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ABSTRACT Fog computing (FC) is currently receiving a great deal of focused attention. FC can be viewed
as an extension of cloud computing that services the edges of networks. A cooperative relationship among
applications to collect data in a city is a fundamental research topic in FC.When considering the green cloud,
people or vehicles with smart-sensor devices can be viewed as users in FC and can forward sensing data to
the data center. In a traditional sensing process, rewards are paid according to the distances between the
users and the platform, which can be seen as the existing solution. Because users with smart-sensing devices
tend to participate in tasks with high rewards, the number of users in suburban regions is smaller, and data
collection is sparse and cannot satisfy the demands of the tasks. However, there are many users in urban
regions, which makes data collection costly and of low quality. In this paper, a cooperative-based model for
smartphone tasks, named a cooperative-basedmodel for smart-sensing tasks (CMST), is proposed to promote
the quality of data collection in FC networks. In the CMST scheme, we develop an allocation method focused
on improving the rewards in suburban regions. The rewards to each user with a smart sensor are distributed
according to the region density. Moreover, for each task there is a cooperative relationship among the users;
they cooperate with one another to reach the volume of data that the platform requires. Extensive experiments
show that our scheme improves the overall data-coverage factor by 14.997% to 31.46%, and the platform
cost can be reduced by 35.882%.

INDEX TERMS Fog computing, cloud computing, smart-sensing tasks, costs, coverage.

I. INTRODUCTION
Cloud computing uses high-speed network infrastructures
to provide services related to storage and computation in a
modern society [1]–[7]. It continues to evolve as a domain
that offers those services by managing a pool of data in a city.
Such data can contribute to an application platform. An ade-
quate utilization of these data for the application platform is
a major concern for the cloud-computing paradigm [8], [9].
Similarly, evolved fog computing results in a distribution of
applications and services, and people or vehicles with smart-
sensing devices (such as smartphones) can be viewed as
mobile devices (or users) in fog computing when supporting
the cloud and the Internet of Things [8], [10]–[12]. This
cloud-computing platform contains many data centers and
applications and can publish tasks in the networks. Then,
those smart-sensing devices in Fog computing can sense
the data for the published tasks and participate in a variety

of tasks [13]–[16]. Therefore, these smart-sensing devices
(or users) are an important part of the fog computing process.

In a modern society, almost everyone can own one or more
smart-sensing devices, such as smartphones, that can sense
the surrounding environment [17]–[20]. Moreover, smart
devices for vehicles are more rich and powerful. Vehicles
and people with smart-sensor devices are defined as users.
Those users can participate in the tasks by collecting the
data of the city that the tasks require and delivering these
data to the cloud data center (DC), thus contributing to soci-
ety [21]–[23]. Smartphones [8], [18], [19] are developing
into significant applications processors in cloud and fog com-
puting networks [24]–[29]. In the data collection process,
users must sense and deliver these data [30]–[33]; thus, a
variety of resources is consumed [33]–[35]. Energy is one
of the important resources consumed by users participat-
ing in these tasks [30], [36]–[37]. Consequently, the energy
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issue has become a main area of interest for researchers
in Green Computing [15]–[30]. However, because those
users must consume other resources, such as communication
resources or time, the task publisher (or applications) must
pay the users rewards to encourage them to participate in
the tasks [15], [23]. Once the application platform obtains
sufficient data packets, it will pay the users rewards [15], [23].
In other words, the rewards to users are the costs of the
application platforms. In this paper, we focus on reducing
those costs.

Each user can sense the data in their surroundings in fog
computing networks [1], [5], [21], [24]–[29]. In the tradi-
tional model, the devices are immobile, distributed about
the city and sensing the surrounding data [31]. Those fixed
devices are assumed to consume a certain amount of energy.
Many papers have discussed how to reduce the consumption
of energy [5], [16], [23], [30], [33], [40]. However, this type
of sensor application still consumes network resources. With
the rapid development of 4G and 5G wireless networks [13],
smart-sensing devices such as smartphones have become an
important part of people’s lives. Therefore, in this paper,
those smart-sensing devices can be considered users with
the property of mobility. They can sense the data of their
surroundings and forward those data to the tasks published
by the application platform to contribute to the cloud and
fog computing. The users are significant; they will improve
service quality and reduce resource consumption in green
computing. Some researchers focus on smart sensing such
as sensor applications and proposed several solutions and
schemes [18], [19], whereas others largely focus on security
and privacy [41]–[44]. However, there remain several prob-
lems such as the following.

(1) Reducing the costs of application platforms.With a rea-
sonable reward strategy for users, data of high quality can be
collected at a lower cost. Therefore, formulating the optimiza-
tion policy for rewards is a challenging issue. In the previous
studies, the rewards are distributed equally, or distributed
according to the distance, which results in large costs for
the application platform, and the quality of rewards is poor.
For example, in applications such as smog, if one utilizes
the previous calculation methods for rewards, the number of
users in the urban regions can be very large. However, in smog
applications, even when a small proportion of users partici-
pate in the data collection process, the collected data volume
can be very large. Moreover, in a small region, the data on the
smog grains vary only slightly. Therefore, in a small region,
the smog data might only require one sample; additional
data from this region would be redundant. A large volume
of data packets does not improve the quality of service of
the smog application, whereas the costs of the application
are increased. However, for suburban regions, the number
of users is small, and data collection in this type of region
requires more energy and resources. This pattern can lead
to a loss of consumers or to decreasing application profits,
which is a challenge for the applications. Thus, reducing the
costs of the platform and earning more profits depends upon

the policy of rewards. The quality of data collection is a
significant issue and is discussed below.

(2) Quality of data collection. The quality of data collection
is a main component of the studies, but data collection also
must collect sufficient data. However, different from previous
studies, in this participatory sensing network, the data collec-
tion persons (users in this paper) lack a relevant application
background; therefore, the tasks must be simple to some
degree. Those tasks cannot select the data according to quality
as is normally done by some specific applications. Therefore,
in this type of application, another important performance
index of the collected data quality is the coverage factor
of the data [45], [46]. The lack of data in some regions
can seriously negatively affect the applications. For example,
in applications such as traffic data, a lack of data on critical
congested road segments might cause drivers great inconve-
nience. However, few studies focus on the quality of data
collection in smart-sensor applications.

Moreover, what makes the issue more serious is that there
is a balance between the costs of the application platform
and the quality of data. Generally, to improve the quality of
data collection, user rewards should be improved to promote
user participation. A variety of data can help to improve
the service quality of applications. However, when collecting
data, improving user rewards can result in the rapid growth
of platform costs and threaten the viability of applications.
Therefore, determining how to formulate a reasonable reward
policy for users to minimize costs, optimize data collection
and provide consumers with maximum service quality is
a significant challenge. In this paper, a Cooperative-based
Model for Smart-sensing Tasks (CMST) in fog computing is
proposed to promote the rewards to smart users in the subur-
ban regions in fog computing and balance data collection in
a city. Listed below are the contributions of this paper:

(1) A reward allocation method is proposed that can
improve data quality and reduce the cost of an application
platform in a city. In Cooperative-based Model for Smart-
sensing Tasks (CMST), the rewards for each participating
user are allocated according to the density of their region. For
a task, the rewards to those participating users (also called
the costs of the application platform) in the suburban regions
are more valuable compared with those in the urban regions
because users are sparsely distributed in the suburban regions.
Therefore, the data is difficult to collect. Thus, the data in
the suburban regions are more valuable. The rewards in the
suburban regions should be greater compared with those
in the urban regions. Thus, based on the reward allocation
method, the application platform will pay more rewards to
users who have collected key data. Therefore, when improv-
ing the overall quality of data collection, the costs of data
collection can be reduced on a large scale.

(2) A new evaluating indicator for data collection, the data
coverage factor, is proposed to evaluate the quality of data
collection. The CMST method proposed in this paper can
ensure that the collected data deliver high coverage. In the
CMST scheme, based on the premise of reducing the costs of
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the application platform, the quality of data collection is also
ensured. This paper evaluates the quality of data collection
according to the data coverage indicator. By adjusting the
rewards dynamically, we can improve the data collection rate
in the regions with lower coverage and incentivize the users in
those regions with higher probability to collect data to ensure
the coverage of data collection. Thus, the scheme in this paper
cannot reduce the costs but can ensure the satisfactory quality
of the collected data.

(3) The performance of the method compared with previ-
ous methods is evaluated in this paper. Through our extensive
simulation study, we demonstrate that themethod proposed in
this paper can reduce the costs of the application platform and
that the quality of data collection can be improved. Compared
with the previous data collection method, the costs of data
collection can be reduced by as much as 35.882%, and the
coverage of data can be enhanced by 14.997% to 31.46%.

The remainder of this paper is organized as follows:
in section 2, related works are reviewed. In section 3, the sys-
tem model and problem statement are described. In section 4,
the CMST schemes are proposed. Section 5 provides the
analysis and performance of the CMST scheme based on the
experimental results. We conclude the paper in section 6.

II. RELATED WORK
Extensive studies have been done on the topic of cloud and
fog computing and inference [1], [5], [21], [24]–[29]. These
studies have expanded to various fields, such as energy con-
sumption [5], [16], [23], [30], [33], [40], security [41]–[44],
delays [11], [12], [15], [32], [34], [43], coverage [45], [46]
and power management [10]. In the process of cloud and
fog computing, the issue of data collection is signifi-
cant [14], [45]. Among the users of fog and cloud com-
puting [24]–[29], there is a cooperative relationship [33].
Participating smartphones should deliver the data to the
data center (DC) [35]; the smartphones can be considered
the edge networks in cloud and fog computing. With fog
and cloud computing, the data packets in the cloud can
be utilized in several aspects, for example, in wireless net-
works [38], [39], [47]. Wireless sensors can be deployed in
the city with the help of cloud and fog computing; the data
can be gathered from these sensors. Once the data collection
process is completed, the data is delivered through Wi-Fi,
4G or 5G networks to the data center; it will be stored there,
forwarded to the tasks, and contribute to society [26].

Cloud computing is first defined in paper [48], which also
presents candidates for future enhancement of this emerging
technology. Then, papers [29] and [49] discuss the relation-
ship between the Internet of Things (IoTs) and other emerging
technologies, including big data analytics, cloud computing
and fog computing. Paper [27] indicates that fog comput-
ing extends cloud computing at the edges of networks and
provides several characteristic definitions of fog computing.
Moreover, [28] elaborates the advantages and motivations of
fog computing, analyzes the applications and connects fog
computing to vehicular networks. The paper also discusses

the issues of security and privacy in fog computing, which is
an important issue in networks. Paper [21] not only connects
the Internet of Things with fog computing but also discusses
the delay issue in fog computing. Paper [1] discusses appli-
cations scheduling in the fog computing process and focuses
on the influence of user mobility on application performance.

Few of the previous studies on fog computing discuss the
issue of user rewards and contribution to profits. Although
sensor applications can sense the surrounding data, their
sensor range is limited, and those applications have limited
lifetimes, which does not fit the demands of the green cloud.
Therefore, in this paper, smartphone users can be viewed
as sensor applications with the characteristic of mobility.
We focus on balancing the rewards to those users and col-
lecting the data in the whole city to make more contributions
to society.

III. SYSTEM MODEL AND PROBLEM STATEMENT
A. SYSTEM MODEL
In the system model, suppose that the set of tasks published
by the application is defined asM, andM = {1, 2, . . . . . . , m},
where m represents the number of tasks. The set of users is
defined as N, and N = {1, 2, . . . . . . , n}, where n represents
the number of uses that can participate in several tasks and
upload the sensor data required by the application according
to the wireless data center (DC). Because the application pub-
lishes the different types of tasks via wireless networks with
smartphones connecting to the wireless networks, the users
can select several tasks to accomplish within the sensing
range. In fog computing, the users in the wireless networks
can sense all the published tasks and can select a reasonable
number of them in which to participate. In this paper, there
is one wireless data center in the city. The general graph is
shown in Figure 1.

FIGURE 1. System platform.

In the first step, the application platform publishes tasks, in
the second step, the users participate in some of those tasks, in
the third step, the users will deliver the collection information
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to the data center and in the last step, the data center will
forward the processed data to the application platform.

In the previous delivery model, users are assumed to partic-
ipate in the tasks independently; therefore, there are no coali-
tion relationships among users. Consequently, some tasks
with high rewards might attract more users and those with
lower rewards might have fewer users. To address this prob-
lem, we set a cooperative relationship among the participating
users. The users will tend to take part in the tasks with high
rewards. They collect the sensor data based on the location
and then deliver those data to the DC. After the DC receives
the data packets of task m, it then forwards those data to the
application platform. The application platform can provide
consumers services to obtain profits based on the collected
data of the participating users.

FIGURE 2. Density distribution of users in a city.

To encourage users to participate in the tasks, the applica-
tion platformmust reward those users for their contribution to
the tasks. In this paper, the rewards for each user are defined to
have a relationship with the density degree of a city. A city is
divided into several regions according to the density degree,
which is defined as D = (d1, d2, d3, . . . . . . , dk ), as shown
in Figure 2. In reality, the denser the region, the greater the
number of users that can participate in the task. However,
in a sparse region, there are fewer users; therefore, the data
packets in that region are fewer than in the denser region—
and, therefore, the data packets in the dense region are not
as valuable as are those in the sparse region. In this paper,
the rewards for a user are related to the location region in a
city. If a user n has participated in task m, then the rewards to
user n are defined as Rm,n. The calculation method is defined
in section 4.

Figure 2 shows user density in a city. As seen, in the
urban regions of a city, users with sensor devices are densely

distributed, whereas in the suburban regions of a city, users
are sparsely distributed.

B. PROBLEM STATEMENTS
The application scenario considered in this paper is the
following: in fog computing, the application platform pub-
lishes several tasks via wireless networks, the vehicles in
the city receive those tasks, and the vehicles select some of
them to accomplish. In this paper, we define that once user
n has participated in task m, the user must return at least s
data to the DC. The DC will receive those data packets from
user n and then deliver them to the application platform. The
application platform can obtain profits via the data and will
pay the users rewards according to their contributions.

For task m, the related profit can increase with the contri-
bution of all the participant users; we assume the profit of
taskm has a threshold b . If the total contribution has reached
threshold b , then the task is finished. The profit for task m
is defined as Um. When the profits of task m are less than
the threshold, then the profits can be expressed as Vm. The
calculation methods are defined in section 4.

Um =

{
Vm, the total profits are less than b

b , the total profits reach to the b
(1)

Equation (1) defines the total profits of the task. Therefore,
for the software platform, the total profit of all the tasks can
be given by the following equation:

J =
∑m

1
Um (2)

where J expresses the total profits of all the tasks on the
platform.

Note that the users will not be willing to participate in the
tasks without any rewards; after the total profits of task m
have reached threshold b , the application should pay the
users according to the contributions of each participating user.
Many users can participate in taskm; thus, there exists a coali-
tion relationship among the users. After task m is finished,
the application will pay the rewards to the coalition group,
not to the users directly. The coalition group will distribute
the rewards to the users according to their contribution.

Many papers have researched data collection meth-
ods [25], [28]. However, the rewards for each participating
user are not necessarily reasonable. Some data cannot be col-
lected. Compared with data in the city, data in the suburbs is
more valuable to the software. Moreover, users in the suburbs
should be paid more than those in the city are paid. Previous
methods did not consider this situation. Previousmethods pay
users according to distance or equally, an approach that might
result in collecting less weather data in the suburbs.

Therefore, in this paper, to inspire users to collect data in
the suburbs, we defined the platform costs (also called the
rewards for the users) according to the region density of a
city. The reward distribution is shown in Figure 3.

With the collaborative relationship among the users,
the quality of data for the application platform can be
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FIGURE 3. Rewards distribution.

improved in the experiments.
In this paper, we also compared the coverage factor.

To obtain more rewards, some users might focus on the
suburbs if the distances to the suburban region and the urban
area are the same.

(1) cost reduction

R =

∑m
1 Rn − E∑m

1 Rn

where
∑m

1 Rn represents total platform application costs
from task 1 to m, and E represents the platform costs in the
previous scheme, for example, distance or equal distribution.

(2) coverage factor of the data collection
The rewards for each user are distributed according to their

contributions, and the contribution of each user is connected
with the density distribution. To reach high rewards, the users
might focus on the suburbs, and the coverage factor of the
data collection can be improved. For a task, the calculation
methods of the coverage factor are shown in the following
equation.

Om =
d

number(p)

where number(p) indicates the number of selected geograph-
ical points in a city, and d is the number of points that the user
is in from which the data can be collected.

IV. CMST SCHEMES
A. OVERVIEW
The main contribution of CMST schemes is to consider the
cooperative relationship among the users and improve the
distribution methods of rewards to users. At the same time,
the coverage factor can be improved. The coverage factor C
expresses the performance of data collection, which means
that the wider the coverage factor, the more effective the
scheme. Table 1 summarizes the notations used in this paper.

The vehicles in a city are assumed to be the users in
fog computing. They can participate in published tasks and

TABLE 1. Notations.

FIGURE 4. Sensing range of the data center.

contribute to the software platform. Those collected data
are delivered to the DC in the city. Then, the DC forwards
those data to the software, which publishes the tasks. The
application platform can obtain profits via the data and pay
the participating vehicles with rewards according to their
contribution. The data center can receive the data packets
throughout the city. The sensing range of the data center is
shown in Figure 4.

In the following subsections, we describe the rewards of
the user model, the profits of the application platform model,
the coverage factor and the collaborative method.

B. USER REWARDS MODEL
In reality, there are plenty of users with sensor devices,
those sensor devices can collect the information of the
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surrounding environments. Based on the large population,
the information in a region can be collected completely to
a large extent. Therefore, in this paper, the quality of the
collected information is not taken into consideration.

The application platform publishes several tasks in fog
computing. By participating in the tasks and accomplishing
the tasks, users can obtain rewards from the software platform
via the DC. In this paper, the user rewards are assumed to
have a relationship with the density degree in a city. The more
suburbs that users focus on, the more rewards they will be
paid because the data in the suburbs is valuable. If user n
has participated in task m, then the calculation method for
the rewards is defined as follows.

Rm,n =
dn∑k
1 dj
· Rm/number(Ndn ) (3)

where dn indicates which region user n is in,
∑k

1 dj indicates
the calculation results of all of the region divisions, and
Rm is a constant different for each user that is defined at
the beginning of task m. The number(Ndn ) represents the
number of participating users in the dn region. Equation (3)
yields the rewards for each user. As seen in Equation (3),
participating users can obtain more rewards in the suburban
region. To obtain more rewards, the users might focus on
the suburban region if the distances to the denser region and
the suburban region are the same. Therefore, the quality of
collected data for the application platform can be improved in
general. The distribution of rewards is shown in Figure 5 as
follows.

A user n can participate in more than one task. The appli-
cation platform can publish several tasks, and the users in the
city can participate in some of them. In this paper, the list
Tn = (t 1,n, t 2,n, . . . . . . , t m,n) indicates whether user n
participates in task m. If the value of t m,n is 1, then user n
selects task m; otherwise, user n does not take part in task m.
A user cannot select more than i tasks because many users

selecting a given task can cause data redundancy. A user n
will choose the tasks with high current rewards.

Task m will accept contributions from participating users
until the associated profits reach thresholdb . Users can select
another task the next time.

The pseudo code for user rewards is presented in
algorithm 1.

C. APPLICATION PROFIT ALGORITHM
In this subsection, the profit of the application platformmodel
is discussed.

Users participate in the tasks and contribute to the software
platform. In this paper, the contributions of user n to task
m are assumed to have a relationship with the location of
user n because in the sparse region of a city, the users are
fewer; therefore, the contributions of participating users are
more valuable to the software platform compared with those
collected data of participating users in the denser region.
In this paper, the contributions of user n to task m are defined

FIGURE 5. Distribution of rewards for users.

Algorithm 1 Algorithm Running in User n Rewards
Initialize:
Initialize the user location data;
Initialize the tasks published by the software platform.

1:While task number< m
2: If the contribution of this task is less than the

threshold
3: User n receives the rewards of published

tasks;
4: Storage;
5: End if
6: End while
7: For the list of storage tasks
8: User n uses Quicksor to select random number of

tasks
with high rewards and returns the data to the DC

9: Get the total number of users in this region division
Rm,n =

dn∑k
1 dj
· Rm // the rewards calculation

10: End for

in the following equation.

Cm,n =
dn∑k
1 dj
· ∝m (4)

where Cm,n is the contribution of user n to task m, dn∑k
1 dj

has

been defined in Equation (4), and ∝m is a fixed value for
task m. These values differ from task to task.

Users participate in the task to obtain rewards and con-
tribute to the task at the same time. The users tend to partic-
ipate in tasks with high rewards. However, all users can take
part in taskm until the total contribution reaches threshold b .
Therefore, the profit of a task m is defined by the following
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equation:

Um =

{∑n
1 TnCm,n,

∑n
1 TnCm,n < b

b ,
∑n

1 TnCm,n ≥ b
(5)

where Um is the profits of taskm, b is the upper bound of the
total contribution, and

∑n
1 TnCm,n is the total contributions of

the users when the contributions are less than upper bound b .
Tn indicates whether user n is participating in task m. The
Cm,n in Equation (5) is defined in Equation (5). The appli-
cation platform can acquire profits via collecting the data of
participating users. Equation (5) shows that the more users
participate, the more quickly the task can finish the process.

The application platform can obtain the profits via the
collected data.

The pseudo code for profits is given in algorithm 2.

Algorithm 2 Algorithm for Computing Profits
Initialize:
Initialize all the notation here

1: For a task m
2: For user number less than n
3: For total contributions less than threshold b
4: Read in the user contributions to this task m;
5: The profit is TnCm,n; // the Tn indicates user n

//whether to participate in the task.
6: End for
7: End for
8: End for

D. MAXIMIZE THE COVERAGE FACTOR OF THE DATA
In this paper, we also define a method to maximize the
coverage rate of data in the city and verify the performance
of the CMST scheme.

Some tasks published by the application platform are
assumed to require data with a wider range, like the weather
tasks. Therefore, the platform must achieve greater coverage
in the city.

In previous schemes, the users either obtain rewards
based on a distance factor or they are equally distributed,
whichmight cause inequitable reward distribution.Moreover,
the distribution of data collection is imperfect. Data availabil-
ity in the suburbs might be lower, or some of it might not
be forwarded to the software platform. Therefore, in a city,
the coverage of data collection for task m is imperfect.
Therefore, in this paper, the city is divided into several

regions according to the density degree, and the rewards to
each user have a relationship with his region. To obtain more
rewards, the users might focus on the suburban region if they
are convenient to it. Moreover, the coverage of data collection
for tasks can be improved in general. The coverage factor for
a task m is defined in the following equation.

Qm =
number(d)
number(D)

(6)

where the number(D) indicates the number of geographical
points, and the number(d) indicates the number of points that
have participating users. Equation (6) can obtain the coverage
data of each task.

The pseudocode for the coverage factor is given in algo-
rithm 3.

Algorithm 3 Algorithm to Maximize Coverage Factor
Initialize:

Get the location data of all participating users for
task m

Initialize all the notation here
1: Divide the city into several regions
2: Select several graphical points in the city
3: Switch the user is in
4: Case the region d1
5: number1++;
6: Case in the region d2
7: number2 ++;
8: Case in the region d3
9: number3 ++; // in this paper, the city is divided

into
//three regions according to the density degree.

10: End switch
11: For k < number of geographical points
12: For the user < n
13: If there exist users in the sensor range of

this geographical point
14: Then d++;
15: End if;
16: End for;
17: End for;
18: Calculate the number of users in the previous calcula-
tion list
19: Qm =

number(d)
number(D)// calculate the coverage factor

E. USER COLLABORATIVE ALGORITHM
In this subsection, the collaborative model of users is
introduced.

For a task m, the model requires many users to participate,
and the model obtains data from the users. Therefore, users
participating in the tasks must cooperate with each other until
the contributions of all users reach thresholdb . The users will
obtain rewards from the software platform. Therefore, among
the participating users, there is a collaborative relationship.

In the cooperative approach, any user n in user list N can
be considered a player. For any taskm, we define the coalition
as Hm = (h 1,h 2, . . . . . . ,h n), where the h n = 1 in the
list indicates that user n is a member of coalition m . The
total number of participating users for task m is defined
as X(Hm ). In other words, once user n has participated
in task m , he must convey at least s bits of data to the
software platform for this user coalition. The contributions
of the participating users cannot be greater than threshold b ;
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the definition equation has been defined previously. In this
paper, to ensure both the quality of collected data and that all
the tasks can be completed, each user can participate in as
many as tasks as desired.

The coalition relationship among the users can be defined
as the following equation:

Zm = total (Rm) = oUm

=


∑n

1 TnCm,n,
∑n

1 TnCm,n < b

b ,
∑n

1 TnCm,n ≥ b
(7)

where oUm in Equation (7) indicates the total contribu-
tions, and o is a factor that relates the rewards to users and
the profits of the application platform. In fog computing,
the application platform publishes several tasks, and users
select some of them to participate in. The users can contribute
via collecting data and cooperating with each other until the
total contribution reaches the threshold.

V. PERFORMANCE ANALYSIS AND
EXPERIMENTAL RESULTS
A. OVERVIEW
In this section, we will prove the effectiveness of CMST
schemes by theoretical analysis and extensive experiments.
In section 5.2, the calculation methods for rewards to users
and the coverage factor of data collection are given to evaluate
the performance of the CMST scheme. In section 5.3, the per-
formance of CMST schemes is analyzed via experiments and
simulations.

All simulation programs are implemented in C++ with
Visual Studio 2013. In the experiment, the vehicles appear
as users in fog computing, and they can sense the published
tasks. Obviously, the vehicles in the urban region are more
populous than those in the suburban region, which is con-
sistent with the distribution characteristic of users discussed
above.

To prove the effectiveness of the CMST scheme, in the
experiments, we use the dataset of T-Drive trajectory, which
is provided byMSRA [31]. The dataset of T-Drive trajectories
contains theGPS trajectories of approximately 10,357 taxis in
the period between Feb. 2 and Feb. 8, 2008, in Beijing. Those
T-Drive data can be viewed as users in a city. The number of
GPS points in the trajectory dataset is approximately 15 mil-
lion, and the total trajectory distances of the datasets reach
up to 9 million kilometers. The distribution graph is shown in
the following graph. The vehicles with sensor devices can be
regarded as the sensor devices which can collect information
of surroundings. And this dataset is utilized in the simulations
bellow.

Figure 6 shows that the distribution of users is dense in the
urban area and sparse in the suburban region.

B. PERFORMANCE ANALYSIS
In this subsection, we discuss the performance of the CMST
scheme in terms of user rewards and the data coverage factor.
The calculation methods are defined as follows.

FIGURE 6. Distribution of vehicles (users).

Tn = (t 1,n, t 2,n, . . . . . . , t m,n) indicates whether a user n
participates in task m. If he takes part in task t m,n, then the
value of t m,n is 1. Otherwise, the value of t m,n is 0. Therefore,
for user n, the total rewards can be expressed in the following
equation.

Nn =
∑m

1
Rm,n · Tn (8)

where Rm,n indicates the rewards to user n for task m. In this
paper, the rewards to users are also the costs of the appli-
cation platform. In previous reward distribution methods,
the rewards are distributed according to the distance between
the participating users and the tasks. The calculation methods
of previous rewards for each user are shown as the following
equation.

Yn =
∑m

1
(1−

distance (n)
SD (n)

) · Tn · Rm (9)

where distance(n) indicates the distance of user n to the
software platform, and SD(n) is the sensor range of user n.
The calculation methods of reduction of costs are shown in

the following equation.

cost =
Yn −Nn

Yn
(10)

In this paper, considering the reality, the sensor range can
cover entire networks. All users can participate in the tasks if
they wish.

Therefore, for user n, the comparison of the two calculation
methods for rewards can be expressed as follows:

Z =
Yn

Nn
=

∑m
1 Rm,n · Tn∑m

1
distance(n)
SD(n) · Tn

(11)

Alternatively, the rewards for each user are equally dis-
tributed; in other words, each participating user can receive
the same rewards when the task has been finished. This
situation is also compared with the distribution methods of
rewards in this paper, shown in subsection 5.3.

We then compare the coverage factor of data collection
in the CMST scheme with that of the previous scheme.
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For a task m, the coverage factor in this paper is defined
in equation (6).

C. PERFORMANCE IN CMST MODELS
1) COST PERFORMANCE
In this subsection, we choose several vehicles with rich trajec-
tory datasets as sensor devices of users in the fog computing
process. The application platform publishes several tasks,
and they will pay the participating user rewards for user
contributions to the tasks, which can be described as costs of
the application platform. The performance of cost reduction
approaches for the CMST scheme is compared in this section
under different numbers of users.

In the previous schemes, the costs of the application plat-
form (also called the rewards to the users) are defined to have
a relationship with the distance between the participating
users and the software platform.

In the experiment, Beijing is divided into three regions
according to the density degree; therefore, D = (d1, d2, d3).
The contributions of users in the urban regions are assumed

greater than those of users in the suburban regions. Therefore,
the rewards for the users in the urban regions are greater than
are those in the suburban regions. This disparity can cause
an issue wherein the data in the suburban regions cannot be
collected, and the costs of the application platform are large.
In the CMST scheme, the costs of the application platform
(the rewards to the users) are based on the density degree of
a city. The application platform will pay more rewards to the
users in the suburban regions for their contributions to the
overall tasks. This method can inspire users to collect the data
in the suburban regions.

A comparison of the costs for each user of the application
platform with 20 users is shown in Figure 7.

FIGURE 7. Costs of the application platform for each user when the
number of user is 20.

In Figure 7, it is clear that the costs of application platforms
based on the previous scheme are greater than are those of the
CMST scheme because the users with sensor devices focus

on regions in which they can earn more rewards. Likewise,
the rewards in the urban regions are greater than are those
in the suburban regions, which can create more users in the
urban regions. However, in the CMST scheme, the rewards to
users (costs of the application platform) are connected with
region density. Because there are fewer users in the subur-
ban regions, their contributions are more valuable compared
with those in the urban regions. The rewards for the users
with sensor devices are definitely greater, and the rewards
in the urban regions are less than are those in the suburban
regions. Therefore, generally, when the number of users is 20,
the costs of an application platform can be reduced based on
the CMST scheme.

In the simulation process, no number limitation exists on
tasks in which the users can participate. The more tasks the
users participate in, the more the application platform must
pay to those users.

Then, based on the three different density divisions, when
the number of users is 20, the comparisons of application
platform costs are shown in the Figure 8.

FIGURE 8. Costs of the application platform in each region with 20 users.

Figure 8 shows that in the previous scheme, application
platform costs in the d1 and d2 regions are greater than are
those in the CMST scheme, particularly in the d1 regions.
In the urban regions, the number of users is greater than that
of users originally in the suburbs, and the rewards in urban
regions are greater, which causes large application platform
costs in the urban regions. However, as seen in the CMST
scheme, the platform costs can maintain a balance to some
extent. With the CMST scheme, the costs of the application
platform can be reduced.

To further verify the cost-reduction performance, we then
compare the costs of an application platform with the number
of users at 40, 80 and 100. Comparisons are shown in Figure 9
for 40 users.

Figure 9 shows that when the number of users is 40,
the costs of the application platform of the CMST scheme
are generally less than those of the previous scheme. This
difference exists because, based on the previous calculation
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FIGURE 9. Costs of the application platform for each user with 40 users.

methods of the costs, users in the d1 regions can obtain more
rewards. Therefore, users with sensor devices in the d2 or d3
regions might focus on the d1 regions if they are convenient,
which could cause data redundancy in the urban regions and
a shortage of data in the suburban regions.

Data distributions of data collected by sensor devices are
uneven, but the application platform will still spend more on
paying the participating user rewards, as shown in Figure 9.

In the CMST scheme, rewards to the users (also called
platform costs) with sensor devices are based on the region
density. Those users in the suburban regions make more
contributions to the integrity of the data for the application
platform because users in the suburban regions are fewer, and
the data in the suburban regions is difficult to collect. The
CMST scheme can balance the distributions of the collected
data, and the application platform can spend less on pay-
ing the sensor devices in fog computing. When the number
of users is 40, the costs of the platform can be reduced
by 38.154%.

The costs of the platform in each density region are com-
pared for 40 users in Figure 10 as follows.

FIGURE 10. Costs of the application platform in each region with
40 users.

FIGURE 11. Cost comparison of the application platform.

In Figure 10, the distribution of costs in the d1 regions
of the previous scheme is clearly much greater than those
in the d2 and d3 regions. There is a high probability that
the application platform costs more, but the data collected
by the users with sensor devices is repeated and redundant.
The performance in the previous scheme is not satisfactory.
The CMST scheme can reduce the costs of the application
platform by improving the rewards in the suburban regions
and inspiring the users with sensor devices to participate,
which is clearly shown in Figure 10.

Moreover, Figure 10 is compared with Figure 8 to illustrate
the differences in cost when the number of users is increased
in the CMST scheme. The comparisons are shown in the
following graph.

Figure 11 shows that with the increased number of users,
the platform costs also increase.

A comparison of the application platform costs for 60 users
is shown in Figure 12.

FIGURE 12. Costs of the application platform for each user with 60 users.

Figure 12 shows that the application platform costs can
be considerably reduced. As the number of users increases,
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FIGURE 13. Costs of the application platform for each user with
100 users.

FIGURE 14. Number of users in each region according to the density
divisions in the CMST scheme.

more users focus on the urban region to achieve high rewards
in the previous scheme; thus, the platform costs will increase
substantially. Moreover, the CMST scheme inspires the users
to participate in the tasks in the suburban regions; considering
actual user distributions, the costs of the platform can appar-
ently be reduced.

Based on the two schemes, platform cost comparisons are
shown in Figure 13 for 100 users.

Clearly, based on the CMST scheme, application costs can
be reduced for the reason illustrated above.

To further verify the performance of the CMST scheme,
we then compared the rewards to the users when the numbers
of users are 80 and 100. We also compared the results with
the previous calculation of rewards. The comparison is shown
in Figure 14.

Figures 14 and 15 show that the number of users in the
previous schemes in the d1 region is growing faster, which
imposes more costs on the platform. There are fewer users

FIGURE 15. Number of users in each region according to the density
divisions in the previous scheme.

with sensor devices in the d3 regions; in that case, the data
collection cannot reach a balance. Figure 14 shows that the
number of users in each region division is becoming steady.
Although the number of users in the d1 region remains greater
than that of users in the d2 and d3 regions, there are no greater
differences between them. Based on the CMST scheme,
the data collected in the suburban region can be delivered
to the software platform and solve the issue of uneven data
distribution.

Whether the number of users is 80 or 100, the cost tendency
of the application platform is the same. After utilizing the
CMST scheme, platform costs can be reduced by 35.882%.

2) COVERAGE FACTOR
This section compares the data collection distributions.

The profits of each published task are calculated based on
the data packets that participating users forward to the DC.
In fog computing, users tend to participate in the tasks with
high rewards, and the rewards in the suburban region are
greater than those in the urban region. Therefore, this tech-
nique can solve the issue of uneven data distribution.

Based on the region division and the calculation methods
defined above, task profits can also be described as user
contributions and can be evaluated for 20 tasks.

If the user participates in a task, then he must forward at
least a certain number of data items to the software platform,
a number that is defined in the experiments. A large data
packet is defined as 512 bytes. When the number of users
is 20, based on the distribution of region divisions, the profits
of the 20 tasks are shown in Figure 16.

Figure 16 shows that when the user number is 20, based
on the previous calculation scheme, user contributions are
distributed in the d1 and d2 regions. However, in the d3 region,
the profits are obviously zero because in the d3 region, there
are no participating users. Therefore, the contributions in this
region are zero. Additionally, the application platform cannot
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FIGURE 16. Distributions of profits according to the region divisions with
20 users.

obtain the data in the d3 region. In the previous scheme,
user rewards are connected with the distance between the
users and the software platform. Therefore, to attain more
rewards, users will focus on the urban regions, which can
cause the phenomenon of uneven data collection in Figure 16.
Additionally, the platformwill receive a vast amount of repeat
data in the urban regions and less data in the suburban regions,
which does not occur in fog computing. In the CMST scheme,
the rewards to each user are related to the region density.
Users participating in the suburban regions can obtain more
rewards compared with users in the urban regions. Therefore,
as shown in Figure 16, user contributions are more stable
compared with those of the previous scheme.

The profits of the region divisions are shown in the follow-
ing graph for 40 users.

FIGURE 17. Distribution of profits according to the region divisions with
40 users.

Figure 17 shows that when the number of users is 40,
the disparity of profits (also called user contributions)
between the urban and suburban regions is growing.
However, based on the CSMT scheme, the disparity between

the urban regions and the suburban regions becomes smaller;
therefore, the application platform can obtain the collection
data of users from the whole city.

The probability of a user (that is, a vehicle in the city)
coming to the urban regions is greater than that of their
coming to the suburban regions. Therefore, with the number
of users growing, there remain participating users in the urban
regions in the CMST scheme.

To further verify the performance of the profits based
on the CMST scheme, the graph below shows the prof-
its of application platforms in different density regions for
100 users.

As seen in Figure 18, the distribution of profits based
on the previous scheme is unrealistic. The data collected in
the suburban region are too few. Additionally, in the CMST
scheme, the profits from each region can generally maintain
a balance, which can verify the performance of the CMST
scheme in this paper.

FIGURE 18. Distribution of profits according to the region divisions with
100 users.

The coverage factor is also compared in this subsection.
In fog computing, the application platform publishes sev-

eral tasks, and users distributed in different regions can select
and participate in them. Some tasks require the data at a city
level, for example, weather software. The task of the weather
software must obtain data for the whole city for analysis; in
other words, this type of task requires the coverage factor
to be maximized. Therefore, to verify the coverage factor of
those tasks in this paper, we compare the coverage factor of
the CMST scheme with that of the previous scheme.

To calculate the coverage factor, several geographical
points are selected to analyze the coverage factor of the
schemes. These geographical points have a sensor range.
Therefore, if participating users exist in their sensing range,
the data in this region can be collected, which indicates that
this region can be covered. However, in a set of geographical
points, there might be no participating users. In this situation,
the coverage factor will not be greater. Thus, based on the
calculation methods illustrated above, the coverage factor of
the city can be obtained.
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In the experiments, the sensor range of the geographical
points is defined as 1800 m in this paper. The geographical
points in the experiments are randomly chosen; there are
24 such points. In each density division, the number of points
is 8. When the number of users is 20, based on the CMST
scheme and the previous scheme, the comparisons of the
coverage factor for each task can be obtained, as shown
in Figure 19.

FIGURE 19. Coverage factor of the data with 20 users.

FIGURE 20. Improved percentages of the coverage factor with 20 users.

Figure 19 shows that in general, the coverage factor of the
CMST scheme is greater than that of the previous scheme
because some of the participating users might focus on the
suburbs to earn more rewards. Therefore, the coverage factor
in the suburbs can be improved. Thus, in general, the total
coverage of the data collection task can be improved. Based
on the previous scheme, when the number of users is 20,
no users participate in the suburban regions; thus, the cov-
erage factor for a task will be markedly less compared with
the coverage factor of the CMST scheme. With the CMST
scheme, the coverage factor of the data collections for a task
can be improved.

The improved percentages of the coverage factor with
20 users can be obtained, as shown in Figure 20.

The improved percentages with 20 users are sorted from
larger to smaller. From Figure 20, the improved percentages
of the coverage factor for each task can be obtained.

To further verify the performance of the coverage factor,
we then compare the coverage factor of the CMST scheme
with the previous scheme with the number of users equal to
40, 60, 80 and 100. The comparison results are shown in the
following graphs.

Figure 21 shows a comparison with 40 users of the cov-
erage factor for the CMST scheme and the previous scheme.
The coverage rate of the CMST scheme is greater than that
of the previous scheme because users tend to take part in
the tasks with more rewards. If users will not collect data in
the suburban regions, then those regions cannot be covered,
and the data in this type of region cannot be delivered to
the software platform. In the CMST scheme, the users are
encouraged by high rewards in the suburban regions; there-
fore, the number of covered points in the CMST scheme in
the suburban regions is greater than in the previous scheme,
as shown in Figure 21.

FIGURE 21. Coverage factor of the data with 40 users.

The improved percentages of the coverage factor for the
CMST scheme and the previous scheme are calculated and
sorted from large to small. The comparisons are shown
in Figure 23.

Compared with Figure 20, the improved percentages of
the coverage factor for each task in Figure 22 are decreased
because with the increase in number of users, a smaller
number of users are present in the suburban regions than
in the previous schemes. Therefore, the coverage percent-
age can be improved. Nevertheless, it still cannot fit the
demands of the software platform because the coverage of
data remains lower. In the CMST scheme, with the number
of users growing, users can cover more regions, particularly
the suburban regions. The performance of the CMST scheme
remains greater than the previous scheme.

The coverage factor of the CMST scheme is then compared
with that of the previous scheme, when the number of users
is 100. The comparisons are shown in the following graph.
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FIGURE 22. Improved percentages of the coverage factor based on
40 users.

FIGURE 23. Coverage factor of the data with 100 users.

Figure 23 shows that the data-collection coverage per-
formance can reach an ideal situation based on the CMST
scheme. Additionally, the performance of the previous
scheme cannot satisfy the coverage demands of the tasks.
The distance between the software platforms is shorter, and
the rewards to the users are greater in the previous scheme.
Therefore, users focus on the urban regions, resulting in the
data in the suburban regions not being collected. Moreover,
the coverage factor cannot be improved at a large scale.

The improved percentages of the coverage factor are
shown in Figure 24 with 100 users. Figure 24 shows
that the performance tendency is the same as that
shown in Figures 20 and 22. Compared with Figure 22,
the improved performance of coverage factors is similar
because when the number of users increases, the users focus
on the urban regions to attain more rewards than in the
previous scheme. This focus can cause a growing number
of users in the urban regions, and the data in the suburban
regions cannot be collected for lack of users.

FIGURE 24. Improved percentages of the coverage factor based on
100 users.

Regardless of the increase in number of users, the per-
formance of the previous scheme remains unsatisfactory.
Moreover, in the CSMT scheme, some users might focus on
the suburban regions for the increased rewards; thus, the data
in these regions can be delivered to the tasks published by
the software platform. Therefore, with the increased number
of users, the coverage factor of the CMST scheme increases
in the experiments, which is clearly shown in the above
comparisons.

VI. CONCLUSION
In this paper, we propose a cooperative-based model for
users in fog and cloud computing to participate in tasks
published by an application platform. In the formulation
process, the participating users can contribute to the tasks,
and the tasks will pay those users rewards. The rewards to
the users in this paper are defined to have a relationship with
region density. Users in the urban regions will obtain fewer
rewards compared with the users in the suburban regions.
The experiments show that with the proposed CMST scheme,
the tasks published by the application platform can acquire a
greater volume of useful data.

With the advance of Fog computing, the forms of many
practical tasks have changed. The tasks of the application
platform are distributed via wireless networks. Therefore,
users in a city can sense those published tasks.With the users’
contributions, the tasks can generate profits and bring benefits
to society. The rewards to users are the key requirement
for cooperation. The CMST scheme provides a better solu-
tion to user cooperation, which can achieve better practical
performance.
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