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ABSTRACT In this paper, the problem of two-dimensional (2-D) direction-of-arrival (DOA) estimation for
incoherently distributed (ID) noncircular sources is addressed. A low-complexity estimator with automatic
pairing in the three-parallel uniform linear arrays (ULAs) is proposed. First, the signal non-circularity is
applied to establish an extended generalized array manifold (GAM) model based on one-order Taylor series
approximation. Resorting to such model, the generalized rotational invariance relationships are identified
among the extended GAMmatrices of the three ULAs. Thereafter, a modified propagator method is utilized
to estimate the central elevation and azimuth DOAs. Without any spectrum searching, estimation or eigen-
value decomposition of the sample covariance matrix, the proposed approach is capable of considerably
reducing the calculation cost in comparison with the existing methods. In addition, it can automatically pair
the estimated central azimuth and central elevation DOAs. We also derive the Cramer-Rao lower bound
regarding the 2-D DOA estimation of the ID noncircular source and conduct the computational complexity
analysis. Numerical results demonstrate that the proposed method achieves better estimation performance
than the existingmethods. Furthermore, it can be applied in themulti-source scenario where different sources
may have different angular distribution shapes.

INDEX TERMS Array signal processing, two-dimensional (2-D) direction-of-arrival (DOA), incoherently
distributed (ID) sources, noncircular sources, Cramer-Rao lower bound.

I. INTRODUCTION
Traditional direction-finding techniques have generally been
developed for the far-field point source model, where the
signals are assumed for travelling along a single path to the
antenna array [1]–[4]. However, in applications such as wire-
less communications, passive radars and underwater acous-
tics, the effect of angular spread cannot always be ignored
owing to the multipath phenomena [5], [6]. In this case, a dis-
tributed source model would be more appropriate. In gen-
eral, distributed sources have been classified as coherently
distributed (CD) sources and incoherently distributed (ID)
sources, which pose to be suitable for slowly time-varying
and rapidly time-varying channels, respectively [7]. In this
paper, we concentrate on the central DOA estimation of ID
sources.

Several angular parameter estimation techniques for ID
sources have been developed, such as dispersed signal

parametric estimation (DISPARE) algorithm [8], total
least square estimation parameter via rotational invari-
ance technique (TLS-ESPRIT) algorithm [9], maximum
likelihood (ML) algorithm [10], [11], and covariance
matching estimator (COMET) algorithm [12], [13]. In these
techniques, signal sources are constructed by using the one-
dimensional (1-D) ID sourcemodel, where the impinging sig-
nal is assumed to be in the same planewith the receiving array.
However, in actual three-dimensional space, the impinging
signal is not generally in the same plane with the receiving
array, which should be modeled as the two-dimensional (2-D)
ID sources. Despite the fact that most of the approaches above
are proposed for 1-D scenarios, there are some that can be
extended to 2-D scenarios [10]–[14], which can achieve opti-
mal or near optimal performance. However, since a 2-D ID
source includes four angular parameters: the central azimuth
DOA, azimuth angular spread, central elevation DOA and
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elevation angular spread, these conventional optimum meth-
ods in [10]–[14] all suffer from heavy computational burden
due to multi-dimensional spectrum searching.

The high computational complexity is the main problem
in respect to the 2-D localization of ID sources. To cope
with this challenge, several low-complexity DOA estima-
tion techniques have been proposed through the introduc-
tion of approximate source models. Specifically, the authors
in [15] considered a pair of uniform circular arrays (UCAs),
meanwhile decoupled the 2-D nominal DOAs by Tay-
lor series approximation. Then the central elevation DOA
estimates are obtained by using TLS-ESPRIT. Afterwards,
by using the estimated elevation DOAs, a generalized mul-
tiple signal classification (GMUSIC) method was proposed
to estimate the central azimuth DOA, which asked for only
1-D search. In [16], with the aid of two parallel ULAs, a low-
complexity 2-D DOA estimation algorithm without multi-
dimensional searches was proposed for ID sources as well.
Similarly with [15], the central elevation DOA estimates are
obtained based on the approximate rotational invariance rela-
tionship between twoULAs. Instead of theGMUSIC, a capon
method is applied to estimate the central azimuth DOA.
Although avoiding multi-dimensional searches, the methods
proposed in [15] and [16] both need 1-D search and thus
their computational complexities are still quite high. In order
to avoid spectrum searching, the literature [17] proposed
an ESPRIT-based approach for the 2-D DOA estimation of
multiple ID sources employing a large uniform rectangular
array. Making use of the linear relations among the array
response matrices of different sub-arrays, the central eleva-
tion and azimuth DOAs can both be estimated without any
spectral searching. Nonetheless, this approach still employs
either eigenvalue decomposition (EVD) or singular value
decomposition (SVD), which are computationally extensive
and time consuming, particularly as the number of antenna
array elements is much larger than the number of incident
signals.Moreover, the additional parameter pairing procedure
is required, which may lead to pairing errors and deteriorate
the angle estimation performance.

All the aforementioned techniques focus on the complex
circular signal situation. However, in some practical scenarios
such as mobile communications, the complex noncircular
signals are widely used. Examples of such signals include
binary phase shift keying (BPSK), multiple amplitude shift
keying (MASK) and so on [18]. Noncircular signals can
enlarge the array aperture without adding extra antennas,
which significantly improves the performance of angle esti-
mation [19], [20]. By exploiting the signal non-circularity,
some effective methods have been developed for the angle
parameter estimation of distributed sources [21]–[24]. In par-
ticular, the literature [23] proposed an estimator for the
1-D ID noncircular sources based on the cross-correlation
matrix. In [24], a new off-grid DOA estimation method based
on a parametric sparse representation model was addressed
for the 1-D ID noncircular sources. However, the methods
of [23] and [24] are both concerned on the 1-D ID noncircular

TABLE 1. Key notations used in this paper.

sources. To the best of our knowledge, using signal non-
circularity for the parameter estimation of 2-D ID sources has
not been reported.

In this paper, a computational efficient algorithm is pro-
posed for the 2-D central DOA estimation of ID non-
circular sources in the three-parallel ULAs. Applying the
extended generalized array manifold (GAM) model based on
Taylor series approximation, we first establish the general-
ized rotational invariance relationships among the extended
GAM matrices of three ULAs. Then the central azimuth
and elevation DOAs are estimated by a modified propagator
method (PM). More specifically, the main contributions of
this paper are summarized as follows.
(1) An extended GAM model is established based on

Taylor series approximation, which exploits signal non-
circularity to increase the number of detectable direc-
tions and improve the estimation accuracy.

(2) A modified PM based on the extended GAM model
is proposed to estimate the 2-D central DOA, which
does not require any spectrum searching, estima-
tion or eigenvalue decomposition of sample covariance
matrix. As a result, it requires a significantly lower
computational complexity than the existing algorithms.
In addition, the estimated central azimuth and elevation
DOAs can be paired automatically.

(3) The Cramer-Rao lower bound of the proposed estima-
tor is derived regarding the 2-D DOA estimation of ID
noncircular source.

The paper is organized as follows. In Section II, the system
model and the major assumptions are given. In Section III,
we present the extended GAM model and the proposed algo-
rithm. The analysis of the proposed algorithm is provided in
Section IV. Finally, the computer simulation results that serve
to validate the theoretical results are presented in Section V.

Note that we list the key notations throughout the paper
in Table 1 for conciseness.

II. SYSTEM MODEL
As illustrated in Fig. 1, the array geometry consists of three
parallel ULAs X , Y and Z . Each ULA is composed of
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FIGURE 1. The array configuration of three-parallel ULAs.

M omnidirectional sensor elements. The distance of adjacent
sensors in each ULA is d , and the distance between adjacent
ULAs is also d . We consider K narrowband far-field ID
noncircular sources impinging on the array. The output signal
vectors of the three sub-arrays X , Y and Z can be expressed
as [15]–[17]

wε(t) =
K∑
k=1

sk (t)
Lk∑
l=1

γk,l(t)aε(θk,l(t), ϕk,l(t))

+ nε(t), ε ∈ {x, y, z}, (1)

where wε (t)(ε ∈ {x, y, z}) are the output signal vectors of
the three sub-array X , Y and Z , respectively; t = 1, 2, . . . ,T
is the sampling time, and T is the total number of snapshots;
sk (t) is the complex-valued signal from the k-th source, and
Lk is the number of multipath of the k-th source; γk,l(t),
θk,l(t) and ϕk,l(t) are the path gain, the azimuth DOA and
the elevation DOA of the l-th path from the k-th source,
respectively. nε (t)(ε ∈ {x, y, z}) are Gaussian white noise
vectors with zeros mean and variance σ 2 of the three sub-
arrays; additionally, aε (θk,l, ϕk,l)(ε ∈ {x, y, z}) are the array
steering vectors of three sub-arrays X , Y and Z at 2-D DOA
(θk,l, ϕk,l) having the forms

ax(θk,l, ϕk,l) = [1, e−j2π (d/λ) sin θk,l sinϕk,l , · · · ,

e−j2π (d/λ)(M−1) sin θ sinϕ], (2)

ay(θk,l, ϕk,l) = ax(θk,l, ϕk,l)g(ϕk,l), (3)

az(θk,l, ϕk,l) = ax(θk,l, ϕk,l)h(θk,l, ϕk,l), (4)

where g(ϕk,l) = e−j2π (d/λ) cosϕk,l , h(θk,l, ϕk,l) =

e−j2π (d/λ) sinϕk,l cos θk,l , and λ is the signal wavelength.
We can represent θk,l(t) and ϕk,l(t) as

θk,l(t) = θk + θ̃k,l(t), (5)

ϕk,l(t) = ϕk + ϕ̃k,l(t), (6)

where θk and ϕk are the central azimuth DOA and central
elevation DOA of the k-th source; θ̃k,l(t) and ϕ̃k,l(t) are the
corresponding small random angular deviations, which are
assumed as real-valued zero-mean random variables with
variances σ 2

θk
and σ 2

ϕk
, respectively. This small angular spread

assumption is reasonable. For example, in suburban and rural
environments, a high placement of base station can provide
small angular spreads up to 10◦ [25].
In this paper, the following initial assumptions are

considered.
• The path gains γk,l(t) (k = 1, 2, · · · , K ; l = 1, 2,
· · · , Lk ; t = 1, 2, · · · ,T ) are assumed as temporally
independent and identically distributed (i.i.d.) Gaussian
random variables with covariance [16], [17]

E{γk,l(t)γ ∗k̃,l̃(t̃)} =
σ 2
γk

Lk
δ(k − k̃)δ(l − l̃)δ(t − t̃). (7)

• The angular spreads, ς1
1
= θ̃k,l(t) and ς2

1
=

ϕ̃k,l(t) (k = 1, 2, · · · ,K ; l = 1, 2, · · · ,Lk ;
t = 1, 2, · · · ,T ), are also temporally i.i.d. real-
valued zero-mean random variables with probabil-
ity density function pk (ς1, ς2; σθk , σϕk ). Moreover,
pk (ς1, ς2; σθk , σϕk ) is generally assumed as a symmetric
function in ς1 and ς2. Now we consider two typical dis-
tributions of pi (ς1, ς2; σθi , σϕi ) [15]. They are uniform
shape

pk (ς1, ς2; σθk , σϕk ) =



1

2
√
3σθk

, |ς1| <
√
3σθk

1

2
√
3σϕk

, |ς2| <
√
3σϕk ,

0, otherwise
(8)

and Gaussian shape

pk (ς1, ς2; σθk , σϕk ) =
1

2πσθkσϕk
e−1/2(ς

2
1 /σ

2
θk
+ς22 /σ

2
ϕk
)
.

(9)

III. ANGLE ESTIMATION ALGORITHM
A. EXTENDED GAM MODELING BASED ON
NONCIRCULAR SOURCE
With the first order Taylor series expansion of aε (θk,l, ϕk,l)(ε ∈
{x, y, z}) around (θk,l, ϕk,l) = (θk , ϕk ) in the case of small
angular spreads, it can be approximated as

aε(θk,l, ϕk,l) ≈ aε(θk , ϕk )+ a′εθ (θk , ϕk )(θk,l − θk )

+ a′εϕ(θk , ϕk )(ϕk,l − ϕk ), ε ∈ {x, y, z},

(10)

where a′εθ (θk , ϕk ) and a
′
εϕ(θk , ϕk ) are the first-order partial

derivatives of aε (θ, ϕ) around θ = θ

k and ϕ = ϕk , respectively.
Substitute (10) into (1), and wε(t)(ε ∈ {x, y, z}) can

approximately be written as

wε(t) ≈
K∑
k=1

(
aε(θk , ϕk )α0k + a′εθ (θk , ϕk )αθk

+ a′εϕ(θk , ϕk )αϕk )+ nε(t), ε ∈ {x, y, z}, (11)
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where the random variables α0k , αθk and αϕk are defined as

α0k = sk (t)
Lk∑
l=1

γk,l(t),

αθk = sk (t)
Lk∑
l=1

γk,l(t)(θk,l − θk ),

αϕk = sk (t)
Lk∑
l=1

γk,l(t)(ϕk,l − ϕk ). (12)

Therefore, we can reformulate (11) into the GAM model as

wε(t) = Āε s̄(t)+ nε(t), ε ∈ {x, y, z}, (13)

where

Āε = [aε (θ1, ϕ1), aε(θ2, ϕ2), · · · , aε (θK , ϕK ),

a′εθ (θ1, ϕ1), a
′
εθ (θ2, ϕ2), · · · , a

′
εθ (θK , ϕK ),

a′εϕ(θ1, ϕ1), a
′
εϕ(θ2, ϕ2), · · · , a

′
εϕ(θK , ϕK )]

∈ CM×3K , (14)

s̄(t) = [α01, α02, · · · , α0K , αθ1, αθ2, · · · ,

αθK , αϕ1, αϕ2, · · · , αϕK ]T ∈ C3K×1. (15)

It’s worth noting that the GAM matrices Āε (ε ∈ {x, y, z})
depend only on the central DOAs.

From (3), it can be found that the array steering vectors of
sub-arrays X and Y are linearly related, and we can further
obtain

a′yθ (θk , ϕk ) = a′xθ (θk , ϕk )g(ϕk ), (16)

a′yϕ(θk , ϕk ) = a′xϕ(θk , ϕk )g(ϕk )+ ax(θk , ϕk )g
′(ϕk ), (17)

where g′(ϕk ) are the first-order partial derivatives of g(ϕ)
around ϕ = ϕk .
According to (3), (13), (16) and (17), we can establish the

following generalized rotational invariance relationship as

Āy = Āx8, (18)

where

8 =

 3Y1 0K×K 3Y2
0K×K 3Y1 0K×K
0K×K 0K×K 3Y1

 ∈ C3K×3K , (19)

in which,

3Y1 = diag(g(ϕ1), g(ϕ2), · · · , g(ϕK )) ∈ CK×K , (20)

3Y2 = diag(g′(ϕ1), g′(ϕ2), · · · , g′(ϕK )) ∈ CK×K . (21)

Similarly, based on the linear relation between the array
steering vectors of sub-arrays X and Z , we can also obtain

a′zθ (θk , ϕk ) = a′xθ (θk , ϕk )h(θk , ϕk )+ ax(θk , ϕk )h
′
θ (θk , ϕk ),

(22)

a′zϕ(θk , ϕk ) = a′xϕ(θk , ϕk )h(θk , ϕk )+ ax(θk , ϕk )h
′
ϕ(θk , ϕk ),

(23)

where h′θ (θk , ϕk ) and h′ϕ(θk , ϕk ) are the first-order partial
derivatives of h(θk , ϕk ) around θ = θk and ϕ = ϕk ,
respectively.
Therefore, from (4), (13), (22) and (23), we can also estab-

lish the following generalized rotational invariance relation-
ship as

Āz = Āx�, (24)

where

� =

 3Z1 3Z2 3Z3
0K×K 3Z1 0K×K
0K×K 0K×K 3Z1

 ∈ C3K×3K , (25)

in which,

3Z1 = diag(h(θ1, ϕ1), h(θ2, ϕ2), · · · , h(θK , ϕK )) ∈ CK×K ,

(26)

3Z2 = diag(h′θ (θ1, ϕ1), h
′
θ (θ2, ϕ2), · · · , h

′
θ (θK , ϕK ))

∈ CK×K , (27)

3Z3 = diag(h′ϕ (θ1, ϕ1), h′ϕ(θ2, ϕ2), · · · , h
′
ϕ (θK , ϕK ))

∈ CK×K . (28)

According to (13), (18) and (24), the total array output
vector w(t) ∈ C3M×1 can be written as

w(t) =

wz(t)wy (t)
wx (t)

 =
Āx�Āx8
Āx

 s̄(t)+
 nz(t)ny (t)
nx (t)


= Ds̄(t)+ n(t), (29)

where D = [(Āx�)T , (Āx8)T , (Āx)T ]T and n(t) =

[nz(t),ny (t),nx (t)]T .
In this paper, we consider the case where the received

signal is strictly noncircular signal with the maximal non-
circularity rate. Thus s̄(t) can be rewritten as (see Appendix)

s̄(t) = 4s̄0(t), (30)

where s̄0(t) ∈ R3K×1 is a real-valued signal vector;
4 = diag{ej$1 , , ej$2 , · · · , ej$3K } is a diagonal matrix of
size 3K × 3K containing the rotation phase shifts $ =

[$1,$2 · · · ,$3K ]T on its diagonal.
Exploiting the noncircular property of signal, the extended

array output vector w(nc)(t) ∈ C6M×1 of the total array can be
written as [18]–[24]

w(nc)(t) =
[
w(t)
w∗ (t)

]
=

[
D

D∗4−2

]
s̄(t)+

[
n(t)
n∗ (t)

]
= D(nc)s̄(t)+ n(nc)(t), (31)

where D(nc)
= [DT , (D∗4−2)T ]T ∈ C6M×3K is the extended

GAM matrix, n(nc)(t) = [n(t),n∗ (t)]T ∈ C6M×1 is the
extended received noise vector.
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B. AUTO-PAIRING 2-D DOA ESTIMATION ALGORITHM
BASED ON THE MODIFIED PM
In this section, we will briefly introduce the computational
efficient modified PM for the 2-D DOA estimation of ID
noncircular sources, which can also achieve automatic pairing
of the estimated parameters.

Since it is assumed that ID sources are mutually uncorre-
lated, the extended GAM matrix D(nc)

∈ C6M×3K is of full
rank. Thus there are 3K rows that are linearly independent
in D(nc), and the other rows are the linear representations of
them. Assume that the first 3K rows of D(nc) are linearly
independent, and we partition the matrix D(nc) as

D(nc)
= [DT1 ,D

T
2 ]
T , (32)

whereD1 andD2 are sub-matrices of size 3K×3K and (6M−
3K )× 3K . Then, a 3K × (6M − 3K ) propagator matrix P is
defined as a unique linear operator of the form

PHD1 = D2. (33)

In (33), P can be calculated by the extended array output
matrixW (nc)

= [w(nc)(1),w(nc)(2), · · · ,w(nc)(T )], where T is
the number of snapshots. PartitionW (nc) into

W (nc)
= [(W (nc)

1 )T , (W (nc)
2 )T ]T , (34)

where W (nc)
1 ∈ C3K×T and W (nc)

2 ∈ C(6M−3K )×T . In the
noiseless case, W (nc)

2 = PHW (nc)
1 . However, there is always

noise in the practical case, thus the propagator matrix P can
be estimated by the least squares approach as

P̂ = (W (nc)
1 (W (nc)

1 )H )−1W (nc)
1 (W (nc)

2 )H . (35)

In order to make full use of all array information, an extended
propagator matrix Pe can be constructed as Pe = [IH3K , P̂]

H ,
and we can have

PeD1 = D(nc). (36)

We can further partition Pe as

Pe = [PT1 ,P
T
2 ,P

T
3 ,P

T
4 ,P

T
5 ,P

T
6 ]
T , (37)

where P1, P2, P3, P4, P5 and P6 are all sub-matrices of size
M × 3K . Using (29), (31), (36) and (37) produces

P1
P2
P3
P4
P5
P6

D1 =



Āx�
Āx8
Āx
Ā
∗

x�
∗4−2

Ā
∗

x8
∗4−2

Ā
∗

x4
−2

 . (38)

By defining the selection matrices

J1 =
[
0M×2M IM 0M×3M
0M×4M IM 0M×M

]
, (39)

and

J2 =
[
0M×M IM 0M×4M
0M×M 0M×4M IM

]
, (40)

we can obtain

J1PeD1 = J1D(nc), (41)

J2PeD1 = J2D(nc). (42)

Bringing together (41) and (42) in association with the rela-
tion J2D(nc)

= J1D(nc)8, we can achieve

J2PeD1 = J1PeD18. (43)

From (43), a newly defined matrixϒ ∈ C3K×3K is presented
as follow:

ϒ = (J1Pe)+J2Pe = D18D−11 . (44)

By performing the EVD on ϒ, we obtain the diagonal
matrix 8̂1 consisting of eigenvalues in its principal diagonal
and unitary matrix D̂1. The following relationships exist with
the matrix D1 and the diagonal matrix 81, whose diago-
nal elements are the same as those of the upper triangular
matrix 8:

8̂1 = 5815, (45)

D̂1 = D15, (46)

where5 is a permutation matrix with5 = 5−1.
To achieve automatic pairing, we further define the selec-

tion matrices as follows:

J3 =
[
0M×2M IM 0M×3M
0M×3M IM 0M×2M

]
, (47)

J4 =
[

IM 0M×2M 0M×3M
0M×2M 0M×3M IM

]
. (48)

Using the estimated extended GAM sub-matrix D̂1, the fol-
lowing two matrices can be constructed:

E1 = J3PeD̂1, (49)

E2 = J4PeD̂1. (50)

Thererfore, according to (38) and (46), the following relation-
ship holds:

E2 = E1�̂1, (51)

where �̂1 = 5�15, in which �1 is a diagonal matrix
whose diagonal elements are the same as those of the upper
triangular matrix �. Hence, the estimation of the diagonal
elements in �1 can be achieved from the diagonal elements
of E+1 E2.
According to the expressions of the diagonal elements of

8 and � given in (20) and (26), we can obtain

α3(k−1)+h ≈ e−j2π (d/λ) cosϕk (52)

β3(k−1)+w ≈ e−j2π (d/λ) sinϕk cos θk (53)

where k = 1, 2, · · · ,K ; h = 1, 2, 3;α3(k−1)+h and β3(k−1)+h
are the (3(k − 1) + h)-th diagonal elements of 8̂1 and �̂1,
respectively. Finally, the estimated central elevation DOA and
central azimuth DOA for each source can be expressed as

ϕ̂k =
1
3

3∑
h=1

arccos(−
λ · angle(α3(k−1)+h)

2πd
), (54)
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and

θ̂k =
1
3

3∑
h=1

arccos(−
λ · angle(β3(k−1)+h)√

(2πd/λ)2 − (angle(α3(k−1)+h))2
).

(55)

At this point, the estimated central DOAs θ̂k and ϕ̂k
have been automatically paired using (54) and (55). The
main steps of the proposed algorithm are summarized as
follows:

Algorithm 1 Auto-pairing 2-D DOA Estimation Algorithm
Based on the Modified PM
Step 1 Construct the extended array output vector w(nc)(t)

via (31).
Step 2 Partition the extended array output matrix W (nc)

=

[w(nc)(1),w(nc)(2), · · · ,w(nc)(T )] to estimate P̂ and
Pe via (35).

Step 3 Perform the EVD on the constructed matrix ϒ

with (44) to estimate 8̂1 and D̂1.
Step 4 Construct the matrices E1 and E2, and calculate �̂1

via (51).
Step 5 Attain the estimates of ϕ̂k and θ̂k from equations (54)

and (55).

IV. ANALYSIS OF THE PROPOSED ALGORITHM
A. COMPLEXITY ANALYSIS
In this section, when the number of total sensor elementsM1,
the number of signal sources K and the number of snap-
shots T change, we analyze the computational complexity of
the proposed algorithm in comparison with the algorithms
in [15] and [17]. The proposed algorithm does not need
spectrum searching, estimation or eigenvalue decomposi-
tion of the high-dimensional sample covariance matrix. The
main computational cost of the proposed algorithm is mostly
made of three operations: the estimation of the propaga-
tor P̂, the estimation and eigenvalue decomposition of the
newly defined matrix ϒ, and the calculation of the diagonal
matrix �̂1, whose corresponding computational complexities
are O(6KM1 T + 9M1 K 2

+ 27K 3), O(9M1 K 2
+ 54K 3), and

O(9M1K 2
+27K 3), respectively. In above, the total computa-

tional complexity of the proposed algorithm is O(6KM1 T +
27M1 K 2

+108K 3). Moreover, the main computational com-
plexities and the average MATLAB running time1 of the
algorithms in [15] and [17] are given in Table 2 (L denotes
the number of searching points). Though the running time
cannot rigorously represent the complexity, it more or less
provides an intuitive feeling for the complexity comparison
among these algorithms. As shown in Table 2, the proposed
algorithm provides significantly lower computational cost
compared to the other algorithms.

1The specific parameters for MATLAB simulations are presented in the
second example in Section V: Simulations.

TABLE 2. Complexity comparison.

B. THE CRAMER-RAO LOWER BOUND (CRLB)
The array steering vector of the total array can be rewritten as
the following form

h(θk , ϕk )

=


e−j(2π/λ)(px1 cos θk sinϕk+py1 sin θk sinϕk+pz1 cosϕk )

e−j(2π/λ)(px2 cos θk sinϕk+py2 sin θk sinϕk+pz2 cosϕk )
...

e−j(2π/λ)(pxM1 cos θk sinϕk+pyM1 sin θk sinϕk+pzM1 cosϕk )

,
(56)

where M1 = 3M is the number of the array sensor ele-
ments in the total array, whose m-th element is placed at
(pxm, pym, pzm) for m = 1, 2, · · · ,M1.

Taking advantage of the signal non-circularity, the
extended covariance matrix can be written as

R(nc)
=

[
R R1
R∗1 R∗

]
, (57)

where R and R1 are the conjugated and unconjugated covari-
ance matrix, respectively. According to (1), R is given
by [15], [17]

R =
K∑
k=1

σ 2
k4k + σ

2
n IM1 , (58)

where σ 2
k = Skσ 2

γ k , and Sk = E[sk (t) · s∗k (t)] is the signal
power of the k-th ID source. Moreover,4k can be written as

4k = (h(θk , ϕk )hH (θk , ϕk ))� T k = GkT kGHk , (59)

where Gk = diag(h(θk , ϕk )) ∈ C3M×3M , and each entry of
T k equals (under the assumption that the angular distributed
functions are Gaussian function) [17]

[T k ]m,n = e−
(µσθk

v1)
2
+(µσϕk v2)

2

2 , (60)

in which,

v1 = −(pxm − pxn) sin θk sinϕk + (pym − pyn)

× cos θk sinϕk , (61)

v2 = (pxm − pxn) cos θk cosϕk + (pym − pyn)

× sin θk cosϕk − (pzm − pzn) cosϕk . (62)

Similarly, unconjugated covariance matrix R1 can be writ-
ten as (under the assumption that the noncircular rates are
known as 1):

R1 =

K∑
i=1

σ 2
k βk4

′
k , (63)
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where βk is the noncircular phase of the k-th ID noncircular
source; 4′k = (h(θk , ϕk )hT (θk , ϕk )) � T ′k = GkT ′kG

T
k , and

each entry of T ′k equals

[T ′k ]m,n = e−
(µσθk

v3)
2
+(µσϕk v4)

2

2 , (64)

in which,

v3 = −(pxm + pxn) sin θk sinϕk + (pym + pyn)

× cos θk sinϕk , (65)

v4 = (pxm + pxn) cos θk cosϕk + (pym + pyn)

× sin θk cosϕk − (pzm + pzn) cosϕk . (66)

To derive the CRLB of the underlying estimation problem,
let us define a vector µ containing all the central DOA
parameters as

µ = [µTθ ,µ
T
ϕ ]
T
∈ R2K×1, (67)

where µθ = [θ1, θ2, · · · , θK ]T ∈ RK×1 and µϕ =

[ϕ1, ϕ2, . . . , ϕK ]T ∈ RK×1 containing the center azimuth and
elevation DOAs to be estimated, respectively. Next, define a
new vector υ containing the other unknown parameters:

υ = [µTσθ ,µ
T
σϕ
,µTβ , σ

2
1 , · · · , σ

2
K , σ

2
n ]
T
∈ R(4K+1)×1, (68)

where µσθ = [σθ1 , σθ2 , · · · , σθK ]
T
∈ RK×1 and µσϕ =

[σϕ1 , σϕ2 , · · · , σϕK ]
T
∈ RK×1 containing the standard devi-

ations of the azimuth angle spreads and elevation angle
spreads, respectively. µβ = [β1, β2, · · · , βK ]T ∈ RK×1

containing the noncircular phases.
Then, the vector ε composed of all the unknown parame-

ters is denoted by

ε = [µT ,υT ]T ∈ R(6K+1)×1. (69)

The CRLB of ε can be computed from [26]

CRLB(ε) = I−1F (ε), (70)

where IF (ε) is the Fisher information matrix (FIM), whose
entries are defined as

(IF )q,q′ =
N
2
tr((R(nc))−1

∂R(nc)

∂[ε]q
(R(nc))−1

∂R(nc)

∂[ε]q′
), (71)

where q = 1, 2, · · · , 6K + 1 and q′ = 1, 2, · · · , 6K + 1.
Furthermore, IF (ε) can take the following form

IF (ε) =

[
IFµ,µ ITFµ,υ
IFµ,υ IFυ,υ

]
, (72)

where IFµ,µ ∈ R2K×2K , IFµ,υ ∈ R(4K+1)×2K , and IFυ,υ ∈
R(4K+1)× (4K+1). Finally, we can obtain the following expres-
sion for CRLB of the 2-D central DOAs to be estimated for
the ID noncircular sources:

CRLB(µ) = (IFµ,µ − IFµ,υ I
−1
Fυ,υ I

T
Fµ,υ

)−1. (73)

FIGURE 2. The central elevation and azimuth DOAs estimation
results (SNR = 5dB). (a), (b) and (c) correspond to three cases: the
uniform distributed function, the Gaussian distributed function, and the
uniform and Gaussian distributed functions coexist.

V. SIMULATIONS
In this section, the performance of the proposed algorithm is
analyzed through simulations. We consider that the involved
ID sources emit the BPSK signals impinging on the sensor
array as shown in Fig. 1. The noncircular phases set to be
random. The variance of ray-gains is set as σ 2

γk
= 1(k =

1, 2, · · · ,K ), and the number of scattering paths is set as
Lk = 200(k = 1, 2, · · · ,K ). In the following experiments,
the number of the whole array sensors is 36, the distance
between adjacent sensors in each sub-array is λ

/
2, and the

distance between sub-arrays is also λ
/
2. For simplicity, the k-

th ID source is parameterized by the angular parameter vector
µ = (θk , σθk , ϕk , σϕk ), which determines the central azimuth
DOA θk , the azimuth angular spread parameter σθk , the cen-
tral elevation DOA ϕk , and the elevation angular spread
parameter σϕk , respectively. Define the root-mean-square-
error (RMSE) of the central azimuth and elevation DOAs
respectively as

RMSE(θ ) =
1
K

K∑
k=1

√√√√√ 1
Q

 Q∑
q=1

∥∥∥θ̂k,q − θk∥∥∥2
, (74)

RMSE(ϕ) =
1
K

K∑
k=1

√√√√√ 1
Q

 Q∑
q=1

∥∥ϕ̂k,q − ϕk∥∥2
, (75)

where Q is the number of independent Monte-Carlo simula-
tions; θ̂k,q and ϕ̂k,q are the estimates of the central azimuth
and elevation DOAs of the k-th signal in the q-th Monte
Carlo simulation, respectively; θk and ϕk are the real value
of the central azimuth and elevation DOAs of the k-th signal,
respectively. All the simulation results are averaged over
500 times independent Monte Carlo simulations.

In the following simulations, the signal power of sources
is assumed to be the same. In addition, signal-to-noise
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FIGURE 3. The central elevation and azimuth DOAs estimation
results (SNR = 15dB). (a), (b) and (c) correspond to three cases: the
uniform distributed function, the Gaussian distributed function, and the
uniform and Gaussian distributed functions coexist.

FIGURE 4. RMSEs versus SNR for central elevation DOA estimation.

ratio (SNR) is defined as

SNR = 10 log
σ 2
s

σ 2
n
, (76)

where σ 2
s is the signal power of sources, while σ 2

n is the
variance of noise.

In the first experiment, we investigate if the proposed
algorithm works properly for different angular distributed
functions. Consider two ID noncircular sources, whose angu-
lar parameters are µ1 = (35◦, 2◦, 30◦, 3◦) and µ2 =

(65◦, 3◦, 80◦, 2◦). The number of snapshots is set as T = 500.
We perform the algorithm in three cases: 1)the two sources
exhibit both uniform distribution; 2)the two sources exhibit
both Gaussian distribution; 3)the first source exhibits uniform
distribution whereas the second source exhibits Gaussian
distribution. The SNR is equal to 5dB. For 50 independent

FIGURE 5. RMSEs versus SNR for central azimuth DOA estimation.

FIGURE 6. RMSEs versus the number of snapshots for central elevation
DOA estimation.

trials, the central DOA estimates of ID sources are plotted
in Fig. 2. Similarly, when SNR is equal to 15dB, the central
DOA estimates of ID sources are plotted in Fig. 3 (Note
that (a), (b) and (c) in Fig. 2 and Fig. 3 correspond to the three
cases mentioned above, respectively). It can be seen that the
proposed algorithm can give the correct DOA estimates under
the case where different ID sources may have different deter-
ministic angular distributed functions. As expected, the error
of parameter estimation decreases gradually with the increase
of SNR.

In the second experiment, we compare the proposed algo-
rithm with the algorithms in [15] and [17] in respect to esti-
mation performance. In addition, the CRLB is also displayed
as a benchmark. The number of snapshots is N = 500. The
arrays in these algorithms are all composed of 36 sensors.
The angular parameters of two Gaussian-shaped ID sources
are µ1 = (45◦, 1◦, 60◦, 1.5◦) and µ2 = (55◦, 1.5◦, 70◦, 1◦),
respectively. The RMSEs of the central elevation DOA
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FIGURE 7. RMSEs versus the number of snapshots for central azimuth
DOA estimation.

FIGURE 8. Resolution probability versus SNR for central elevation DOA
estimation.

estimation and central azimuth DOA estimation versus SNR
are shown in Fig. 4 and Fig. 5, respectively. It can be seen that
the proposed algorithm has better estimation accuracy com-
pared with the other algorithms, which arises from the fact
that the proposed algorithm exploits the noncircular property
to improve the performance and does not suffer additional
errors brought about by parameter pairing.

In the third experiment, we illustrate the influence of the
number of snapshots on the performance of the proposed
algorithm. The number of snapshots varies from 100 to 1500.
We set SNR = 5dB and the other parameters are the same as
the second experiment. The RMSEs of the central elevation
DOA estimation and central azimuth DOA estimation for dif-
ferent algorithms are shown in Fig. 6 and Fig. 7, respectively.
It is indicated that the estimation performance of the proposed
algorithm becomes better in collaboration with the number of
snapshots increasing and outperforms other algorithms.

FIGURE 9. Resolution probability versus SNR for central azimuth DOA
estimation.

FIGURE 10. RMSEs versus angular spread for central elevation DOA
estimation.

In the fourth experiment, we illustrate the resolution
probability versus SNR when two ID noncircular sources
are closely spaced (10◦ separation). The angular parame-
ters of the two Gaussian-shaped ID noncircular sources are
µ1 = (30◦, 2◦, 60◦, 3◦) and µ2 = (40◦, 3◦, 70◦, 2◦),
respectively. As shown in Fig. 8 and Fig. 9, the resolution
performance of the proposed algorithm outperforms other
algorithms.

In the last experiment, we present the estimation perfor-
mance of the proposed algorithm compared with other algo-
rithms versus the angular spread in Fig. 10 and Fig. 11. The
angular spread varies from 1◦ to 10◦. We set SNR = 20dB
and the angular distribution is Gaussian. The other parameters
are the same as the second experiment. From Fig. 10 and
Fig. 11, it can be observed that with the increase of the angular
spread, the estimation performance of the three algorithms
deteriorates generally since the Taylor series becomes less
accurate when the angular spreads are large.

VOLUME 5, 2017 20257



Z. Dai et al.: Computational Efficient Two-Dimension DOA Estimation for ID Noncircular Sources

FIGURE 11. RMSEs versus angular spread for central azimuth DOA
estimation.

VI. CONCLUSION
In this paper, we developed a 2-D central DOA estimation
algorithm for multiple ID noncircular sources with the three-
parallel ULAs. Based on the signal non-circularity and Taylor
series approximation, we have obtained the generalized rota-
tional invariance relationships among the extended GAMs of
the three ULAs. And then the 2-D central DOAs could be
obtained by using modified PM. Without spectrum search-
ing, estimation or eigenvalue decomposition of the sample
covariance matrix, the proposed algorithm evidently reduces
computational cost and is hence suited for real-time pro-
cessing. Furthermore, the estimated 2-D DOAs are paired
automatically. In addition, the proposed method owns better
estimation performance and can be applied in the multisource
scenario where different sources may have different angular
distribution shapes.

APPENDIX
For noncircular signal sk (t)(k = 1, 2, · · · ,K ), it holds
that [18]–[22]

E[sk (t) · sk (t)] = ρkejβkE[si(t) · s∗k (t)] 6= 0, (77)

where ρk and βk are the noncircular phase and rate of the
k-th source, respectively. ρ = 1 and 0 ≤ ρ ≤ 1 stand for the
maximal and common noncircular rated signal, respectively.
In this paper, we consider the case where the received signal is
strictly noncircular signal with the maximal noncircular rate.
Thus the signal vectors s(t) = [s1(t), s2(t), · · · , sK (t)]T can
be expressed as

s(t) = 9s0(t), (78)

where s0(t) ∈ RK×1 is a real-valued vector; 9 =

diag{ejβ1/2, ejβ2/2, · · · , ejβK /2} is a diagonal matrix of size
K × K ; βk is the noncircular phase of the k-th source.

Define the variables ck,1, ck,2 and ck,3 as

ck,1 =
Lk∑
l=1

γk,l(t),

ck,2 =
Lk∑
l=1

γk,l(t)(θk,l − θk ),

ck,3 =
Lk∑
l=1

γk,l(t)(ϕk,l − ϕk ). (79)

Furthermore, according to (12), (15), (78) and (79), s̄(t) can
be rewritten as

s̄(t) = 0s1(t) = 091s01(t), (80)

in which,

0 = diag(c1,1, · · · , cK ,1, c1,2, · · · ,

cK ,2, c1,3, · · · , cK ,3) ∈ C3K×3K , (81)

s1(t) = [(s(t))T , (s(t))T , (s(t))T ]T ∈ C3K×1, (82)

91 = diag{ejβ1/2, · · · , ejβK /2, ejβ1/2, · · · ,

ejβK /2, ejβ1/2, · · · , ejβK /2} ∈ C3K×3K , (83)

s01(t) = [(s0(t))T , (s0(t))T , (s0(t))T ]T ∈ R3K×1. (84)

According to (7), the path gains γk,l(t) of different paths
are uncorrelated. Moreover, ck,1 is usually scaled to be 1;
ck,2 and ck,3 are complex-valued. Here, ck,2 and ck,3 contain
the information of the azimuth angle spread and elevation
angle spread of k-th ID sources. Thus, we can have

ck,1 = 1,

ck,2 =
∣∣ck,2∣∣ ejangle(ck,2),

ck,3 =
∣∣ck,3∣∣ ejangle(ck,3). (85)

Combine (80) and (85), s̄(t) can be rewritten as

s̄(t) = 010291s01(t), (86)

where

01 = diag(1, · · · , 1, ejangle(c1,2), · · · , ejangle(cK ,2),

× ejangle(c1,3), · · · , ejangle(cK ,3)) ∈ C3K×3K , (87)

02 = diag(1, · · · , 1,
∣∣c1,2∣∣ , · · · , ∣∣cK ,2∣∣ ,

×
∣∣c1,3∣∣ , · · · , ∣∣cK ,3∣∣) ∈ C3K×3K . (88)

Finally, s̄(t) can be expressed as

s̄(t) = 4s̄0(t), (89)

where 4 = 0191 = diag{ej$1 , , ej$2 , · · · , ej$3K } is a
diagonal matrix of size 3K × 3K ; $k = ηk + µk (k =
1, 2, · · · , 3K ), ηk and µk are the amplitude values of
k-th diagonal elements of 01 and 91, respectively. s̄0(t) =
02s01(t) is a real-value signal vector of size 3K × 1.
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