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ABSTRACT When investing in the stock market, the first problem and one of paramount importance
which investors have to face is making the proper stock selection. Selecting the stocks that simultaneously
offer high return and low risk is a difficult problem that is worth investigating. However, the traditional
risk calculation based on the modern portfolio theory (MPT) of portfolios has some defects. The MPT
method requires the calculations of every relationship between each pair of stocks in the portfolio, entailing
high computation complexity, which grows exponentially with the increased number of stocks. Besides,
the traditional calculation is unable to calculate the coefficient of variation, and merely considers the
relationship between each pair of stocks, so it cannot accurately assess portfolio risk. Therefore, this paper
proposes a novel method, funds standardization, and utilizes it to represent the portfolio return and calculate
portfolio risk. The fluctuation of portfolio funds standardization shows not only the relationships between
each pair of stocks, but also the interactions among all stocks. Hence, utilizing funds standardization can
accurately assess portfolio risk and completely represent the mood swings of investors. Compared with
the traditional method, the proposed method significantly reduces the computation complexity because the
complexity does not increase when the portfolios stock number increases. We combine the genetic algorithm,
Sharpe ratio and funds standardization to find the optimal portfolio. In addition, we utilize the sliding window
to avoid the over-fitting problem, which is common in this field, and test the effect of all kinds of training
and testing periods. The experimental results show that the portfolio can spread the risk effectively, and
that the portfolio risk can be assessed accurately by utilizing the funds standardization. Comparing with the
traditional method, our method can identify the optimal portfolio efficiently and establish a portfolio that
has lower risk and stable return.

INDEX TERMS Portfolio, Sharpe ratio, stock selection, funds standardization, low volatility, Genetic

algorithm (GA), modern portfolio theory.

I. INTRODUCTION

To make a fortune, most people choose investing. However,
how to accurately utilize ones capital to invest in a beneficial
target is the first priority for investors. In contrast to other
targets, like futures, deposits and real estate, stock investment
is more flexible and stable. Unlike real estate and deposits,
stocks not only do not require plenty of money, but also permit
a free allocation of capital. Moreover, information on the
stock market is public. In addition, the fluctuation of stocks
is smaller than that of futures; thus, the stock value will not
drastically depreciate overnight. Also, some stock markets
have a daily price limit, which makes it more stable than other
targets. For these reasons, many investors choose to invest in
stocks.

Stock selection is the first problem that investors encounter
when they invest in the stock market. The Sharpe ratio [1]
is an important indicator by which to assess a stock; its
concept is to calculate the reward of each stock per unit risk.
Investors always expect to choose a target that has less risk
for the same reward, or a target that has more reward for
the same risk. The higher the Sharpe ratio, the better the
target! Therefore, investors like to invest in stocks which have
a higher Sharpe ratio. To spread the risk, investors usually
invest in more than one stock. As the saying goes, Do not
put all your eggs in one basket. The economist Markowitz
proposed the Modern Portfolio Theory (MPT) [2] that calcu-
lates total portfolio risk by variance and covariance; however,
the computation complexity of MPT increases exponentially.
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Furthermore, as there are a great number of targets in the
market, taking all of the stocks into consideration to create
the best portfolio is complicated.

With thousands of stocks in the market, deciding which
portfolio should be chosen is quite difficult. The problem of
stock selection cannot be solved by an exhaustive method.
Computational intelligence (CI) techniques are usually used
to solve problems which cannot be exhausted in a limited
time. CI techniques have the ability to find a good solution
within a large solution space. In recent years, CI has been
widely used in the financial field, especially concerning the
stock market. Therefore, choosing a portfolio by CI tech-
niques can increase the efficiency of finding a good portfolio.

Most studies on stock selection use CI techniques; these
include evolutionary computation, fuzzy theory and artificial
neural network. CI techniques choose stocks according to
some assessment indicators; the most commonly used indi-
cators are risk, return and the Sharpe ratio. Calculating the
Sharpe ratio requires assessing risk. Most of the methods
utilize MPT to calculate risk. They all need to calculate the
covariance of each pair of variables. As the number of stocks
in a portfolio increases, the time for calculating covariance
increases exponentially. Some papers propose a simplified
way to reduce the risk calculation, but they cannot completely
represent the total risk.

Consequently, this paper proposes funds standardization to
calculate portfolio risk. In contrast to the traditional calculat-
ing method of MPT, ours posits that all the information will
reflect the fluctuation of funds [3]. Therefore, it can calculate
the risk of the portfolio more simply and also express the
mood swings of investors. Then we use the Sharpe ratio
where the portfolio assessment method of risk and return
is replaced by our method, funds standardization. However,
there are thousands of stocks in the market, so we cannot
exhaust all the combinations in a limited time. Finding a
better portfolio requires powerful computational intelligence.
In our method, we use the genetic algorithm (GA) [4] to
accurately construct the portfolio which has less risk and
more reward. Our method, using GA for a large quantity
of stocks, not only reduces the computation complexity to
enable investors to easily evaluate the portfolio risk, but also
creates a portfolio which has low risk and stable reward.

The rest of this paper is organized as follows. In Section II,
other methods of using the Sharpe ratio on choosing a port-
folio are discussed. In Section III,we give brief backgrounds
of the Sharpe ratio, portfolio and the method Markowitz pro-
posed in 1952 for calculating risk in MPT. Section IV is the
basic concept of our method. In Section V, we explain what
our method does and how we improved on this issue. The
data on the testing effect and the results of comparing other
methods with our proposed method are offered in Section VI.
Lastly, Section VII presents the conclusion of this paper.

Il. RELATED STUDIES
In the investment of stocks, there are three major issues:
forecast, market timing and stock selection. Forecasting the
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stock price or the stock trend, finding the best timing to
buy or sell stocks, or selecting good stocks can help investors
obtain more profit. Because the feasible solution spaces of
these issues are too complex to find the best solution, numer-
ous applications of evolutionary computation are utilized in
regard to these issues.

Related studies [S]-[17] on forecasting systems include
neural networks [5]-[9], fuzzy time series [10]-[14], dynamic
normalization back propagation networks [15], genetic fuzzy
systems and artificial neural networks [16], and genetic algo-
rithms and wavelet neural networks [17]. Besides the fore-
cast, many related studies focus on finding the best timing to
buy or sell stocks. These studies use different methods, such
as fuzzy theory [18], neural network [19], genetic program-
ming [20], ant colony optimization [21], particle swarm opti-
mization [22] and quantum-inspired algorithms [23], [24].
Some of them not only use evolutionary computation, but also
apply technical indicators to find the best timing.

In addition to forecasting and market timing, stock selec-
tion is a critical issue in investment. Stock selection is the
first problem faced before investors can make a sensible
investment decision. Selecting the stocks while consider-
ing both low risk and high return is difficult; as a result,
MPT [2] and the Sharpe ratio [1] were proposed. MPT pro-
posed the method for calculating portfolio risk and portfolio
return. The core idea of the Sharpe ratio is maximizing the
expected portfolio return per unit of portfolio risk. The Sharpe
ratio simultaneously considers the return and the risk. Many
studies [25]-[33] use MPT and the Sharpe ratio to assess
portfolios.

However, the Sharpe ratio still involves some problems.
For instance, sine the calculation of portfolio risk is too
complex to comput, some studies [25], [26] focus on simpli-
fying the formula of portfolio risk or reducing the calculation
time. Reference [25] exploited particle swarm optimization
to find the best portfolio in reasonable computing time.
Reference [26] indicated that the calculation time of MPT
will increase tremendously with a large number of stocks,
so that study proposed a faster heuristic algorithm to reduce
the calculation time. Besides, studies [27]-[31] proposed
considering not only the Sharpe ratio, but also other factors
when assessing an investment portfolio because they think
that the Sharpe ratio is not accurate enough. Reference [27]
exploited the Sharpe ratio and downside risk to assess a
portfolio. Reference [28] utilized a regularized hypervolume
selection algorithm and robust statistics to find the best port-
folio. Reference [29] incorporated basic, bounding, cardinal-
ity and class constraints to assess a portfolio. Reference [30]
proposed a fuzzy Sharpe ratio and used the uncertainty of
portfolio fuzzy return to calculate the risk. Reference [31]
used multi objective particle swarm optimization whose fit-
ness considers the Sharpe ratio and percent return. Some stud-
ies [32], [33] do not search for a portfolio, but rather compare
different models or algorithms and use the Sharpe ratio as the
evaluative criterion. Besides the Sharpe ratio, related studies
use methods which include the adjusting of weights, different
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index or fuzzy theory to improve the accuracy of portfolio
assessment.

Besides, many studies [34]-[42] also use the def-
inition of portfolio risk in the MPT. Reference [34]
demonstrated the practicality of large-scale numerical
portfolio optimization using the covariance matrix esti-
mation process. Reference [35] proved that stocks with
low volatility can earn high risk-adjusted return. Ref-
erence [37] found that the laws of traditional finance
theory are defied, since low-volatility portfolios outper-
form high-volatility portfolio. Financial theory predicts
higher return associated with higher risk. If portfolios have
higher return, it is due to higher portfolio risk. However,
these studies [34], [35], [37] indicate that actively man-
aged low-volatility portfolios can outperform high-volatility
portfolios.

Reference [36] proposed a practical approach to port-
folio selection which explicitly considers the condition-
ally varying volatility and the fat-tailedness of risk factors.
Reference [38] discussed the reason why elegant mathe-
matics can lead to disastrous policies and the importance
of thinking about the portfolio as a whole. Reference [39]
recapitulated the views of Markowitz on the foundations
of portfolio theory and hypotheses about actual financial
behavior. Reference [40] discussed the different ways of
risk measurement. Reference [41] considered the context of
rational choice, and applied the mean-deviation analysis in
optimal risk sharing. Reference [42] found that rules based
on mean-variance have superior performance improvements
by using the copula-based model. All of these studies still
used the basic concept of MPT: portfolio risk calculated by
variance and covariance. Some of these papers claim that
the performance of MPT is not very good, so they want
to improve it. They use different funds allocation models
to enhance portfolio performance. However, these related
studies still use variance and covariance to calculate risk,
although covariance is unable to consider the interaction of
more than two stocks. In other words, these studies want
to use complicated calculations or other models to improve
portfolio risk assessment, but face risks in still using variance
and covariance. Hence, they do not effectively ameliorate
the problem. Risk calculation is still complex and does not
consider the interactions of more than two stocks.

The methods which are used to find the lower risk port-
folio roughly fall into two categories: portfolios composed
of stocks that have the best performance, and portfolios that
use variance and covariance to calculate the entire portfolio
risk while trying to reduce the calculation complexity. This
paper proves that the best portfolio does not include the best
stock each time, so the first category has the probability of
excluding the best portfolio. In the second category, they
consider the whole portfolio risk, but use variance and covari-
ance to calculate the portfolio risk; this not only makes risk
calculation more complex, but also ignores the interactions
of more than two stocks in a portfolio. However, by using
funds standardization to calculate the portfolio risk, the risk
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calculation becomes simple, and all the interactions in a port-
folio are considered. Therefore, this paper does not require
deleting any probability to simplify the calculation of portfo-
lio risk. The complexity of stock selection still remains O(2")
if there are n stocks. Without limiting the selection of stock,
this paper uses the evolutionary algorithm to help create the
best portfolio in the large solution space in a short time.

In the stock selection problem, a fair comparison of dif-
ferent portfolios is an important criterion. Many studies use
the ratio of return to calculate the risk because they think
that the calculation method can compare different portfolios
with the same criteria. However, the traditional risk cal-
culations entail problems. The traditional risk calculations
calculate and average the daily return rate. They use the
result to calculate the risk and compare the portfolios with the
same criteria. For example, there is a stock in the portfolio,
whose price is shown in Table 1. The traditional methods use
the stock price to calculate the daily return rate. They then
calculate the average return rate which is the average daily
return rate, as shown in Table 2. In general, investors believe
that the return rate is the stock price of the last day minus the
stock price of the first day and divided by the stock price of
the first day, also shown in Table 2.

TABLE 1. The example of daily return rate in the traditional method.

Day1 Day2 Day3
Stock price 100 50 85
Daily return rate - -50% 70%

TABLE 2. The calculations of average return rate and return rate.

Process of calculation
[(—=50) + 70] + 2 = 10%
(85 —100) +~ 100 = —15%

Average return rate
Return rate

We can find that the average return rate is not the same as
the return rate. Even when the average return rate is positive,
the return rate may be negative. This easily confuses investors
and impacts their judgment. In order to solve the problems
of calculation and comparison, we propose a novel method,
funds standardization, to accurately assess the portfolio and
compare the portfolios under the same criteria. Differing from
the traditional portfolio risk calculation, which calculates
the covariance between pairs of stocks, funds standardiza-
tion contains all the interactions among the stocks in the
portfolio. Hence, funds standardization is able to completely
represent the fluctuations of a portfolio and the mood swings
of investors. Besides, the risk calculation becomes simple;
in contrast with the traditional risk calculation, we only need
to calculate the standard deviation of the portfolio funds stan-
dardization to derive the portfolio risk. Moreover, this paper
uses a simple method, coefficient of variations (CV), to fairly
compare different portfolios in regard to risk calculation.
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Unlike the traditional methods, funds standardization does
not confuse investors. It is able to truly reflect the investment
situation, so that investors are able to make the best decision
by using our method. Some studies also use CV to compare
portfolios regarding the risk calculation, but they still use
average return rate. Therefore, their methods also have the
problem of average return rate.

In the MPT, the portfolio risk is calculated with the vari-
ance and covariance. However, the covariance makes the cal-
culation become complex, and it is not unable to consider the
interactions of more than two stocks in a portfolio. Because
the complexity in calcuating portfolio risk is high by using
the MPT, the related studies have to use some mothods which
fixes the best stock in a portfolio or simplified calculations
of pairwise covariance to reduce the calculation. However,
the problem of ignoring the interactions over for more than
two stocks in a portfolio is still not soloved, and this paper
proves that simplified ways make cause the best portfolio
to be removed in some cases. This paper uses funds stan-
dardization to solve the problems of MPT and improves the
risk assessment by considering all the relationships in the
a portfolio, while reducing the risk calculation computation
complexity to O(1) and comparing different portfolios in with
the same criteria. Hence, it has the ability to assess portfolio
risk with consideration of all the interactions in a portfolio
without complicated calculations. After the accurate assess-
ment of portfolio risk, this paper is able to select the proper
portfolio which has high Sharpe ratio, via an evolutionary
algorithm.

Ill. BACKGROUND

A. PORTFOLIO

Stock selection is a critically important issue when it comes
to investing in the stock market, and the first problem that
investors encounter. When investors select stocks, they con-
sider the risk and the return of the stock. However, a single
stock with high return usually entails high risk, while a single
stock with low risk entails low return. Investors naturally
want to invest in stocks with low risk and high return. The
fluctuation of stock price can represent the risk of this stock.
As the proverb says, “Do not put all your eggs in one basket.”
In order to stabilize the fluctuation of stocks, we aggregate
different stocks in a portfolio because a good combination
of stocks is able to reduce the holistic risk and increase
the return. Therefore, this paper provides a portfolio which
simultaneously considers risk and return to investors.

B. MODERN PORTFOLIO THEORY [2]

Modern Portfolio Theory (MPT), which Markowitz proposed
in 1952, assumes that investors are risk averse. It means
that given two portfolios with the same return, investors will
choose the less risky portfolio. On the other hand, investors
will select the higher return portfolio when the portfolios have
same risk. Generally, investors want to invest in a portfolio
which can balance return and risk. By selecting a proper
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combination of assets to invest in, investors can acquire
higher return with the same amount of the risk. In the mean-
variance model, investors need to distribute the funds for
every stock when they choose N stocks for investment.
The weights of the stocks are wy, wa, - - - , wy, respectively,
and the sum of the weights is 1, such as in formula (1).
Because the portfolio is the proportion-weighted combination
of stocks, the portfolio expected return is the proportion-
weighted combination of stock return. Investors can use the
weights and the expected return of stocks to calculate the
portfolio expected return on investment (ROI) by formula (2).
E(rp) is the expected return of portfolio and 7; is the expected
return of stock i, o, is the portfolio risk. Besides, the risk of
stocks is defined as variance in the MPT, and the covariance
signifies the interaction between two stocks. The definition of
portfolio risk is given by formula (3), where o), is the portfolio
risk, and 0yj(i # j) is the covariance of stocks 7 and j.

N

Zwizland0<wi<l €))

i=1
N

E(rp) = Y _wiri )
i=1
N N

op = Z Zwiwja,j 3)

i=1 i=j

C. SHARPE RATIO [1]

The Sharpe ratio was proposed by William Sharpe, a winner
of the Nobel Memorial Prize in Economic Sciences in 1990.
The Sharpe ratio is based on the capital asset pricing model,
which is one of the basic and significant investment theories.
The Sharpe ratio is utilized to measure the performance of a
stock; it is a representative index to assess stocks. Choosing
and holding the portfolio which has low risk and high return
is the purpose of the Sharpe ratio. The formula of the Sharpe
ratio is given by formula (4)where Ry is the risk-free rate
of interest. By selecting the higher Sharpe ratio, investors
invest in the portfolio which has minimal investment risk with
the same amount of return or maximal return with the same
investment risk:

Sharpe ratio = [E(ry) — Ry1/0) “4)

The Sharpe ratio and MPT are used extensively by
investors to select their portfolios, but they possess a lot
of defects. For example, the portfolio risk calculation uses
covariance to represent the interaction of stocks in a portfolio.
When the portfolio includes more than two stocks, there is
no well-defined calculation of the portfolio risk. However,
covariance only reflects the relationship between two stocks.
All the interactions of the stocks in a portfolio need to be
considered in regard to portfolio risk, so the traditional cal-
culation cannot assess portfolio risk accurately. Even though
the traditional calculation is able to represent portfolio risk
accurately, it becomes complicated with the increased num-
ber of stocks because the traditional calculation needs to
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calculate the covariance of each pair of stocks in the port-
folio. Besides the accuracy and the complicated calculation,
determining how to compare different portfolios with fair
criteria is an important problem. Many studies use the rate
of return to compare portfolios in regard to risk calculation
but the average of daily return rate is inconsistent with the
whole return rate in some cases. All of these defects will
result in an inaccurate portfolio risk evaluation. Therefore,
we propose a new method, funds standardization, to solve
the above-mentioned problem. Funds standardization makes
a more accurate evaluation, reduces the calculating time no
matter how many stocks are chosen, and compares different
portfolios fairly.

IV. BASIC CONCEPT

Stock selection is based on the return and the risk of the stock.
High return always comes with high risk, and low risk will
inevitably have low return. When people invest in a stock,
they expect to obtain the return while bearing less risk. As a
result, determining how to select stocks with low risk and high
return is an important issue. The Sharpe ratio is the common
index and has been widely utilized in stock selection. The
core concept of the Sharpe ratio is selecting a high return
portfolio with the same risk, or selecting a low risk portfolio
with the same return; it is able to simultaneously balance risk
and return.

FIGURE 1. Stock A is the upside trend and stock B is the downside trend.

When calculating the portfolio risk, most people think that
portfolio risk is the summation of every stock risk; this is
wrong. Assume that there are two stocks in the portfolio, and
they are following contrary trends, as shown in Fig. 1. Both
stocks have high risk. If the portfolio risk is such that the risk
of stock A directly adds to the risk of stock B, the portfolio
risk will be huge. However, the fact is that two stocks on
contrary trends can reduce portfolio risk. Therefore, using
the summation of stock risk as the portfolio risk is incorrect.
In the MPT, the portfolio risk includes not only the risk of
each stock, but also the interaction of each pair of stocks in the
portfolio. By adding the covariance, which is the interaction
of each pair of stocks in the portfolio, the portfolio risk will
be close to the real investment risk, as shown in Fig. 2.

Since the MPT was proposed, most studies now use the
MPT risk calculation method. However, in the MPT, the port-
folio risk calculation ignores some relationships in the port-
folio. When there are more than two stocks in a portfolio,
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FIGURE 2. An example which only includes two stocks in the portfolio;
the portfolio considers the trends of stock A and stock B.

FIGURE 3. The relationships in a portfolio with four stocks. The risk
calculation of MPT ignores the relationships in the gray dotted frame,
which are the interactions among stocks A, B and C, stocks A, B and D,
stocks A, C and D, stocks B, C and D, and stocks A, B, C and D.

the portfolio risk still only considers the variance of each
stock and covariance of each pair of stocks. Because the
limit of covariance can only represent the relationship of two
variables, the calculation is unable to consider the full set
of interactions in a portfolio which contains more than two
stocks. For example, there are stocks A, B, C and D in a
portfolio, but the portfolio risk only considers the interaction
between stocks A and B, stocks A and C, stocks A and D,
stocks B and C, stocks B and D, and stocks C and D, as shown
in Equation 5. The interactions among stocks A, B and C,
stocks A, B and D, stocks A, C and D, stocks B, C and D,
and stocks A, B, C and D are ignored in MPT, as shown
in Fig. 3. Though the computational complexity is diminished
from O(2") to O(n?) in this pattern, the risk assessment is
inaccurate. Besides, the calculation is still complicated when
the portfolio contains more than two stocks. To reduce the
calculation complexity, many methods have been proposed.
[43] take two different ways for example. One way is select-
ing a stock whose Sharpe ratio is highest, and then averaging
the covariance between this stock and others in the portfolio.
The other way is selecting a stock, whose Sharpe ratio is
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highest, averaging the return rate of other stocks in the port-
folio and then calculating the covariance between the highest
one and the average result. Although these methods simplify
the calculation, they ignore many interactions in the portfolio
and even make the risk assessment of portfolio incomplete.

Portfolio risk in MPT
= W2(UAZ ~|—O’§ —i—og +al%
+20ap+20ac+204p+20pc+20pp+20cp)  (5)

Unlike most studies that only focus on reducing the compu-
tational complexity, we find that the risk calculation in MPT
entails some defects such as high computational complexity
and ignoring some relationships among stocks, and therefore
adopt a novel method, funds standardization. It not only con-
siders the overall interactions in the portfolio but also reduces
the computational complexity of risk from O(n?) to O(1).
It means in our method when calculating the risk of the
portfolio, we only need to calculate one standard deviation
of one set of data, but traditional studies need to calculate
n? standard deviations in n sets of data which n indicate the
number of stocks in the portfolio.

To solve the problems of risk calculation in MPT, we utilize
a novel method, funds standardization, to calculate portfolio
risk. Fluctuations of each stock price in the portfolio con-
vert into the fluctuation of funds, as shown in the Fig. 4.
It can truly reflect the risk involved in a portfolio. In con-
trast with the MPT that uses summation of each stock risk
and relationship between each pair, this method uses funds
standardization, which directly represents the real situation
in investing in the portfolio. Because funds standardization
entails portfolio fluctuation, we can calculate portfolio risk
with portfolio funds standardization. Differing from the risk
calculation in MPT, which ignores numerous relationships of
each stock in the portfolio when the portfolio contains more
than two stocks, funds standardization considers all of the
interactions in the portfolio. The relationships of all the stocks
in the portfolio are truly shown via the fluctuation of funds
standardization, so the standard deviation of funds standard-
ization is able to accurately assess portfolio risk. All of the
portfolio interactions are considered in funds standardization,
and the fluctuations of portfolio funds standardization reflect
the mood swings of investors.

FIGURE 4. The portfolio includes stocks A, B and C. Each stock price in
the portfolio is converted into funds standardization.

Besides the risk calculation of MPT ignoring the numerous
relationships of each stock, the computational complexity of
MPT grows exponentially with increased number of stocks.
Funds standardization handles the interaction of every stock
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in the portfolio. Hence, the standard deviation of portfolio
funds standardization can accurately represent the portfolio
risk. Differing from the risk calculation in MPT, which needs
massive calculations, we only need to calculate the standard
deviation of portfolio funds standardization, which is far
easier. While we only calculate the standard deviation of
the portfolio funds standardization, we do not ignore any
interactions in the portfolio. Portfolio funds standardization
reduces the computational complexity to O(1). In contrast to
the traditional risk calculation, our method for calculating the
standard deviation of portfolio funds standardization makes it
easy to understand the reasons underlying the portfolio risk
calculation.

In contrast with other studies which use the average return
rate to calculate the risk, this paper uses funds standardiza-
tion. Funds standardization can avoid the problem of the
average return rate and the return rate possibly differing.
Differing from traditional studies that individually consider
stock risk and interaction between two stocks, portfolio funds
standardization can directly reflect portfolio investment risk.
Traditional methods use the stock information to calculate
every stock risk and the risk of each pair in the portfolio,
so they have many sequences to calculate. In general, CV is
used in one sequence; therefore, the traditional methods need
exceptional calculation to transfer into one sequence if they
want to compare portfolio by using CV. Our method only
has one sequence (portfolio funds standardization). CV is
easy to apply in funds standardization as well as to compare
portfolios with the same criterion.

The novel idea of funds standardization offers four impor-
tant contributions. Firstly, funds standardization properly
considers all of the interactions among stocks in a portfolio.
Secondly, funds standardization reflects the true investment
situation of a portfolio which represents the mood swings of
investors. Thirdly, it substantially simplifies the calculation
of portfolio risk. Finally, it utilizes the same criterion to
compare the portfolios fairly. Funds standardization has the
great ability to evaluate a portfolio and can help investors
find low-volatility portfolios. In addition, our method does
not restrict the number of stocks in a portfolio. If there are n
stocks in the stock market, the computational complexity of
selecting or not selecting each stock is O(2"). The problem of
stock selection is too complex to perform exhaustive list of all
the combinations. So this method uses the evolutionary algo-
rithm to find a proper portfolio from 7 stocks in a short time.
Note that the contribution of this study is proposed a novel
method to evaluate a portfolio which significantly reduces the
computational complexity and completely represent the inter-
actions of all stocks, so using which optimization algorithms
to search a good portfolio will not affect the contribution
of fund standardization. In other words, we can use other
global optimization techniques to solve stock selection prob-
lem, in this method GA is just an example. In future work,
we can use faster algorithms such as particle swarm optimiza-
tion, quantum-inspired tabu search algorithm [44], [45], and
jaguar algorithm to search for the best solution.

VOLUME 5, 2017



Y.-H. Chou et al.: Portfolio Optimization Based on Funds Standardization and Genetic Algorithm

IEEE Access

V. PROPOSED METHODOLOGY

Our method combines the Sharpe ratio and GA to solve the
problem of stock selection. We utilize stock price to calculate
portfolio funds standardization, further improving the assess-
ment of risk. Using funds standardization can truly reflect
portfolio risk as well as consider all of the interactions among
stocks in a portfolio. Because this paper does not restrict the
stock number of a portfolio, there are massive combinations
in the search space. GA is utilized to find the portfolio that
has the low risk and high return in the huge search space.
Besides, we use the sliding windows to find the best portfolio
in the training period and for trading in the testing period,
to avoid the over-fitting problem.

A. FUNDS STANDARDIZATION

Funds standardization uses stock price to calculate the funds
of each stock in the portfolio. In our method, the initial funds
are equally allocated to each stock in the portfolio, as shown
in Equation 6, and the remainder of the portfolio, which is
given by Equation 7. After the allocation of initial funds,
we are able to calculate the affordable shares of each stock
and the remainder of the stocks. In general, Taiwans stock
market uses shares for calculation; as one share is 1000 lots,
we do not consider odd lots. When buying stocks, investors
need to pay the handling fee. Hence, the calculation of shares
has to consider the handling fee, as shown in Equation 8.
The fee rate in Taiwan market is 0.1425%. The remainder
of each stock is the allocated funds after deducting the funds
for buying the stocks and the handling fee. The calculation
of the handling fee and remainder of each stock are shown in
Equations 9 and 10, respectively.

allocated funds

= |initial funds = N | (6)
remainder of portfolio

= initial funds — allocated funds x N @)
share = |allocated funds

-+ (stock price x 1000 + stock price

x fee rate x 1000)| ®)
hanldling fee
= share X stock price X fee rate x 1000 ®

remainder of stock
= |allocated funds
— funds of buying stocks — handling fee| (10)
funds standardization(1)
= allocated funds — handling fee (1D
return = share x stock price x 1000 (12)
securities transaction tax

= share x stock price x 1000 x rate (13)
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TABLE 3. Stock prices.

Stock A Stock B
Day 1 80 49
Day 2 85 50
Day 3 75 51

funds standardization(m)
= return,, — fee, — securities transaction tax,
+ remainder of stock,, and m > 1 (14)

portfolio funds standardization

N
= Z funds standardization;
i=1

+ remainder of portfolio (15)

After the above calculation, we are able to calculate the
daily funds standardization. The funds standardization on the
first day is the allocated funds of each stock after deducting
the handling fee for buying the stock. The calculation is
shown in Equation 11. After the first day, we assume selling
each stock in the portfolio to calculate funds standardiza-
tion. Because selling stocks requires paying a handling fee
and securities transaction tax, the funds standardization after
selling the stocks subtracts the handling fee as well as the
securities transaction tax, and then adds the remainder of
stock. The calculation of the funds after selling the stocks,
securities transaction tax and funds standardization after the
first day, are shown in Equations 12, 13 and 14 respectively,
where m is the my, day and the rate of securities transaction
tax is 0.3% in the Taiwan market. By using Equations 11-14,
we are able to calculate the daily funds standardization of
each stock in a portfolio. The portfolio funds standardization
is the summation of the funds standardization for each stock
in the portfolio with the addition of the remainder of the
portfolio. The calculation is shown in Equation 15, where
i is the iy, stock. In our example, there are two stocks in
the portfolio; their stock prices are shown in Table 3. Then
our method equally allocates the initial funds 4,000,000 to
every stock. By using this information, we can calculate the
portfolio funds standardization. The result and the process of
calculation are shown in Table 4. The calculation of fund stan-
dardization is the basic addition, subtraction, multiplication,
and division, and can be presented to investors every day.

B. PORTFOLIO OPTIMIZATION USING GA

GA is a kind of evolutionary algorithm; it is a bio-inspired
algorithm. Its core concept is that better parents will breed
superior offspring. Imitating the creature evolutionary pro-
cess, GA generates a high-quality solution through selec-
tion, crossover and mutation procedures to solve optimization
problems. To evaluate if the solution is good or bad, every
solution has a fitness which determines whether the solution
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TABLE 4. Portfolio funds standardization.

Stock A Stock B Portfolio
Funds 2000000 2000000 4000000
Shares 24 40 64
Remainders 77264 37207 114471
Day 1 1997264 1997207 3994471
Day 2 2108237 2028357 4136594
Day 3 1869299 2068180 3937479

Shares of stock A : 2000000 = (80 x 1000 + 80 x 1.425) = 24 shares
Shares of stock B : 2000000 <+ (49 x 1000 + 49 x 1.425) = 40 shares

Remainder of stock A : 2000000 — 24 x 80 x 1000 — 24 x 80 x 1000 x
0.01425 = 77264 dollars

Remainder of stock B : 2000000 — 40 x 49 x 1000 — 40 x 49 x 1000 x
0.01425 = 37207 dollars

Funds standardization of stock A on the first day : 2000000 — 24 x
80 x 1.425 = 1997264 dollars

Funds standardization of stock B on the first day : 2000000 — 40 x
49 x 1.425 = 1997207 dollars

Funds standardization of stock A on the second day : 24 x 85 X
1000 — 24 x 85 x 1.425 — 24 x 1000 x 0.003 + 77264 = 2108237
dollars

Funds standardization of stock B on the second day : 40 x 50 x
1000 — 40 x 50 x 1.425 — 40 x 1000 x 0.003 + 37207 = 2023857
dollars

Funds standardization of stock A on the third day : 24 x 75 x 1000 —
24 x 75 x 1.425 — 24 x 1000 x 0.003 + 77264 = 1869299 dollars
Funds standardization of stock B on the third day : 40 x 51 x 1000 —
40 x 51 x 1.425 — 40 x 1000 x 0.003 + 37207 = 2068180 dollars
Portfolio funds standardization on the first day : 1997264+1997207+
0 = 3994471 dollars

Portfolio funds standardization on the second day : 24 x 85 x 1000 —
24 x 85 x 1.425 — 24 x 1000 x 0.003 4 77264 + 40 x 51 x 1000 —
40 x 51 x 1.425 — 40 x 1000 x 0.003 + 37207

= 2108237 + 2028357 4+ 0 = 4136594 dollars

Portfolio funds standardization on the third day :
42068180 + 0 = 3937479 dollars

1869299 +

fits that optimization problem. At every generation, GA pro-
duces a new population and goes through selection, crossover
and mutation every time; it then derives a better solution in the
end. This paper utilized GA as a tool to demonstrate whether
the proposed method can produce a portfolio which has low
risk (low-volatility) and stable return simultaneously.

TABLE 5. Chromosome representation.

Stock # 1101 1102 1216 1301 1303
Chromosome 0 0 1 0 1

1) REPRESENTATION

In the encoding with GA in our method, chromosome length
represents the number of stocks which are included in Taiwan
50 ETF. Every chromosome in GA symbolizes a portfolio,
and a bit represents a stock. We use a binary array (Os and 1s)
to show which stock is selected or not in a portfolio. For
example, in the chromosome in Table 5, it shows that the
third and fifth bit are 1. It represent that this portfolio selects
stocks 1216 and 1303, and then invests equal funds in these
two stocks. Our method does not limit how many stocks
should be chosen; one or zero stocks may be chosen in a
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FIGURE 5. Flowchart of GA.

portfolio according to the GA mechanism. The chromosome
encode takes all the target stocks into consideration so that
the number of stocks in the portfolio is not restricted by the
chromosome length. Our flowchart is shown in Fig. 5.

2) INITIALIZATION

We have numbers of chromosomes in one generation. At first,
this method initializes the group of chromosomes by ran-
domly giving status to every chromosome. Then a serial num-
ber is given to all the chromosomes. For example, we generate
ten binary chromosomes whose length is five bits for a port-

folio, and randomly choose 0 or 1 for every bit, such as shown
in Table 6.

TABLE 6. Gene coding.

Stock A B C D E

Bit 1 2 3 4 5
Chromosome I 1 1 0 0 0
Chromosome IT 0 1 1 1 0
Chromosome III 1 0 1 0 1
Chromosome IX 0 0 1 1 1

Chromosome X 1 0 0 0 1

3) FITNESS CALCULATION

After initialization, the fitness in GA, the Sharpe ratio is
used. The fitness calculation is given in Equation 16. The
risk-free rate in Taiwan is the deposit interest rate (0.87%).
To fairly compare portfolios, this method utilizes CV to cal-
culate portfolio risk. The definitions of ROI, CV and portfolio
risk are given by Equation 17, 18 and 19, respectively. fs is
the funds standardization on iy, day, fs is average of funds
standardization, and D is the number of days.

ROI — risk- t
fitness = r;jSkfree rate (16)

VOLUME 5, 2017



Y.-H. Chou et al.: Portfolio Optimization Based on Funds Standardization and Genetic Algorithm

IEEE Access

final funds — initial funds

ROI = 17

initial funds 17

CV — standard drviation (18)
average

standard deviation of funds standardization

= average of funds standardization
D (fs; — fs)?
Lo B (19

TABLE 7. The stock prices.

Stock A B C D E
First Day 80 49 15 35 93
Second Day 85 50 17 38 95

Take the prices of stocks A to E in Table 7. Here, we take
Chromosomel(Chr.I) in Table 6 as an example. If the initial
fund is 4000000, the portfolio funds standardization of the
first day is 3994471 and the second day, 4136594. In the risk
calculation, we calculate the standard deviation and the aver-
age by portfolio funds standardization, which are 100496 and
4065532.5, respectively. According to Equation 19, we can
derive the portfolio risk by using the standard deviation
divided by the average of portfolio funds standardization,
which is 1.75%. According to Equation 17, we get the ROI
of the portfolio by subtracting the initial funds from final
funds and then dividing the initial funds, 3.41%. According to
Equation 16, we get the fitness (Sharpe ratio) by subtracting
the risk-free rate from the ROI of the portfolio, and then
divide the portfolio risk, which is 1.456, such as in Table 8.

TABLE 8. Calculation of evaluation index.

Portfolio I (Chromosome I)

Initial funds 4,000,000
First day’s funds standardization 3,994,471
Second day’s funds standardization 4,136,594
Standard deviation 100,496
Average funds standardization 4,065,532.5
Risk 1.75%
Return 3.41%
Sharpe ratio 1.456

4) SELECTION

The concept of evolution involves preserving the better par-
ent generation for breeding superior offspring. Therefore,
we select a group composed of the better population with
higher fitness for the crossover pool in order to produce better
offspring. There are many ways to select a better population,
for instance, roulette wheel selection, tournament selection
and rank-based wheel selection. In this paper, we use tour-
nament selection to apply our method. Through sorting all
the chromosomes by fitness, we preserve some better chro-
mosomes to be a portion of the better population. In this
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FIGURE 6. Process of selection.

portion, we randomly select a few chromosomes and pick
the top two in competition as the parents to produce two
offspring. In our example, we order the ten fitness items, and
keep 40% of chromosomes: Chr.IX, Chr.II, Chr.IIT and Chr. VI
in Fig. 6. After that, we randomly select three chromosomes
from among them: Chr.VI, Chr.IX and Chr.II, and we choose
the top two chromosomes to be the parents in competition,
namely Chr.IX, and Chr.II.

5) CROSSOVER

Likewise, there are many different methods of crossover:
single point crossover, multi-point crossover and uniform
crossover. In the process of crossover, we use the multi-point
crossover technique, randomly deciding how many points
and which points should be exchanged between two parent
chromosomes. We use the abovementioned parent chromo-
somes, ChrIX “00111” and ChrIl “01110”, to generate
two offspring. Next, we randomly decide how many points
will be used for the crossover. If the random number is two,
we select two bits of chromosome to be changed. Suppose
that we randomly select bits 1 and 5, and then exchange the
two parent chromosomes bits with bits 1 and 5 to generate the
offspring 00110 and “01111”, as shown in Fig. 7.

FIGURE 7. Crossover schematic diagram.

6) MUTATION

Mutation is an important part of evolution as it is the source
of genetic diversity, enabling the species to become more
diversified in order to adapt to different types of environ-
ments. Its concept in GA is that chromosomes have some
probability of jumping out of the local optimum. Mutation
also includes different ways, such as single-point mutation
and multi-point mutation. In this paper, we utilize multi-

21893



IEEE Access

Y.-H. Chou et al.: Portfolio Optimization Based on Funds Standardization and Genetic Algorithm

Before

[0 T o[ [ 1] o]
lMutate
After

Lo [ o[ o] v ] o]

FIGURE 8. Mutating schematic diagram.

point mutation and provide a mutation rate. When every new
chromosome is produced, it has some probability to mutate.
If the chromosome has to mutate, it will randomly select a few
points to be reversed. After the mutation step, our method will
repeat the selection, crossover and mutation step, until it fills
up the rest of the population. Once we get a new offspring,
we generate a number at random to decide whether or not it
will mutate. Assume that the mutation rate is 0.5 and we have
an offspring chromosome “00110”". If the random number is
smaller than 0.5, the chromosome does mutate. We generate
a number 0.4 randomly for chromosome “00110”. Because
this number is smaller than the mutation rate, it has to mutate.
We randomly select two positions which are 1 and 3 (stock A
and stock C), and then reverse the bits. Hence, chromosome
00110 is changed to “10010”, as in Fig. 8. After mutation,
our method will repeat the steps until it fills up the rest (60%)
of the population.

C. SLIDING WINDOWS

There is a great deal of historical information on stock prices
in the stock market, and many stocks undergo economic
cycles. Analyzing these historical data can help us to find a
good investment strategy for investors. However, over-fitting
is a common problem in the stock market. We should choose
an appropriate length of training period, find the optimal
strategy for the training period, and then use the results in the
testing period. The length of the training period and testing
period are both important factors, and will result in different
performance.

To avoid the over-fitting problem, we use the sliding
windows in our system. The sliding windows are shown
in Fig. 9. Generally, the length of the training period is longer
than, or equal to, the testing period. If the length of the train-
ing period is too short, we will not have enough information
to find a good strategy; if it is too long, it makes us consider
historical information that is too dated. Therefore, the goal is
to choose periods that are neither too long nor too short. For
example, using a one year training period result to test in a one
week testing period or a one week training period result to test
in a one year testing period is unreasonable. In order to choose
the suitable training and testing period, we test for different
window sizes in our experiment and analyze the results.

In this paper, we propose 15 types of sliding windows
with different training and testing periods. There are three
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FIGURE 9. Sliding windows.

TABLE 9. The different categories of sliding windows.

Categories Training and Testing Period
Year-to-Year(Y2Y)

Half year-to-Half year(H2H)
Quarter-to-Quarter(Q2Q)
Month-to-Month(M2M)

Two weeks-to-Two weeks(B2B)
‘Week-to-Week(W2W)
Year-to-Half year(Y2H)
Year-to-Quarter(Y2Q)
Year-to-Month(Y2M)
Half year-to-Quarter(H2Q)
Half year-to-Month(H2M)
Quarter-to-Month(Q2M)
Half year(H*)

Symmetry

ASymmetry

Year-on-year Quarter(Q*)
Month(M*)
2015
Training Period | | |
Ql Q2 Q3 Q4
2016
Testing Period | | |
Ql Q2 Q3 Q4

FIGURE 10. Sliding window of Q*.

different categories: symmetry, asymmetry and year-on-year,
as shown in Table 9. Year-on-year uses the training results
in the last year to test in this year. For example, the training
result obtained in the first quarter of the 2015 is tested in the
first quarter of 2016; it is called Q*. The sliding window of
year-on-year is shown in Fig. 10. Appropriate training and
testing periods can help investors find a good trading strategy
and avoid the over-fitting problem.

VI. EXPERIMENT

Our proposed method uses GA combined with the Sharpe
ratio to find the best portfolio which has low risk and high
return, and we utilize a novel method, funds standardization,
to calculate portfolio risk. Moreover, this paper uses sliding
windows to avoid the over-fitting problem. In this section,
we explain the reason why we chose Taiwan 50 ETF as the
investment target and our experimental environment. In addi-
tion, we analyze the experimental results for different period
tests of sliding windows, and compare the performance with
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FIGURE 11. The closing prices of Taiwan 50 ETF and the closing index of
TAIEX from January, 2013 to July, 2015.

the portfolio which utilized the MPT for calculating risk.
It will also be compared with the single stock which has the
highest Sharpe ratio, and verify whether the portfolio can
spread the risk for investment.

A. INVESTMENT TARGETS

In our experiment, we chose the constituent stocks of Taiwan
50 ETF as our investment target. Taiwan stock market is eas-
ily affected by foreign countries, so the stock price of Taiwan
often fluctuates. The constituent stocks of Taiwan 50 ETF are
the representative stocks in the Taiwan stock market because
they are the top fifty stocks in market value. In addition,
the total market value of these fifty stocks is up to 70% of the
Taiwan stock market, so Taiwan 50 ETF has high relevance
with the Taiwan Stock Exchange Capitalization Weighted
Stock Index (TAIEX), as shown in Fig. 11. Moreover, Taiwan
50 ETF is an exchange-traded fund, and the constituent stocks
are verified by the Taiwan Stock Exchange (TWSE) and
FTSE. Some constituent stocks of Taiwan 50 ETF will be
eliminated because of their lower market value and replaced
by other stocks with higher market value. Therefore, the
constituent stocks of Taiwan 50 ETF are appropriate invest-
ment targets in this paper.

B. EXPERIMENTAL ENVIRONMENT

The source of stock prices in our experiment is the Taiwan
Economic Journal (TEJ) during 2010 to June, 2016, and
we chose the constituent stocks of Taiwan 50 ETF as our
investment target. Some constituent stocks were changed,
and in our experiment, we used the constituents stocks of
Taiwan 50 ETF which are published by TWSE and FTSE in
the first quarter of every year. The constituent stocks that we
used are shown in the appendix. Our testing period started
from the first trading day in 2010 and ended in June, 2016
(2010/01 to 2016/06). In the following part, we fine-tuned
the GA parameter set, and used the appropriate set in our
experiment. In our work, we propose 15 different types of
sliding windows with different training and testing periods,
and describe the 15 different experimental periods, as shown
in Table 9 of Section V.
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TABLE 10. Testing result of preserved rate at 10 times.

Preserved Number of Preserved Number of
rate optimal solutions rate optimal solutions
10% 8 60% 6
20% 6 70% 3
30% 4 80% 1
40% 5 90% 3
50% 5

TABLE 11. Testing result of preserved rate at 50 times.

Preserved Number of Preserved Number of
rate optimal solutions rate optimal solutions
5% 36 35% 37
10% 37 40% 38
15% 38 45% 27
20% 40 50% 29
25% 38 60% 28
30% 32

C. PARAMETERS OF GA

We fine-tuned the best parameters of GA that can find the
optimal solution in every experiment. We wanted to find the
best portfolio steadily during the training period, and test its
performance in the testing period; therefore, we trained the
parameters for GA, which are the preserved rate of parent
chromosomes, mutation rate and the numbers of mutation bits
for every chromosome.

To test the preserved rate, we set up the group popula-
tion at 100, the generation number at 200, and tested it in
December 2012. The experiment results after testing 10 times
for every preserved rate are shown in Table 10. According to
the above experiment, we selected the parameters which are
able to find over 5 better solutions to do further tests. In this
experiment, we increased the testing number to 50 times, and
the result is shown in Table 11.

From the experimental results, we find that the best
preserved rate of parent chromosomes is 20%. Therefore,
we select 20% as the preserved rate in GA. The mutation
rate of every single bit for every chromosome is defined as
the mutation rate multiplied by the probability of every bit
selected to mutate. For example, it is assumed that the chro-
mosomes mutation rate is 10% and the number of mutation
bits for every chromosome is 3. In our experiment, every
chromosome has 50 bits. Therefore, the rate of every bit
selected to mutate is %, and the mutation rate of every single
bit for every chromosome is % x 10%, which equals 0.6%.

To find the best mutation rate of a single bit and the number
of mutation bits, we set the mutation rate at 10% and tested
it 10 times. The experimental result are shown in Table 12.
We then selected parameters 0.6%, 0.4% and 0.2% as they
had steadier performance than the others, and tested them
100 times, as shown in Table 13. The mutation rate of single
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TABLE 12. The number of mutation bits tested 10 times.

Mutation rate Number of Number of

of single bit mutation bits  optimal solutions

5% 25 0
2.8% 14 0
1.4% 7 1
1.2% 6 2

1% 5 2
0.8% 4 2
0.6% 3 9
0.4% 2 9
0.2% 1 8

TABLE 13. The number of mutation bits tested 100 times.

Mutation  Rate of every bit  Mutation rate Number of
rate selected to mutate of single bit optimal solutions
10% = 0.6% 72

50
10% = 0.4% 89
10% = 0.2% 42

TABLE 14. The mutation rate of a single bit is 0.6%.

Mutation Number of Optimal solutions  Optimal solutions
rate mutation bits  in 10 times tests in 100 times tests
1% 30 0 X
2% 15 0 X
3% 10 0 X
5% 6 0 X
6% 5 1 X
10% 3 9 70
15% 2 8 92
30% 1 9 73

TABLE 15. The mutation rate of a single bit is 0.5%.

Mutation Number of Optimal solutions  Optimal solutions
rate mutation bits  in 10 times tests in 100 times tests
1% 25 0 X
5% 5 2 X
25% 1 8 66

bits 0.6% and 0.4% exhibited great performance. Hence,
we trained the mutation rate and the number of mutation bits
by using the mutation rate of single bit 0.6%, 0.4% and 0.5%
to find the best parameter; 0.5% is the average of 0.6% and
0.4%, and we tested it to observe whether or not it had better
performance.

Tables 14-16 show the experimental results; the mutation
rates of single bits are 0.6%, 0.5% and 0.4%, respectively.
In these experiments, we tested it 10 times first, and then
selected the best parameters to test it 100 times.

According to Tables Tables 14-16, the mutation rate of
single bits 0.6% and 0.4% have better performance. Because
this method has different periods in sliding windows, we com-
pared the mutation rate of single bits 0.6% and 0.4% in a year,
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TABLE 16. The mutation rate of a single bit is 0.4%.

Mutation Number of Optimal solutions  Optimal solutions
rate mutation bits in 10 times tests in 100 times tests
1% 20 0 X
2% 10 0 X
4% 5 0 X
5% 4 0 X
10% 2 8 82
20% 1 7 54

TABLE 17. The results of 0.4% and 0.6% in different periods with
100 testing times.

Period Mutation rate  Mutation Number of Number of
of single bit rate mutation bits optima
v 0.6% 15% 2 57
0.4% 10% 2 33
H 0.6% 15% 2 73
0.4% 10% 2 65
0.6% 15% 2 63
Q 0.4% 10% 2 72
M 0.6% 15% 2 92
0.4% 10% 2 82
B 0.6% 15% 2 35
0.4% 10% 2 35
w 0.6% 15% 2 86
0.4% 10% 2 59
TABLE 18. Parameter table of GA.
Parameter Numerical
Initial funds 10,000,000
Group 100
Generation 200
Preserved rate 20%
Mutation rate 15%
mutation point 2
Crossover Multiple

half year, quarter year, two weeks, and one week, respec-
tively, when the preserved rate of the parent chromosomes
is 20%. Table 17 shows the comparison result of 0.4% and
0.6% in different periods with 100 testing times. When the
mutation rate of a single bit is 0.6%, most of the periods have
better performance than 0.4%.

We utilized the combination of parameters shown
in Table 18 for the following experiment. According to
Table 17, the period of two weeks had the worst perfor-
mance. In only 35 times, could we find the optimal solutions
in 100 testing times, so the successful rate of two weeks is
35%. If we do 30 experiments independently, the successful
rate at which we can find the best solution is better than
99.9997%. Therefore, we can ensure that we selected the
optimal solution by using 30 times of GA in the training
period and test the optimal solution in testing period.
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TABLE 19. The comparison between MPT and our method.

ROI Risk Sharpe ratio
MPT Ours MPT Ours | MPT  Ours

Training period
2009/10-2016/03
Testing period
20010/01-2016/06

19.48 1390 | 5.60 3.07 325 4.4

1580 9699 | 1530 29.09 | 098  3.30

TABLE 20. The execution time comparison between MPT and our method.

MPT Ours
7281(s)  6768(s)

Execution time

D. COMPARISON WITH MPT

As mentioned above, our method improves on the ignored
relation of MPT. To prove that our method can obtain
the results as expected, we did a series of experiments
in the actual condition of the stock market by comparing
our method with the traditional MPT by risk, ROI and
Sharpe ratio. The training-to-testing period in our experiment
is Q2Q, and the experimental date is from January, 2010 to
June, 2016. The results are shown in Tables 19 and 20.

In this experiment, we considered both the risk and ROI in
the training period, and selected the portfolio with the higher
ROI per unit risk. The results of the training period demon-
strate that the risk of the portfolio our method chose is nearly
half that of the MPT, and the performance of ROI is also
excellent; with a higher Sharpe ratio than MPT. Although the
result of the testing period is unpredictable, our method still
shows great performance of the portfolio in the testing period.
In particular, the performance of ROI is clearly superior to
MPT, over six times greater than MPT, and the risk rising
scale is lower than MPT; as a result, the performance of the
Sharpe ratio outperforms MPT. The experiment demonstrates
that our method is able to effectively find a portfolio which
has the higher ROI per unit risk in the stock market; it can
not only precisely find the best portfolio, but also works more
efficiently. In the next part, we analyze the training and testing
periods, respectively.

E. SELF-ANALYSIS

1) TRAINING PERIOD ANALYSIS

In the training period, we tested all the stocks in the Taiwan
50 ETF and found the single stock with the highest Sharpe
ratio (SHS). We then compared it with the portfolio which
our method chose. The result shows that our method, funds
standardization with GA, is truly effective; it can find the
Sharpe ratio of a portfolio better than the SHS can. Even
if the SHS is the best in some cases, our method will still
find the portfolio that only includes that stock. Therefore,
the Sharpe ratio of the portfolio that our method chose must
be higher than, or equal to, the SHS. In the training-to-testing
period experiment from January, 2013 to February, 2014,
we found that the performance of B2B and W2W was inferior
to other periods, as Fig. 12 shows. The superior training-to-
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FIGURE 12. Comparison of the Sharpe ratio in every training-to-testing
period from January, 2013 to February, 2014.

Portfolio = SHS

Sharpe ratio

Y2Y Y2H Y2Q Y2M H2H H2Q H2M Q2Q Q2M M2M H* Q* M*
Training-to-testing period

FIGURE 13. Comparison of the Sharpe ratio in every training-to-testing
period from January, 2010 to June, 2016.

testing periods at least have to train or test for a month; thus,
we knew that the system in our method is more appropriate for
long-term investment; therefore, we eliminated both periods:
B2B and W2W in the following experiment. The experiment
results are shown in Fig. 13. The Sharpe ratio of the portfolio
is higher than the SHS in every period.

By observing the fluctuation of risk in every period,
the portfolio risks are all lower than with the SHS. The
experiment results of risk in every training-to-testing period
are shown in Fig. 14. It proves that the portfolio which our
method chose can effectively lower the risk, thus avoiding
putting all of our eggs in one basket, since the portfolio is
able to spread the risk of investment.

Portfolio ®SHS

Y2Y Y2H Y2Q Y2M H2H H2Q H2M Q2Q Q2M M2M H* Q* M*
Training-to-testing Period

FIGURE 14. Comparison of the risks in every training-to-testing period.

Because of the huge solution space, some methods sim-
plify this problem by taking the SHS with other stocks in
the portfolio. The experiment results show that the SHS is
unnecessary in the composition of the portfolio. In this period
(Q2Q: January, 2016 to March, 2016), the portfolio does not
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TABLE 21. Comparison of the best stock, portfolios, and the portfolio
which includes the best stock. the rank is sorted by the Sharpe ratio.

Selected stocks

(Rank)

2301 (1) 3.21
2912 (3)

2357 (6) 3.64
2325 (39)
2301 (1)
2912 (3)
2357 (6)
2325 (39)

Sharpe ratio

Best stock

Portfolio

Portfolio includes
the best stock

include the SHS. Even if we pick the SHS and compulso-
rily add it to the portfolio, it will reduce the Sharpe ratio
of the portfolio. Many methods directly select the SHS in
a portfolio to simplify the risk calculation and reduce the
computing complexity, but our method proves that the SHS
is unnecessary in the best portfolio. The simplified methods
may not find the best portfolio because of the limit in their
stock selection. However, our method not only considers all
of the combinations and then finds the best portfolio, but the
computational complexity of the portfolio risk calculation is
also far lower than the simplified methods. Table 21 shows
that the Sharpe ratio will decline if the portfolio includes the
SHS in this case.

Traditional studies usually exclude the stocks which have
a negative Sharpe ratio to simplify the complexity of this
problem. The experimental results show that no stock can
be excluded. In Table 22, the portfolio includes the stocks
that have lower rank, and their Sharpe ratio is negative;
however, if we exclude the negative ones, then the risk will
increase substantially and the Sharpe ratio will be reduced.
Accordingly, as the portfolio needs to include some declining
stocks to balance the whole risk in some cases, our method
is unable to exclude any stock when searching for the best
portfolio.

TABLE 22. Comparison of the portfolio as to whether or not to exclude
the stock with a negative Sharpe ratio.

Stock Sharpe ratio  Portfolio  Portfolio Portfolio
(Rank) of each stock ROI risk Sharpe ratio
2912 (3) 3.06
2357 (6) 2.88 8.14 2.07 3.64

2325 (39) -0.30
K12 ) 306 12.78 3.50 3.41
2357 (6) 2.88

The previous simplified methods can reduce a certain
amount of calculation, but may exclude the better portfolios.
The training period experiment proves that our method, which
uses fund standardization, not only fully considers the inter-
actions among the stocks in a portfolio, but also substantially
reduces the amount of calculation. Besides, to discover the
optimal portfolio, it is unnecessary to include the SHS, and
the negative stock should not be excluded arbitrarily. Our
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FIGURE 15. Sorted by the Sharpe ratio for every training-to-testing
period.

method, funds standardization with GA, does not constrain
any portfolio combination; therefore, it can find the best
portfolio which has the highest Sharpe ratio.

2) TESTING PERIOD ANALYSIS

The testing time is six and a half years, from January, 2010 to
June, 2016. The objects of the comparisons are the SHS and
Taiwan 50 ETF. We tested them in different periods. Fig. 15
shows the risk, ROI and Sharpe ratio of every training-to-
testing period; (P) is the result of the portfolio, which is a
combination of stocks (portfolio), and (S) is the result of the
SHS.

According to Fig. 15, the best performance of the Sharpe
ratio in every training-to-testing period is Q2Q (P). Besides,
the results of the portfolio in the majority of the cases show
that the Sharpe ratio is higher than in Taiwan 50 ETF. Fig. 16
shows the ranking sorted by ROIs. There are five periods
whose ROI are higher than Taiwan 50 ETF. In these five
periods, there are three periods whose Sharpe ratio is also
higher than Taiwan 50 ETF. The other two periods whose
Sharpe ratio are lower than in Taiwan 50 ETF due to their
overly-high risks. It proves that the ROl is not the most impor-
tant assessment in stock selection; risk has to be considered
simultaneously.

FIGURE 16. Sorted by ROIs in every training-to-testing period.

In the testing periods experiment, the training-to-testing
period which has the best performance is Q2Q (P). The
performance of the Sharpe ratio is higher than in Taiwan
50 ETF, and in more portfolios than the SHS. Besides, our
method can find the portfolio not only with the higher Sharpe
ratio but also with the greater return. With our experiments,
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we know that the system in our method should entail long-
term investment, but training-to-testing periods that are too
long (e.g. Y2Y) or too short (e.g. B2B and W2W) are inap-
propriate. Through the experimental results, we find that the
better training-to-testing periods are all symmetrical, and the
period with the best performance is Q2Q (P).

VII. CONCLUSION

We proposed using funds standardization in order to accu-
rately evaluate the portfolio risk because it is able to effec-
tively overcome the defects of traditional risk calculation.
First and foremost, funds standardization properly considers
all of the interactions among stocks in a portfolio. Besides,
it substantially simplifies the risk calculation. Last but not
least, it utilizes the same criteria to compare the portfolios
fairly. Combining GA and the Sharpe ratio, which is calcu-
lated by funds standardization, can efficiently select low risk
and stable return portfolios.

The core idea of the Sharpe ratio is to select the portfolio
that has high return at the same risk, or low risk at the
same return. However, traditional risk calculation ignores the
relationships when there are more than two stocks in a port-
folio, so it cannot completely represent portfolio risk. Funds
standardization solves this problem because it considers all
the interactions among stocks in a portfolio and represents
the fluctuation of portfolio investment. Besides the above-
mentioned problem, traditional risk calculation includes the
problems of complicated calculation and comparisons among
the different portfolios. Traditional risk calculation needs to
calculate the covariance of each pair of stocks in a portfo-
lio, so the computation complexity increases exponentially.
In our method, the portfolio risk barely calculates the standard
deviation of portfolio funds standardization because portfolio
funds standardization represents the fluctuation of portfolio
investment. The computation complexity is reduced to O(1)
by the calculation method presented herein. This paper uses
CV to avoid the problem of comparing different portfo-
lios. Otherwise, we utilize the sliding window to avoid the
over-fitting problem. The experimental results show that our
proposed method outperforms the traditional method in all
the training and testing periods; it also significantly reduces
the complexity of portfolio risk calculation. In addition,
we notice that the Sharpe ratio of the optimal portfolio is
certainly more than, or equal to, the Sharpe ratio of SHS. The
experimental result also proves that a portfolio can effectively
spread the risk. In some cases, the optimal portfolio does not
necessarily include the single stock with the highest Sharpe
ratio, or may include the stock with the worse Sharpe ratio.
In other words, with the traditional simplifications of risk
calculation, in which a portfolio must include the stocks with
the highest Sharpe ratio or exclude the stock with worse
Sharpe ratio, defects exist. In the results of the testing periods,
Q2Q (P) had the best performance. We find that the training
periods and testing periods should not be too long or too
short, and all the training-to-testing periods that have great
performance are symmetrical. The experimental results show
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TABLE 23. The constituent stocks of taiwan 50 ETF in the first quarter
of 2009.

The stock symbol of constituent stocks
1101 1102 1216 1301 1303
1326 1402 1722 2002 2105
2301 2303 2308 2311 2317
2324 2325 2330 2347 2353
2354 2357 2382 2408 2409
2412 2454 2498 2603 2801
2880 2881 2882 2883 2885
2886 2888 2890 2891 2892
2912 3009 3045 3231 3481
4904 5854 6505 8046 9904

that our method can find a portfolio that has lower risk (low-
volatility) and higher return in the stock market. As described
above, we are able to accurately assess the portfolio, find
the portfolio with the optimal Sharpe ratio, and prove that
the portfolio can spread risk. As a result, the proposed
method is better than the traditional method because funds
standardization contains all of the interactions among stocks
in a portfolio, reduces the computation complexity, has the
ability to compare different portfolios fairly, and represents
the mood swings of investors. In future work, we can use other
state-of-the-art global optimization algorithms to search for
the best portfolio.

APPENDIX

CONSTITUENT STOCKS

Table 23 is the constituent stocks of Taiwan 50 ETF in the
first quarter of 2009. 2404, 2603 and 3009 are replaced by
2448, 3474 and 6239 after 2009. 3474, 6239 and 8046 are
replaced by 2618, 3673 and 4938 after 2010. 2448, 2618,
2888, 4938, 5854 and 9904 are replaced by 1802, 2201,
2207, 2474, 3008 and 5880 after 2011. 1802 is replaced by
3697 after 2012. 1722, 2347, 2353, 3231, 3673 and 3697 are
replaced by 2227, 2884, 2887, 3474, 4938 and 9904 after
2013. 2201 and 2324 are replaced by 2395 and 2408 after
2014. 2498 is replaced by 1476 after 2015.
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