

+
(
1− C∗i

)
f

β N∑
j=1

ajiC∗j

 = 0, 1 ≤ i ≤ N .

(67)

Differentiating with respect to β on both sides of each of these
equations, we get

∂Fi
∂β
+

N∑
j=1

∂Fi
∂C∗j
·
∂C∗j
∂β
= 0, 1 ≤ i ≤ N . (68)
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Direct calculations give

M
∂C∗

∂β
= −diag

(1− C∗i ) f ′ (β N∑
j=1

ajiC∗j )

A(G)TC∗.

(69)

By Lemma 6, we have

∂C∗

∂β
= −M−1 · diag

(1− C∗i )f
′

(β
N∑
j=1

ajiC∗j )

A(G)TC∗.

(70)

where M−1 is negative. As the network G is strongly con-
nected, A(G)TC∗ is positive. Hence, ∂C

∗

∂β
> 0. �

This theorem demonstrates that (a) with the rise of the
attack or infection level, all components of the equilibrium
move up, and (b) with the rise of the prevention or recovery
level, all components of the equilibrium move down. As a
corollary of this theorem, the following result shows the
impact of the four technical levels on the equilibrium security
of a cyber network.
Theorem 6: For the GSCS model (11), there hold

∂SE (G)
∂α

< 0, (71)

∂SE (G)
∂β

< 0, (72)

∂SE (G)
∂δ

> 0, (73)

and

∂SE (G)
∂γ

> 0. (74)

This theorem declares that (a) the equilibrium security of a
cyber network descends with the rise of the attack or infection
level, and (b) the equilibrium security of a cyber network
ascends with the rise of the prevention or recovery level.
These results accord with our intuitive sense of the security
of cyber networks, which partly justifies the equilibrium
security as a security metric of cyber networks. In practice,
the defender of cyber networks should try his best to enhance
the prevention and recovery levels.

C. THE IMPACT OF THE ATTACK AND DEFENSE
STRATEGIES
We now examine the impact of the attack and defense strate-
gies on the equilibrium security of a cyber network. To this
end, we need to understand how these factors affect the
equilibrium C∗ of the GSCS model. The following result
expounds the impact.
Theorem 7: For the GSCS model (11), there hold

∂C∗

∂xi
> 0, 1 ≤ i ≤ N , (75)

∂C∗

∂yi
< 0, 1 ≤ i ≤ N , (76)

and

∂C∗

∂zi
< 0, 1 ≤ i ≤ N . (77)

The proof of the theorem is analogous to that of the pre-
vious theorem and hence is omitted. This theorem tells us
that (a) with the increase of the resources per unit time used
for attacking a node, all components of the equilibrium move
up, and (b) with the increase of the resources per unit time
used for preventing or recovering a node, all components of
the equilibrium move down. As a corollary of this theorem,
the following result exhibits the impact of the attack and
defense strategies on the equilibrium security of a cyber
network.
Theorem 8: For the GSCS model (11), there hold

∂SE (G)
∂xi

< 0, 1 ≤ i ≤ N (78)

∂SE (G)
∂yi

> 0, 1 ≤ i ≤ N (79)

and

∂SE (G)
∂zi

> 0, 1 ≤ i ≤ N . (80)

This theorem confirms that (a) the equilibrium security of a
cyber network descends with the increase of the resources per
unit time used for attacking a node, and (b) the equilibrium
security of a cyber network ascends with the increase of the
resources per unit time used for preventing or recovering a
node. These results conform to our sense of the security of
cyber networks, which again justifies the equilibrium security
as a measure of the security of cyber networks. In prac-
tice, the defenders are suggested to configure more defense
resources for their cyber networks, so as to enhance the
security.

VI. FURTHER DISCUSSIONS
The previous section has ascertained the impact of all the
basic parameters of the GSCS model on the equilibrium
security of a cyber network. Additionally, the equilibrium
security of a cyber network is also affected by three fac-
tors: the network topology, the ratio of the amount of the
prevention resources to that of the recovery resources, and
the amount of the defense resources per unit time given the
ratio of the amount of the attack resources to that of the
defense resources. This section is dedicated to inspecting
the impact of these factors on the equilibrium security of a
cyber network.

A. THE IMPACT OF THE NETWORK TOPOLOGY
We first examine the impact of the network topology on the
equilibrium security of a cyber network. To achieve the goal,
we need to understand the way that the network topology
affects the equilibriumC∗ of the GSCSmodel. The following
result reveals the impact.
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Theorem 9: For the GSCS model (11), there hold

∂C∗

∂aij
> 0, 1 ≤ i, j ≤ N , i 6= j. (81)

The argument for the theorem is analogous to that for
Theorem 5 and hence is omitted. This theorem implies that,
with the addition of new edges to the network, all components
of the equilibrium move up. As a corollary of this theorem,
the following result discloses the impact of the topology of a
cyber network on its equilibrium security.
Theorem 10: For the GSCS model (11), there hold

∂SE (G)
∂aij

< 0, 1 ≤ i, j ≤ N , i 6= j. (82)

This theorem states that, with the addition of new edges
to the network, the equilibrium security of a cyber network
declines. So, cyber networks with dense connections aremore
vulnerable to APT attacks than those with sparse connections.
In practice, the defenders of cyber networks are suggested to
properly limit the traffic over the networks, so as to enhance
the security.

B. THE IMPACT OF THE PREVENTION-RECOVERY RATIO
For a GSCS model, define the prevention-recovery ratio,
denoted rPR, as the radio of the amount of the prevention
resources to that of the recovery resources.

rPR =
||y||1
||z||1

. (83)

Given the amount of the defense resources per unit time, how
the prevention-recovery ratio affects the equilibrium security
of a cyber network is still unclear. Now, let us check the
impact through computer simulations.
Experiment 2: Consider 504 instances of the GSCSmodel,

where G assumes one of the six trees shown in Fig. 2, α =
0.05, β = 0.01, δ = 1, γ = 1, f (x) = x

1+x , ||x||1 = 1,
||y||1 = r

1+r , ||z||1 =
1

1+r , r ∈ {
1
4 ,

1
3 ,

1
2 , 1, 2, 3, 4}, with

(a) uniform x, y and z; (b) uniform x and y, degree-first z;
(c) uniform x and z, degree-first y; (d) uniform x, degree-
first y and z; (e) degree-first x, uniform y and z; (f) degree-
first x and z, uniform y; (g) degree-first x and y, uniform z;
(h) degree-first x, y and z; (i) degree-last x, uniform y and z;
(j) degree-last x, uniform y, degree-first z; (k) degree-last x,
degree-first y, uniform z; (l) degree-last x, degree-first y and
z. For each of the instances, the equilibrium security of the
cyber network is shown in Fig. 4. It can be seen that, with the
increase of rPR, the equilibrium security of a cyber network
goes up first but then it goes down. Moreover, the equilibrium
security attains the maximum in the proximity of rPR = 1.
Many similar experiments exhibit qualitatively similar

phenomena. It is concluded that, with the increase of the
prevention-recovery ratio, the equilibrium security of a cyber
network first goes up then goes down. Moreover, the equilib-
rium security attains the maximum when the amount of the
prevention resources is close to that of the recovery resources.
Based on these findings, the defenders of cyber networks

FIGURE 4. The equilibrium security of the cyber network for each of the
504 instances of the GSCS model, where α = 0.05, β = 0.01, γ = 1, δ = 1,
G varies from G1 to G6, ||x||1 = 1, ||y||1 =

r
1+r , ||z||1 =

1
r ,

r ∈ { 14 ,
1
3 ,

1
2 ,1,2,3,4}, with (a) uniform x, y and z; (b) uniform x and y,

degree-first z; (c) uniform x and z, degree-first y; (d) uniform x,
degree-first y and z; (e) degree-first x, uniform y and z; (f) degree-first x
and z, uniform y; (g) degree-first x and y, uniform z; (h) degree-first x, y
and z; (i) degree-last x, uniform y and z; (j) degree-last x, uniform y,
degree-first z; (k) degree-last x, degree-first y, uniform z; (l) degree-last x,
degree-first y and z. It can be seen that, with the increase of rPR ,
the equilibrium security of a cyber network goes up first but then it goes
down. Moreover, the equilibrium security attains the maximum in the
proximity of rPR = 1.

are suggested to distribute the available defense resources
equally to prevention and recovery, so as to maximize the
security.

Security managers often think that they should invest more
in prevention, while recovery is just a backup plan; this
is especially the case for small organizations with limited
resources. However, our findings show that, in the con-
text of APTs, recovery is as important as prevention. This
may be because the huge threat and serious consequence of
APTs invalidate the traditional idea of prevention first.

C. THE IMPACT OF THE AMOUNT OF DEFENSE
RESOURCES PER UNIT TIME GIVEN THE
ATTACK-DEFENSE RATIO
For a GSCS model, define the attack-defense ratio,
denoted rAD, as the ratio of the amount of the attack resources
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FIGURE 5. The equilibrium security of the cyber network for each of the
504 instances of the GSCS model, where α = 0.1, β = 0.05, γ = 0.5, δ = 1,
G varies from G1 to G6, rAD = r , ||y||1 = ||z||1 = s, s ∈ {2,3, · · · ,10},
||y||1 = s1, with (a) r = 1

2 , uniform x, y and z; (b) r = 1, uniform x, y and
z; (c) r = 2, uniform x, y and z; (d) r = 1

2 , uniform x, degree-first y and z;
(e) r = 1, uniform x, degree-first y and z; (f) r = 2, uniform x, degree-first
y and z; (g) r = 1

2 , degree-first x, uniform y and z; (h) r = 1, degree-first x,
uniform y and z; (i) r = 2, degree-first x, uniform y and z; (j) r = 1

2 ,
degree-first x, y and z; (k) r = 1, degree-first x, y and z; (l) r = 2,
degree-first x, y and z. It can be seen that the equilibrium security
of a cyber network ascends with the increase of s.

to that of the defense resources.

rAD =
||x||1

||y||1 + ||z||1
. (84)

Obviously, the equilibrium security of a cyber network
declines with the rise of the attack-defense ratio. At present
we wonder how the amount of defense resources per unit time
affects the security of a cyber network, provided the attack-
defense ratio is given. Now, let us study the problem through
computer simulations.
Experiment 3: Consider 504 instances of the GSCSmodel,

where G assumes one of the six trees shown in Fig. 2, α =
0.05, β = 0.01, δ = 1, γ = 1, f (x) = x

1+x , rAD = r,
||y||1 = ||z||1 = s, s ∈ {2, 3, · · · , 10}, (a) r = 1

2 , uniform x,
y and z; (b) r = 1, uniform x, y and z; (c) r = 2, uniform x,
y and z; (d) r = 1

2 , uniform x, degree-first y and z; (e) r = 1,
uniform x, degree-first y and z; (f) r = 2, uniform x, degree-
first y and z; (g) r = 1

2 , degree-first x, uniform y and z;
(h) r = 1, degree-first x, uniform y and z; (i) r = 2,

degree-first x, uniform y and z; (j) r = 1
2 , degree-first x, y

and z; (k) r = 1, degree-first x, y and z; (l) r = 2, degree-
first x, y and z. For each of the GSCS models, the equilibrium
security of the cyber network is shown in Fig. 5. It can be
seen that the equilibrium security of a cyber network ascends
with s.

Many similar experiments exhibit qualitatively similar
phenomena. It is concluded that, given the attack-defense
ratio, the equilibrium security of a cyber network goes up
with the increase of the defense resources per unit time. This
finding sounds a good news to the defenders of cyber net-
works, because the economicmotivation of cyber malefactors
to conduct APT attacks to well-protected cyber networks
subsides. In practice, configuring more defense resources for
cyber networks is always an effective means of protecting
against APTs.

VII. CONCLUDING REMARKS
This paper has addressed the evaluation of the security
of the cyber networks under APTs. Based on a dynamic
model capturing the APT-based cyber attack-defense pro-
cesses and its proved global stability, a new security met-
ric of cyber networks known as the equilibrium security
has been introduced. The impact of several factors on the
equilibrium security of a cyber network has been exam-
ined. The equilibrium security is potentially applicable to
the evaluation of the security of real-world cyber networks
under APTs, because the estimation of the equilibrium
security requires only a small number of sample data on
the network state and needs no knowledge of the model.
To achieve the goal, a cost-efficient sampling method must be
developed.

There are still lots of open problems concerning the secu-
rity evaluation of the cyber networks under APTs. In the sit-
uation that the attack strategy is already known, the defender
should determine a defense strategy that maximizes the equi-
librium security of the network among all feasible defense
strategies, which we refer to as a max defense strategy of
the network under the attack strategy, as well as the corre-
sponding equilibrium security, which we refer to as the max
equilibrium security of the network under the attack strategy.
However, when the attack strategy is not known, the defender
must solve a two-step optimization problem: (a) for every
admissible defense strategy, find out an attack strategy that
minimizes the equilibrium security of the network among all
possible attack strategies, which we refer to as a min attack
strategy to the network under the defense strategy, as well as
the corresponding equilibrium security, which we refer to as
themin equilibrium security of the network under the defense
strategy; and (b) determine a defense strategy that maximizes
the min equilibrium security among all the feasible defense
strategies, which we refer to as amax-min defense strategy of
the network, as well as the corresponding equilibrium secu-
rity, which we refer to as the max-min equilibrium security
of the network. In this work, the attack and defense strategies
are both assumed to be unvaried over time. In most cases,
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the attacker may flexibly alter the attack strategy, and the
defender may accordingly change the defense strategy. In this
context, the security evaluation of cyber networks would
involve the optimal control theory [44]–[46] or the dynamic
game theory [47], [48].
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