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ABSTRACT Delineation of the cardiac right ventricle is essential in generating clinical measurements
such as ejection fraction and stroke volume. Given manual segmentation on the first frame, one approach
to segment right ventricle from all of the magnetic resonance images is to find point correspondence
between the sequence of images. Finding the point correspondence with non-rigid transformation requires
a deformable image registration algorithm, which often involves computationally expensive optimization.
The central processing unit (CPU)-based implementation of point correspondence algorithm has been
shown to be accurate in delineating organs from a sequence of images in recent studies. The purpose
of this study is to develop computationally efficient approaches for deformable image registration. We
propose a graphics processing unit (GPU) accelerated approach to improve the efficiency. The proposed
approach consists of two parallelization components: Parallel compute unified device architecture (CUDA)
version of the deformable registration algorithm; and the application of an image concatenation approach
to further parallelize the algorithm. Three versions of the algorithm were implemented: 1) CPU; 2) GPU
with only intra-image parallelization (sequential image registration); and 3) GPU with inter and intra-image
parallelization (concatenated image registration). The proposed methods were evaluated over a data set of
16 subjects. CPU, GPU sequential image, and GPU concatenated image methods took an average of 113.13,
16.50, and 5.96 s to segment a sequence of 20 images, respectively. The proposed parallelization approach
offered a computational performance improvement of around 19× in comparison to the CPU implementation
while retaining the same level of segmentation accuracy. This paper demonstrated that the GPU computing
could be utilized for improving the computational performance of a non-rigid image registration algorithm
without compromising the accuracy.

INDEX TERMS Image registration, GPU computing, cardiac functional analysis, image segmentation,
magnetic resonance imaging.

I. INTRODUCTION
Image registration is the process of obtaining a mapping
between a pair of images, one of the most common appli-
cations in medical image processing [1]–[3]. During the reg-
istration process, one image known as the reference image is
considered fixed and the other is moving and goes through a
number of image operations such as transformation and reg-
ularization. The process of obtaining the alignment involves

finding the transformation that maximizes the similarity
between the reference and moving images. The final solu-
tion to the image registration approach is often achieved
via many iteration loops which lead to high computational
cost. Traditional single central processing unit (CPU) based
implementations take a considerable amount of time to com-
pute the registration, and therefore, limit the application for
standard clinical applications. One approach for improving
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the performance of the registration algorithm is to use field-
programmable gate array (FPGA) [4]. However, the utiliza-
tion of FPGAs has been restricted by its development time
and complexity for implementation.

During the past few decades, the computing ability of new
heterogeneous parallel hardware such as graphics processing
units (GPUs) has increased much faster than its CPU coun-
terpart. The peak computational performance and memory
bandwidth of recent GPUs exceed CPU by a large factor.
Recently, there is a significant research effort to utilize GPUs
to improve the computational performance of image pro-
cessing algorithms [5]–[9]. Several studies have also been
proposed in literature to improve the computational perfor-
mance of image registration algorithms [10], [11]. In contrast
to FPGAs, GPUs are less expensive and require less devel-
opment time. Although recent GPU software development
frameworks allow for scientific computing through general
purpose graphics processing computing (GPGPU) platforms
such as Compute Unified Device Architecture (CUDA) by
NVIDIA Corporation, the process of developing efficient
massively-parallel versions of the image processing algo-
rithms poses a number of challenges to the scientific commu-
nity. The major challenge arises from the GPU’s architecture
and programmingmodel which differs radically from that of a
CPU, and the traditional way of developing algorithms often
results in poor performance.

This study proposes a parallel implementation of a
deformable image registration algorithm using GPU comput-
ing. Recent studies have shown that the CPU implementation
of the algorithm to be effective in delineating endocardium
and epicardium of the right ventricle (RV) [12] as well as
analyzing cardiac left ventricular regional function fromMRI
[13]. The registration algorithm consists of a number of com-
putationally expensive components such as the computation
of transformation, calculation of similarity metric and opti-
mization. The registration is performed sequentially over the
image series so that the difference between the reference and
moving images is smaller which leads to faster convergence.
To reduce the accumulated propagation errors arising from
the sequential registration process, the images in the series
are registered in the forward and backward directions, and a
weighted average is used in computing the final transforma-
tion mapping for each image in the cardiac cycle.

Parallelization of several components of the registration
algorithm is straightforward since these components perform
same arithmetic operations for every pixel in the image.
In this study, we propose two parallelization components:
1) Parallel implementation of the elements of the registration
algorithm using CUDA; and 2) Using image concatenation to
parallelize the registration of the image sequence. One of the
performance bottlenecks in using the graphics processors is
caused by the data transfers between the CPU and GPUmem-
ory locations. The transfer rate between these two memory
locations is considerable low. By moving the entire images in
a sequence to the graphics memory, the proposed approach
was able to minimize the data transfer and utilize the very

high bandwidth available between the GPU memory and its
arithmetic unit.

Due to its complex morphology and function, RV segmen-
tation over a sequence of MR images is acknowledged more
challenging than left ventricular segmentation [14], [15].
Automating the process of segmenting RV from a sequence
of MRI images has bestirred a significant research atten-
tion recently, and has been the subject of a Medical Image
Computing and Computer Assisted Intervention (MICCAI)
2012 RV Segmentation Challenge (RVSC) [16]–[19]. The
proposed method was evaluated over a data set of 16 subjects
and took an average of 5.96 ± 0.91 seconds to segment RV
from a sequence of 20MRI images, a significant performance
improvement over serial image registration approach. A pre-
liminary conference version of this work has appeared in
IEEE EMBC 2015 [20]. This journal version expands on [20]
with a much broader, more informative/rigorous discussion
of the subject. This includes a more detailed algorithmic
description of the moving mesh generation and quantitative
evaluations of the accuracy of the GPU and CPU implemen-
tations.

FIGURE 1. Computation of moving mesh correspondences between a pair
of fixed and moving images.

II. METHODS
The objective of this study is to accelerate the diffeomor-
phic non-rigid image registration algorithm [21] which com-
putes point-to-point mapping between two images using the
squared L2-norm as the similarity metric [1]. Fig. 1 shows
the flow diagram of the process of finding point correspon-
dences between two consecutive images Tk and Tk+1 (for
k = 1, . . . ,K − 1) where k is the frame number of the image
andK is the total number of frames in a cardiac cycle. Finding
the optimum mapping between images Tk and Tk+1 can be
formulated as

φ̂ = argmin
φ

EL2(Tk ,Tk+1, φ(ξ )) (1)

where ξ ∈ � denotes pixel location, φ : � → � a trans-
formation function and EL2(·) is the squared L2-norm based
dissimilarity measure [1]. As this problem may not have a
unique solution and require more constraints, we introduce
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FIGURE 2. The proposed forward-backward propagation of the moving mesh correspondences for a sequence of
cine MR images.

in the following a deformation field using a monitor function
µ and curl of end velocity field γ , where µ : � → R and
γ : � → R. Define a continuous monitor function µ(ξ )
constrained by: ∫

�

µ = |�|. (2)

The objective is to find a transformation φ that satisfies,

Jφ(ξ ) = µ(ξ ), (3)

where Jφ is the Jacobian determinant of the transformation.
First, we compute a vector field ρ(ξ ), defined by

div ρ(ξ ) = µ(ξ )− 1. (4)

Then, we construct a velocity vector field from ρ(ξ ):

νt (ξ ) =
ρ(ξ )

t + (1− t)µ(ξ )
, t ∈ [0, 1], (5)

where t is an artificially algorithmic time. Finally, we solve
the following ODE to obtain φ that satisfies (3):

dψ(ξ, t)
dt

= νt (ψ(ξ, t)), t ∈ [0, 1], ψ(ξ, t = 0) = ξ (6)

and setting φ(ξ ) = ψ(ξ, t = 1).
We solve the div-curl system under the Dirichlet boundary

condition by adding to (4) a constraint on the curl of ρ(ξ ),
which guarantees obtaining a unique solution:{

div ρ(ξ ) = µ(ξ )− 1 (7a)

curl ρ(ξ ) = γ (ξ ) (7b)

with null boundary condition ρ(ξ ) = 0∀ξ ∈ ∂�, where γ (ξ )
is a continuous function over �. Hence, the transformation
can be fully parameterized by Jφ(ξ ) and γ (ξ ). We ensure
the uniqueness of the solution using the Dirichlet bound-
ary condition [22]. Note that a diffeomorphism corresponds
to a positive transformation Jacobian determinant, which is
enforced explicitly via the monitor function [23]. The above
problem can be solved by a step-then-correct optimization
strategy iteratively to find the point correspondence.

The endocardial and epicardial boundary points were
tracked in all the frames of a cardiac cycle using the transfor-
mation function φ̂ and the manual segmentation on the first
frame. The amount of deformation is smaller between neigh-
boring frames than the deformations between frames that are
further in temporal domain. Therefore, we compute the trans-
formations between neighboring frames, for instance Tk+1
and Tk , rather than computing the transformations between
Tk+1 and T1. We use the above approach to improve the track-
ing accuracy and convergence time. However, this approach
may lead to accumulation of tracking errors. In order to
reduce the accumulation of tracking errors, two separate
propagation algorithms along forward and backward direc-
tions performed throughout the cardiac cycles. Fig. 2 shows
the steps of computing the contours for all the frames of a car-
diac cycle. The displacement vectors correspond to the point-
to-point correspondence are calculated using interpolation.

DMk,1 = (1− w)DM f
k,1 + wDM

b
k,1 (8)

where DM f
k,1 and DMb

k,1 correspond to the displacement
vectors between the k th and first frames in the forward and
backward directions, and w = (k − 1)/(K − 1).

A. PARALLEL IMPLEMENTATION
We use two approaches in parallelizing the moving mesh
computation: 1) intra-image parallelism; and 2) inter-image
parallelism.

1) INTRA-IMAGE PARALLELISM
The intra-image parallelism is obtained by parallelizing the
computational components of the moving mesh algorithm.
GPU hardware allows for parallel execution of large num-
ber of threads. The threads are grouped into blocks and
blocks are grouped in a grid. The resources available in each
thread is limited and shared between threads of each block.
Optimum block per grid size was computed using the size
of the deformation grid and the selected threads per block.
Parallel executions were implemented for the computation of
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the transformation for each pixel in the moving mesh, the
cost function using the squared L2-norm and the optimizer.
To minimize the overhead associated with the data transfer
between GPU and CPU memory locations, the image infor-
mation was transfered to the GPU memory and all the sub-
sequent computations associated with nonrigid registration
were executed in the GPU. Only the final results correspond
to the mapping between the images were transfered back
to the CPU memory. The forward and backward propagation
of the moving mesh algorithm were also computed in parallel
as they do not rely on each other.

2) INTER-IMAGE PARALLELISM
We used inter-image parallelism to further parallelize the
moving mesh correspondences between a sequence of
images. The traditional way of computing image registration
is to register two images at a time as depicted in Fig. 3(a). This
process requires running the image registration algorithm
K − 1 times to compute the point correspondences between
a sequence of K images. The process can be parallelized
by using image concatenation to create two separate images
with an offset of one image as depicted in Fig. 3(b). Then,
the moving mesh correspondences can be computed between
the concatenated images in a single step. Similar to the
intra-image parallelism, the concatenated image information
was transfered to the GPU memory and all the subsequent

FIGURE 3. Inter-image parallelism: (a) Traditional way of computing
image registration using a sequential approach which requires K − 1
steps to register a sequence of K images; (b) Using image concatenation
to create two image tiles with an offset of one image which allows the
computation of image registration in a single step.

computations associated with nonrigid registration were exe-
cuted in the GPU to minimize the overhead associated with
the data transfer between GPU and CPU memory locations.
The moving mesh correspondences between the individual
image pairs in the sequence were then be obtained by splitting
the matrix computed from the concatenated images. We set
the initial boundary to be equal to zero and ignored the effects
of boundary condition for the inter-image parallelized version
of the GPU implementation.

B. IMPLEMENTATION
Three versions of the algorithm were implemented: 1) CPU;
2) GPU with only intra-image parallelization; and 3) GPU
with inter and intra-image parallelization. The algorithms
were implemented using the Python programming language.
A computationally expensive part of the algorithm for the
CPU version was implemented in C using Cython module
to improve the computational performance significantly over
the pure Python version of the algorithm. The GPU CUDA
version was implemented using Numbapro (Continuum Ana-
lytics, Austin, TX) with 32-bit floating-point precision. We
used cufft and cublas CUDA submodules in the GPU imple-
mentation. The single thread CPU version of the algorithm
was computed on 2.6 GHz Intel Core i7 processor. The
GPU versions of the algorithm were computed on a NVIDIA
GeForce GTX 1060 graphics card which has 10 streaming
multiprocessors each with 128 streaming processors (SPs),
i.e., a total of 1280 SPs. We set the threads per block to 32 for
all GPU implementations.

C. MAGNETIC RESONANCE IMAGING DATA
The proposed approaches were evaluated over an MR image
data set composed of 16 subjects provided by the Right
Ventricular Segmentation Challenge, MICCAI 2012 [15].
The data sets were acquired on 1.5T MR scanners (Sym-
phony Tim, Siemens Medical Systems, Erlangen, Germany)
with steady-state free precession acquisition mode. The
MRI sequence parameters are as follows: TR = 50 ms;
TE= 1.7 ms; flip angle= 55; slice thickness= 7 mm; matrix
size = 256× 216; Field of view = 360–420 mm; 20 images
per cardiac cycle. For the moving mesh, grid sampling was
set equal to the pixel spacing of the MR images.

D. QUANTITATIVE EVALUATION METRICS
In addition to the assessment of the computational perfor-
mance, we assessed the accuracy of the GPU and CPU ver-
sions of the algorithms in comparison to manual delineation
of the right ventricle. We relied on the following two metrics
for the quantitative analysis of the accuracy.

1) THE DICE METRIC (DM)
The DM is a well-known metric to measure the similarity
between manual and automated delineations. The DM is
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given by

DM (Va,Vm) =
2Vam

Va + Vm
, (9)

where Va is the volume of the automatically segmented
region, Vm is the volume of the manually segmented region,
andVam is the intersection between themanual and automated
segmented volumes. TheDM is bounded by [0, 1]. The higher
the value of the DM, the better the similarity.

2) THE HAUSDORFF DISTANCE (HD)
The HD [24] is another well-known metric which measures
the maximum deviation between the manual and automated
contours. The HD between the automated contour Ca and
manual contour Cm is given by

HD(Ca,Cm) = max(max
i
(min

j
(d(pia, p

j
m))),

max
j
(min

i
(d(pia, p

j
m)))) (10)

where
{
pia
}
denotes the set of all the points in Ca,

{
pjm
}

denotes the set of all the points in Cm, and d(·) denotes the
Euclidean distance. We computed the HD in mm using the
spatial resolution obtained from the pixel spacing information
of the DICOM header.

III. RESULTS
A. COMPUTATIONAL PERFORMANCE
Fig. 4 shows the computational times for the serial image
registration algorithm implemented for CPU and GPU. The
computational time for the CPU implementation increases
linearly with the number of pixels in the image. However, the
computational time for the GPU implementation is approx-
imately constant with the number of pixels. Fig. 5 shows
the runtime for kernel and overhead executions of the GPU
implementation of the sequential image registration approach

FIGURE 4. Computational times for the CPU and GPU implementations of
the sequential image registration algorithm. The computational time for
the CPU implementation approximately increases linearly with the
number of pixels in the image, whereas the computational time is
approximately constant for the GPU implementation.

FIGURE 5. Runtime for kernel and overhead executions of the GPU
implementation of the sequential image registration algorithm. The figure
shows that the majority of the runtime was spent on overhead such as
CUDA API calls than the execution of kernels.

FIGURE 6. Runtime for kernel and overhead executions of the GPU
implementation of the concatenated image registration approach. The
number of CUDA API calls have been reduced significantly due to the
reduction in number of pair of images used in the registration process
which led to the reduction of the computational overhead.

for different ranges of number of pixel values. The runtime
was measured using NVIDIA command line profiling tool,
nvprof. Although the runtime for kernel execution time was
increasing approximately linearly with the number of pixel
values, it was only a small fraction of the total computational
time. Majority of the runtime was spent on overhead such
as memory transfer, memory allocation, kernel launch and
other CUDA application programming interface (API) calls.
Fig. 6 shows the runtime for kernel and overhead executions
of the GPU implementation of the concatenated image regis-
tration approach. The number of API calls have been reduced
significantly for GPU implementation of the concatenated
image registration due to reduction in the number of pair of
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FIGURE 7. Computational times for parallel and serial image registration
algorithms implemented using GPU computing. The proposed parallel
image registration algorithm yielded a significant performance
improvement.

images used in the registration process, i.e., only one pair
was used in concatenated image approach as opposed to
20 pair of images in sequential registration approach. Fig. 7
shows the computational times for the GPU implementation
of serial and concatenated image registration approaches with
the number of pixels.

Table 1 shows the computational time, peak GPU memory
usage and GPU computational unit usage for the proposed
parallel image registration algorithm, and sequential image
registration algorithms implemented for the GPU and CPU.
The GPU implementation of the concatenated image reg-
istration approach took an average computational time of
5.96 seconds, a three times speedup in comparison to the
GPU implementation of sequential image registration. The
GPU memory and computational unit usage were measured
using GPU-Z tool. The GPU implementation of the con-
catenated image registration approach consumed a maximum
GPU memory of 261 MB, around 140 MB higher than
the maximum GPU memory consumption by the sequential
image registration implementation. TheGPU implementation
of the concatenated image registration approach utilized the

TABLE 1. The computational time, peak GPU memory usage and GPU
computational unit usage for the proposed approach and sequential
image registration algorithms. The proposed parallel registration
approach yielded a significant performance improvement over the
sequential approach.

FIGURE 8. Representative examples showing RV deformations computed
via grid generation using concatenated image registration approach.

FIGURE 9. Representative examples of segmented endocardial (green)
and epicardial (yellow) borders of the RV over a complete cardiac cycle
using concatenated image registration approach.

computational unit at an average rate of 38.7% which is more
than 4.5 times the utilization by the sequential registration
approach.

B. EVALUATIONS OF SEGMENTATION ACCURACY
In Fig. 8, we give representative examples showing RV defor-
mations computed using the proposed parallel method. We
could see that grid folding is not present in any of the frames,
although the amount of deformation is significant near the
end-systolic phase. In Fig. 9, we give representative examples
of segmented endocardial and epicardial borders of the RV
over a complete cardiac cycle. These examples show that
the proposed method accurately tracked both endocardial and
epicardial border over the entire cardiac cycle.

1) QUANTITATIVE EVALUATION
The CPU, GPU sequential image and GPU concatenated
image based approaches have been quantitatively evaluated
over 16 subjects from the training set of theMICCAI 2012RV
segmentation challenge dataset. The manual segmentation
for the end-systolic (ES) and end-diastolic (ED) phases of
the heart were provided by the challenge organizers. Table 2
reports the DM and HD values for the training set as ES.
Automated contours from all three algorithms for the endo-
cardial and epicardial segmentations yielded average DM
values of 0.82 and 0.86 in comparison to manual contours,
respectively.
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TABLE 2. Quantitative comparisons of the automatic contours by the CPU, GPU sequential image and GPU concatenated image implementations of the
algorithm at end-systole. The higher the Dice Metric (DM) or the lower the Hausdorff Distance (HD), the better the performance.

IV. DISCUSSION
Although the proposed registration will be applied as a post-
processing approach, it is important to obtain the results
within a limited time frame for clinical applications due to
the large number of images associated with the MR scans.
In this study, we have demonstrated that the GPU computing
can be utilized for improving the computational performance
of an image registration algorithms without compromising
the accuracy. We have also shown that the proposed algo-
rithm can be used for tracking the endocardial and epicardial
borders of the right ventricle over a sequence of MR images,
given an initial manual segmentation on the first frame.
The proposed approach does not require a time-consuming
manually-built training set. Further, the method does not
assume any shape constraints in the delineation process of
the right ventricle.

A number of studies have been proposed in the literature
to utilize non-rigid registration approaches to segment organs
from a sequence of medical images, given manual segmen-
tation on the first frame. For instance, Odille et al. [25] pro-
posed a non-rigid registration approach to segment aorta from
real-time velocity mapping MR images. Also, several studies
have been proposed in the literature to improve the perfor-
mance of the image registration algorithms using graphics
hardware [26]–[31]. However, most of the existing methods
are application-specific, and they do not take full advantage
of the features particular to the cardiac deformation. For
instance, the nonrigid registration approach proposed in this
study prevents mesh folding, i.e., grid lines of the same family
will not cross each other, an essential attribute in tracking
the cardiac deformation. In addition, the proposed registra-
tion approach allows for setting the minimum and maximum
allowable deformation to imitate the deformation of cardiac
tissue to improve the tracking accuracy.

The results for the CPU version of the proposed nonrigid
registration algorithms for Test1 and Test2 datasets of the
Right Ventricular Segmentation Challenge, MICCAI 2012
[15] is presented in [12]. The CPU version of the algorithm
yielded a Dice score of 0.83 and 0.85 for endocardium for
Test1 and Test2 datasets, respectively. The corresponding
Dice scores for epicardium were 0.87 and 0.88. These results
show that the proposed nonrigid registration based method
performed significantly better than the other methods in [16]
and [17] for both endocardial and epicardial segmentations.
The GPU versions of the algorithm are expected to produce

similar results since they generate nearly identical moving
mesh correspondences. The GPU implementation of the con-
catenated image registration approach took around 6 seconds
to segment the entire set of images in a sequence whereas
most existing methods segments only the end-diastole and
end-systole frames. The proposed nonrigid registration based
algorithm does not utilize shape or distance priors in the
segmentation process as in [18] and [19]. Also, the proposed
approach does not require a training set as in [32] and [33].
Lack of reliance on shape priors and training sets led to a
more robust algorithm, and the proposed nonrigid registration
approach has been shown to be effective in segmenting the
RV with considerable shape difference such as hypoplastic
left heart syndrome hearts [12]. Another advantage of using
registration based method for tracking the boundary is that it
provides the ability to assess the regional function of the ven-
tricle by retaining the point correspondence over the image
sequence [13].

Most of the previous GPU computing based registration
approaches mainly focus on parallelizing one or more indi-
vidual components of the registration process. Kubias et al.
proposed utilization of GPU computing for parallelizing the
computation of similarity measures [26]. Ruiz et al. [27]
used GPU implementation for the most computationally
demanding part of their algorithm, the calculation of cross-
correlations between images. Modat et al. [28] proposed a
GPU implementation to compute free form deformation in
parallel. Huang et al. [29] utilized GPU for computing the
transformations required by the registration approach and
relied on CPU for histogram and similarity measure computa-
tions. A few notable exceptions where the entire registration
calculations were performed on the GPU include [30], [31].
In addition to performing the entire registration using GPU
computing, one of the major contributions of our approach
is the algorithmic changes in the registration process by con-
catenating the images to further accelerate the computational
performance.

Parallelization of components of the registration algorithm
using GPU programming yielded a computational perfor-
mance improvement of 6.8× in comparison to the CPU
implementation. The image concatenation approach pro-
duced a significant computational performance improvement
and offered a speed up of 19× over the CPU implementation.
All three versions of the algorithm yielded the same level
accuracy in terms of Dice metric in comparison to expert
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manual contours. The peak GPU memory consumption by
the implementation of the concatenated image registration
approach is 261 MB, a value much smaller than the amount
of memory available on most modern GPUs.

Although the algorithms presented in this study computes
the automatic contours for all the images in anMRI sequence,
the evaluations were performed only on ES due to the unavail-
ability of the manual contours on all images of the cardiac
cycle. The ability to compute contours over the whole cardiac
cycle is advantageous in producing an in-depth set of clinical
parameters. For instance, we require contours over the entire
cardiac cycle to compute a filling rate curve which can be
used for finding early and late ventricular filling parameters.

V. CONCLUSIONS
In this study, we proposed a parallel implementation of a
moving mesh approach for performing deformable image
registration using GPU computing. The proposed algorithm
consist of two-fold parallelization: 1) intra-image parallelism
which consists of computing the moving mesh correspon-
dences using CUDA platform for GPU computing; and
2) inter-image parallelism which consists of concatenating
a sequence of images and then compute the moving mesh
correspondences as if it is one single image. The proposed
approach yielded a significant performance improvement and
computed the forward and backward moving mesh corre-
spondences with an average of 5.96 ± 0.91 seconds for a
sequence of 20 images.
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