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ABSTRACT The privacy of users must be considered as the utmost priority in distributed networks.
To protect the identities of users, attribute-based encryption (ABE) was presented by Sahai et al. ABE has
been widely used in many scenarios, particularly in cloud computing. In this paper, public key encryption
with equality test is concatenated with key-policy ABE (KP-ABE) to present KP-ABE with equality
test (KP-ABEwET). The proposed scheme not only offers fine-grained authorization of ciphertexts but also
protects the identities of users. In contrast to ABE with keyword search, KP-ABEwET can test whether the
ciphertexts encrypted by different public keys contain the same information. Moreover, the authorization
process of the presented scheme is more flexible than that of Ma et al.’s scheme. Furthermore, the proposed
scheme achieves one-way against chosen-ciphertext attack based on the bilinear Diffie–Hellman (BDH)
assumption. In addition, a new computational problem called the twin-decision BDH problem (tDBDH) is
proposed in this paper. tDBDH is proved to be as hard as the decisional BDH problem. Finally, for the first
time, the security model of authorization is provided, and the security of authorization based on the tDBDH
assumption is proven in the random oracle model.

INDEX TERMS Cloud service, attribute-based encryption, public key encryption, equality test, keyword
search.

I. INTRODUCTION
In the current network era, cloud service providers offer infi-
nite storage space and computing power for users to manage
their data. To enjoy these services, individuals and organi-
zations store their private data on cloud servers. However,
in the case of security breaches, users’ private data stored
in the cloud are no longer safe. When users outsource their
data to cloud servers, they expect complete privacy of their
data stored in the cloud. Protecting the privacy and data of
users has remained a very crucial problem for cloud servers.
To avoid any inconvenience, users store their private data in
encrypted form.

For fine-grained sharing of encrypted data, Sahai and
Waters presented attribute-based encryption (ABE) [2]. ABE
is a public key cryptosystem variant that allows users to
access secret data based on their attributes. This cryp-
tosystem enriches the flexibility of the encryption pol-
icy and the description of users’ rights, and it changes
from a one-one to one-many scenario during the encryp-
tion and decryption phases. Moreover, it hides the identities

of the users in appropriate terms. In a subsequent work,
Goyal et al. proposed key-policy attribute-based encryp-
tion (KP-ABE) in 2006 [18]. The underlying cryptosys-
tem combines the secret key and the access structure.
Bethencourt et al. proposed ciphertext-policy attribute-based
encryption (CP-ABE) in 2007 [19], which combines the
ciphertext and the access structure. Thereafter, numerous
cryptographers presented many research works based on
ABE [20]–[24]. Soon after its conceptualization, ABE
reached prime importance in our daily life (for example,
in television payment systems, personal health record sys-
tems and so on).Moreover, ABE is also beingwidely incorpo-
rated in cloud computing. However, if one wants to compare
plaintexts corresponding to two ciphertexts, the secret key
must be used to decrypt the two ciphertexts.

To overcome this problem, Yang et al. [25] presented a
new cryptosystem called public key encryption with equal-
ity test (PKEwET) in 2010. His proposed system can test
whether two ciphertexts contain the same plaintexts with-
out decryption. However, this scheme allows anyone to
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perform such a test. To overcome this defect, Tang [26] made
some improvements to the scheme (e.g., PKEET with fine-
grained authorization (FGwPKEET), all-or-nothing PKEET
(AoNwPKEET) [28] and an extension of FG-PKEwET [27]).
In 2015, Ma et al. [29] proposed a new primitive called
PKEwET supporting flexible authorization (PKEwET-FA).
There are 4 types of flexible authorizations in their scheme.
To simplify the certificate management of PKEwET, Ma [30]
combined the concepts of PKEwET and identity-based
encryption to present identity-based encryption with equality
test (IBEET). Recently, in 2017, Wu et al. [31] improved
Ma et al.’s scheme by reducing the computational time cost.

FIGURE 1. Example for KP-ABEwET.

To offer more fine-grained authorization, we propose a
new primitive called key-policy attribute-based encryption
with equality test (KP-ABEwET). We combine the concepts
of PKEwET and KP-ABE. As presented in Fig. 1, suppose
that there are four users. S and S ′ are the sets of attributes
for encryption, and T and T′ refer to the access structures
used by the decryption secret key. S ′′ denotes the set of
attributes of the tester, and T′A is the access structure used
for the authorization of the attribute set of S ′A. T

′
B is the

access structure used for the authorization of the attribute set
of S ′B. We describe the underlying scenario as follows: User 1
can store his private data in the cloud and can decrypt the
ciphertexts that are encrypted by a set of attributes S with
T(S) = 1. User 2 can store his private data in the cloud, but
he cannot decrypt the ciphertexts that are encrypted by a set of
attributes S with T(S) 6= 1. User 3 has the attribute S ′′, where
T′A(S

′′) = 1 and T′B(S
′′) = 1, and he can perform the test

over two different ciphertexts encrypted by attribute S ′A and
attribute S ′B. User 4 does not have the attribute S ′′ satisfying
T′A(S

′′) = 1 and T′B(S
′′) = 1, and he cannot perform the test

over two different ciphertexts encrypted by attribute S ′A and
attribute SB′.

A. CONTRIBUTION
This paper presents a new primitive called key-policy
attribute-based encryption with equality test (KP-ABEwET).
Our objective is to achieve a fine-grained authorization of
ciphertexts. The main technologies in our scheme include

key-policy attribute-based encryption (KP-ABE) [18] and
public key encryption with equality test (PKEwET) [25]. The
main contributions can be summarized as follows:

(1) First, we design a new scheme by combining KP-
ABE with PKEwET. Compared with the existing PKEwET
schemes, our proposed scheme supports performing the fine-
grained test of ciphertexts and changes from one-one to
one-many for users in the testing algorithm.

(2) Our scheme can be viewed as an extension of attribute-
based encryption with keyword search (ABEwKS). Along
with other aspects, the proposed scheme allows testing
whether the ciphertexts contain the same information that are
encrypted by different public keys.

(3) The proposed scheme achieves one-way against
chosen-ciphertext attack (OW-CCA) based on the bilinear
Diffie-Hellman (BDH) assumption in the random oracle
model.

(4) A new computational problem called the twin-decision
bilinear Diffie-Hellman problem (tDBDH) is also presented
and is proven to be as hard as the DBDH problem.

(5) We provide the security model of authorization and
prove the security of authorization based on the tDBDH
assumption in the random oracle model. To the best of our
knowledge, this work is the first to prove the security of
authorization in such a manner.

B. RELATED WORK
Deterministic encryption, proposed by Bellare et al. [8], is
another primitive that supports the equality test on cipher-
texts. This primitive was thoroughly studied in many subse-
quent works [1], [7], [32], but all of them are deterministic
algorithms. Conversely, PKEwET is a probabilistic algorithm
that supports the equality test on ciphertexts.

PKEwET can be viewed as an extension of public key
encryption with keyword search (PEKS). The concept of
PEKS was proposed by Boneh et al. [4]. It can perform
keyword searches over ciphertexts without decrypting them.
Later, several modified schemes of PEKS were proposed
[6], [9], [11], [12]. To solve the problem of access control
in a multi-user environment, PEKS was combined with ABE
for achieving the applied perspective in cloud computing.
In [5], [10], [13], [15], [17], and [33], the authors com-
bined PKES with KP-ABE. In some other works, includ-
ing [3], [14], [16], the authors combined PKES with CP-ABE
while incorporating the access structure with the ciphertext
of the keyword search. Although the results were slightly
different, none of the works presented a mechanism to check
whether two different ciphertexts encrypted by different pub-
lic keys contain the same information. To overcome this
limitation, we present an effective KP-ABEwET mechanism.

C. ORGANIZATION
The remainder of this paper is organized as follows.
In Section 2, we introduce related preliminaries. Section 3
describes the system and the security model. Our scheme is
presented in Section 4. Section 5 provides the security proof
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of our scheme and of authorization. In Section 6, the perfor-
mance evaluations are briefly discussed. Finally, Section 7
presents the concluding remarks.

II. PRELIMINARIES
In this part, we introduce some basic knowledge, including
cryptographic assumptions, Shamir’s secret sharing scheme
and access tree, that is employed in this paper.

A. CRYPTOGRAPHIC ASSUMPTIONS
The following subsection presents the definitions of bilinear
maps and the problem formulation.
Definition 1: BilinearMaps: LetG1 andG2 be multiplica-

tive groups of prime order q, e : G1×G1→ G2 be a bilinear
map, and g be a generator of G1. Bilinear maps fulfill the
following conditions:

(1) Bilinearity: ∀g1, g2 ∈ G1 and ∀a, b ∈ Zq, we have
e(ga1, g

b
2) = e(g1, g2)ab.

(2) Non-degeneracy: e(g, g) 6= 1.
(3) Computability: ∀g1, g2 ∈ G1, we can compute

e(g1, g2).
Definition 2: Bilinear Diffie-Hellman (BDH) problem:

Let G1 and G2 be multiplicative groups of prime order q,
e : G1×G1→ G2 be a bilinear map, and g be a generator of
G1. The BDH problem is that given a 4-tuple (g, ga, gb, gc),
the aim is to compute e(g, g)abc, where a, b, c ∈ Zq.
Definition 3: Decisional Bilinear Diffie-Hellman

(DBDH) problem: Let G1 and G2 be multiplicative groups
of prime order q, e : G1 × G1 → G2 be a bilinear map, and
g be a generator of G1. The DBDH problem is to distinguish
between the distributions of 5-tuples (g, ga, gb, gc, e(g, g)abc)
and (g, ga, gb, gc, e(g, g)d ), where a, b, c, d ∈ Zq.
Definition 4: Twin-Decision Bilinear Diffie-Hellman

(tDBDH) problem: Let G1 and G2 be multiplicative groups
of prime order q, e : G1 × G1 → G2 be a bilinear map,
and g be a generator of G1. The tDBDH problem is to
distinguish between the following two distributions: D0 =

{(g, ga, gb, gc, gu, gv, e(g, g)abc, e(g, g)auv) : a, b, c, u, v
$
←−

Zq} and D1 = {(g, ga, gb, gc, gu, gv, e(g, g)d , e(g, g)w) :

a, b, c, d, u, v,w
$
←− Zq}.

In general, the tDBDH problem appears to be weaker than
the DBDH problem. However, this problem is in fact as hard
as the DBDH problem. (The tDBDH problem is different
from the twin bilinear Diffie-Hellman inversion problem that
proposed by Chen et al.)
Theorem 1: The tDBDH problem is as hard as the DBDH

problem.
Proof: It is quite clear that tDBDH � DBDH. Next, we

present the proof of DBDH � tDBDH.
To prove DBDH � tDBDH, we suppose that there is an

algorithmA that can solve the tDBDH problem in polynomial
time. We construct an algorithm B as follows. B takes a
4-tuple (ga, gb, gc, e(g, g)d ) as input, and its objective is to
determine whether e(g, g)d = e(g, g)abc holds.

B chooses a random number x and constructs a 7-tuple
(ga, gb, gc, e(g, g)d , gbx , gcx , e(g, g)dx

2
). Then, it calls the

algorithm A. The algorithm A checks whether e(g, g)d =
e(g, g)abc and e(g, g)dx

2
= e(g, g)abcx

2
hold.

If A outputs yes, then it implies that e(g, g)d = e(g, g)abc

and e(g, g)dx
2
= e(g, g)abcx

2
. Apparently, it is doubly con-

firming that the input is a yes DBDH instance. Thus, B
replies "yes".

If A outputs no, then it implies that either e(g, g)d 6=
e(g, g)abc or e(g, g)dx

2
6= e(g, g)abcx

2
. Regardless of which

is true, B can quickly deduce that the input is a no DBDH
instance. Thus, B replies "no".

B. SHAMIR’S SECRET SHARING SCHEME
Shamir’s (t, n)-threshold secret sharing scheme is based on
the Lagrange interpolation polynomial. A detailed introduc-
tion is described as follows:

Given t distinct points (xi, f (xi)), where f (x) is a polyno-
mial of degree less than t , f (x) is determined as follows:

f (x) =
t∑
i=1

t∏
j=1,j 6=i

(x − xj)/(xi − xj)

Shamir’s scheme is defined for a secret s ∈ Zp by setting
a0 = s and choosing a1, a2, · · · , at−1 ∈ Zq. For all 1 ≤ xi ≤
q, 1 ≤ i ≤ n, the trusted party computes f (xi), where f (x) =∑t−1

k=0 akx
k . The shares (xi, f (xi)) are distributed to n distinct

parties. Since the secret is a constant term s = a0 = f (0),
the secret can be recovered from any t shares (xi, f (xi)) as
follows:

s = f (0) =
t∑
i=1

f (xi)
t∏

j=1,j 6=i

xi/(xj − xi)

FIGURE 2. Example of access tree T.

C. ACCESS TREE
We suppose that T is an access tree composed of leaf nodes
and non-leaf nodes (e.g., Fig. 2). Each leaf node represents
an attribute, and each non-leaf node represents a threshold
gate. Each threshold gate is represented by its children and
the threshold value. Let numx be the number of children of a
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node x and kx be the threshold value of the node x; we have
0 ≤ kx ≤ numx . Then, each leaf node has a threshold value
kx = 1.
We suppose that the children of every node do have orders

from 1 to num. Next, we define some new functions. The
function parent(x) represents the parent of node x. The func-
tion att(x) is defined as an attribute associated with the leaf
node. The function index(x) returns the number associated
with node x.
Let r be the root of an access tree T, expressed as Tr .

Tx refers to the subtree of T rooted at node x. Tx(S) = 1
means that the set of attributes S satisfies the tree Tx . Here,
we use a recursive algorithm to compute Tx(S).
• If x is a non-leaf node, we compute Tx ′ (S) for all chil-
dren x ′ of x. If at least kx children return 1, then Tx(S)
returns 1.

• If x is a leaf node, then Tx(S) returns 1 if att(x) ∈ S.

III. PROBLEM FORMULATION
In this section, we present the system and the security model.

FIGURE 3. System model for KP-ABEwET.

A. SYSTEM MODEL
Fig. 3 illustrates the system model of KP-ABEwET. The sys-
tem has three participating entities: the cloud server, the users
and a trusted third party. The trusted third party generates
public key pk and private key sk for users. The users encrypt
and send their private data to the cloud server. If a user wants
the cloud server to test the ciphertext, then the cloud server is
authorized and gains a trapdoor tr . However, the cloud server
can only test whether the two ciphertexts contain the same
information and cannot decrypt them using the trapdoor. The
legitimate users access data according to their attributes and
can decrypt their ciphertexts or test the ciphertexts. If the
legitimate users satisfy the access structure for the test, they
can get the test results of the ciphertexts from the cloud server.
If the legitimate users satisfy the access structure for the
decryption, they can decrypt the ciphertexts.

An integrated KP-ABEwET scheme consists of six algo-
rithms: Setup, Encrypt, KeyGen, Trapdoor, Decrypt and
Test. Here, we let M be plaintext space and C be ciphertext
space.

(1) Setup(k): It takes a security parameter k as input, and
then it outputs the public parameters pp and pk and the master
key mk .
(2) Encrypt(M , pk, S, S ′): It takes a message M ∈ M,

public key pk and two sets of attributes S, S ′ as inputs, and
then it outputs the ciphertext CT ∈ C.

(3) KeyGen(T,T′, S, S ′, pp,mk): This algorithm takes as
inputs the master keymk , two access trees T,T′, and two sets
of attributes S, S ′ that satisfy T(S) = 1 and T′(S ′) = 1, and
it subsequently outputs the private key sk .
(4) Trapdoor(S ′,T′,mk): It takes mk , T′ and S ′ as inputs,

and it outputs the trapdoor td .
(5) Decrypt(CT , sk, S, S ′): It takes as inputs a ciphertext

CT ∈ C, S, S ′ and the private key sk , and it outputs the
message M if T(S) = 1 and T′(S ′) = 1. Here, CT is
encrypted using the sets S and S ′.

(6) Test(CTA,CTB, tdA, tdB, S ′): Suppose that CTA is a
ciphertext of the sets of attributes SA and S ′A and that CTB
is a ciphertext of the sets of attributes SB and S ′B. This algo-
rithm takes as inputs two ciphertexts CTA,CTB, the trapdoors
tdA, tdB and the set S ′ of attributes that satisfyT′A(S

′) = 1 and
T′B(S

′) = 1, and then it outputs 1 if CTA and CTB contain the
same message; otherwise, it returns 0.

B. SECURITY MODEL
Here, the security model of the proposed scheme and the
security model of authorization are presented.

First, we define one-way against chosen-ciphertext attack
(OW-CCA) for KP-ABEwET under a chosen set of attributes,
as follows.
Game 1: Suppose that A is the adversary. A announces

a set of attributes that he wishes to be challenged, shown
as S.

(1) Setup. The challenger C takes a security parameter k as
input and outputs public parameters pp to A with the Setup
algorithm of KP-ABEwET.

(2) Phase 1. A performs the following types of queries
polynomially many times.
• Key retrieve queries:A performs any queries for private
keys for many access structures Ti, where S /∈ Ti for
all i. C sends sk to A.

• Decryption queries: A performs many queries for
ciphertexts. C runs the Decrypt algorithm and out-
puts the plaintext corresponding to the ciphertext or
⊥ to A.

• Trapdoor queries: C runs the Trapdoor algorithm and
outputs td to A.

(3)Challenge: C randomly chooses amessageM ∈M, sets
CT ∗ = Encrypt(pk,M ) and sends CT ∗ toA as his challenge
ciphertext.

(4) Phase 2: Phase 1 is repeated. The constraints are that
CT ∗ does not appear in the decryption queries.
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(5) Guess: A outputs a guess M∗ ∈ M and wins the game
if M∗ = M .
The advantage of A is defined as Pr[M∗ = M ].
Definition 5: The KP-ABEwET scheme is OW-CCA

secure if the advantage of all polynomial time adversaries is
negligible in the above game.
Finally, we define a testable against chosen-ciphertext attack
(T-CCA) of authorization for KP-ABEwET under the chosen
sets of attributes, as follows:
Game 2: Suppose that A2 is an adversary. A2 announces

two sets of attributesS andS ′ that he wishes to be challenged.
Here, (S ∩ S ′) = ∅, S is used for decryption, and S ′ is used
for the trapdoor.

(1) Setup. The challenger, C, takes a security parameter k
as input and outputs public parameters pp to A2 by using the
Setup algorithm of KP-ABEwET.
(2) Phase 1. A2 performs the following types of queries

polynomially many times.
• Key retrieve queries: A2 performs many queries for
private keys for any access structures Ti and T′j, where
S /∈ Ti for all i and S ′ /∈ T′j for all j. C sends sk to A2.

• Decryption queries: A2 performs many queries for
ciphertexts. C runs the Decrypt algorithm and out-
puts the plaintext corresponding to the ciphertext or
⊥ to A2.

• Trapdoor queries: C runs the Trapdoor algorithm and
outputs td to A2.

• Test queries: C runs the Test algorithm and outputs 1 for
equality ciphertexts and 0 for unequal ciphertexts or ⊥.

(3) Challenge: C chooses a random number ϑ ∈ {0, 1}.
If ϑ = 1, then C chooses one message M , sets

CT ∗1 = Encrypt(pk,M ),CT ∗2 = Encrypt(pk,M )

and sends CT ∗1 ,CT
∗

2 to A2 as his challenge ciphertexts.
If ϑ = 0, C chooses two unequal messages, M1 and M2; sets

CT ∗1 = Encrypt(pk,M1),CT ∗2 = Encrypt(pk,M2)

; and sends CT ∗1 ,CT
∗

2 to A2 as his challenge ciphertexts.
(4) Phase 2: Phase 1 is repeated with the conditions that

CT ∗1 and CT ∗2 do not appear in decryption queries and CT ∗1
and CT ∗2 do not appear in test queries.
(5) Guess: A2 outputs a guess ϑ∗ and wins the game if

ϑ = ϑ∗, meaning 1 for M1 = M2 or 0 for M1 6= M2.
The advantage of A2 is defined as |Pr[ϑ∗ = ϑ]− 1/2|.
Definition 6: The KP-ABEwET scheme is T-CCA secure

in terms of authorization if the advantage of all polynomial
time adversaries is negligible in the aforementioned game.

IV. OUR CONSTRUCTIONS
The following section presents the proposed KP-ABEwET
scheme.
Setup (k): It takes a security parameter k as input and

outputs public parameters pp as follows:
(1) Generate bilinear groups,G1,G2 and |G1| = q, |G2| =

q, and choose a random generator g ∈ G1. Then, let e : G1×

G1→ G2 be a bilinear map.

(2) Let A be a universe of properties of attributes. For
simplicity, we take the first A elements of Z∗q as the universe,
formally as 1, 2, · · · , |A|(mod q).
(3) Let H1 : {0, 1}|A| × G2 → {0, 1}k+l , H2 : {0, 1}|A| ×

G2 → G1, and H3 : 5G1 × {0, 1}k+l → {0, 1}k be hash
functions, where l is the length of the elements of Zq.

(4) Choose x1, x2, · · · , x|A|, y1, y2 ∈ Z∗q randomly, and
then output public keys pk ,

X1 = gx1 , · · · ,X|A| = gx|A| ,Y1 = e(g, g)y1 ,Y2 = e(g, g)y2

, and the master key mk , (x1, x2, · · · , x|A|, y1, y2).
Encrypt (M , pk, S, S ′): It takes amessageM , public key pk

and two sets of attributes S, S ′ as inputs, where (S ∩ S ′) = ∅,
S is used for decryption, and S ′ is used for testing. Then, it
outputs the ciphertext as follows:

Choose r1, r2, r3 ∈ Zq randomly, and then formulate the
following:

CT = (S, S ′,C1 = gr1 ,C2 = M ‖ r1 ⊕ H1(S,Y
r2
1 ),

C3 = M r1 · H2(S ′,Y
r3
2 ),C4 = {Ei = X r2i }i∈S ,

C5 = {Ej = X r3j }j∈S ′ ,C6 = H3(M r1 ,C1,C2,C3,C4,C5))

KeyGen (T,T′, S, S ′, pp,mk): This algorithm takes the
master keymk , two sets of attributes S, S ′ satisfyingT(S) = 1
and T′(S ′) = 1 and (S ′

⋂
S) = ∅ as inputs, and it outputs the

private key as follows:
(1) The algorithm chooses a polynomial qx for each node x

in the tree T. The polynomials are chosen from top to bottom,
starting from the root node r . The details are presented as
follows:
• For each node x in T, it sets the degree dx of the polyno-
mial qx to be one less than the threshold value kx of that
node, which means that dx = kx − 1.

• Then, for the root node r , it sets qr (0) = y1 and
randomly chooses dr other points of the polynomial qr
to define it completely.

• For any other node x, it sets qx(0) = qparent(x)(index(x))
and randomly chooses dx other points to completely
define qx .

• For each leaf node x, it outputs Dx = gqx (0)/xi , where
i = att(x).

(2) The algorithm chooses a polynomial qt for each node t
inT′. The polynomials are chosen from top to bottom, starting
from the root node r ′. The details are described as follows:
• For each node t in T′, it sets the degree dt of the polyno-
mial qt to be one less than the threshold value kt of that
node, which means that dt = kt − 1.

• Then, for the root node r ′, it sets q′r (0) = y2 and
randomly chooses dr ′ other points of the polynomial qr ′
to define it completely.

• For any other node t , the algorithm sets qt (0) =
qparent(t)(index(t)) and randomly chooses dt other points
to completely define qt .

• For each leaf node t , it outputs Tt = gqt (0)/xj , where
j = att(t).

20432 VOLUME 5, 2017



H. Zhu et al.: Key-Policy Attribute-Based Encryption with Equality Test in Cloud Computing

(3) The algorithm outputs secret key sk = (Dx =
gqx (0)/xi ,Tt = gqt (0)/xj ), where i = att(x), j = att(t).
Trapdoor (T′, S ′,mk): It takes T′, S ′ and mk as inputs;

subsequently, it outputs a trapdoor td to test the ciphertexts
as follows. Here, T′(S ′) = 1.
The algorithm chooses a polynomial qt for each node t in

T′. The polynomials are chosen from top to bottom, starting
from the root node r ′. The details are as follows:

• For each node t in T′, it sets the degree dt of the polyno-
mial qt to be one less than the threshold value kt of that
node, which means that dt = kt − 1.

• Then, for the root node r ′, it sets q′r (0) = y2 and
randomly chooses dr ′ other points of the polynomial qr ′
to define it completely.

• For any other node t , the algorithm sets qt (0) =
qparent(t)(index(t)) and randomly chooses dt other points
to completely define qt .

• For each leaf node t , it outputs Tt = gqt (0)/xj , where
j = att(t).

The algorithm outputs trapdoor td = gqt (0)/xj , where
j = att(t).
Decrypt (CT , sk, S, S ′): For decryption, we define a recur-

sive algorithm, which is described as follows:
It takes the ciphertext CT , the private key sk and a node x

in the treeT as inputs and outputs a group element ofG2 or⊥.
If x is a leaf node and i ∈ S, where i = att(x), then the

algorithm computes as follows:
DecryptNode(CT , sk, x) = e(Dx ,Ei) =

e(gqx (0)/xi , gr2xi ) = e(g, g)r2qx (0).
Otherwise, we define DecryptNode(CT , sk, x) =⊥.
Now, we consider that x is a non-leaf node. DecryptNode

(CT , sk, x) executes as follows:
Suppose that z is the child of x. Then, it executes algorithm

DecryptNode(CT , sk, z) and stores the output as Oz. Let Fx
be an arbitrary kx-sized set of child nodes z such that Oz 6=⊥.
If no such set exists, then the node is not satisfied and the
function returns ⊥.
Otherwise, we compute the following:

Ox =
∏
z∈Fx

O
a
i,F ′x

(0)
z

=

∏
i∈Fx

(e(g, g)r2qz(0))
a
i,F ′x

(0)

=

∏
i∈Fx

(e(g, g)r2qparent(z)(index(z)))
a
i,F ′x

(0)

=

∏
i∈Fx

e(g, g)r2qx (i)
a
i,F ′x

(0)

= e(g, g)r2qx (0),

where i = index(z) and F ′x = {index(z) : z ∈ Fx}.
Then, DecryptNode(CT , sk, r) = e(g, g)y1r2 = Y r21 .

Finally, it recovers M ||r1 = C2 ⊕ H1(S,Y
r2
1 ).

If C1 = gr1 and C6 = H3(M r1 ,C1,C2,C3,C4,C5), it
outputs M ; otherwise, it outputs ⊥.

Test (CTA,CTB, tdA, tdB, S ′′): Suppose that CTA,CTB are
two ciphertexts encrypted by (SA, SA′ ) and (SB, SB′ ) inde-
pendently, T′A(S

′′) = 1, and T′B(S
′′) = 1, where CTA =

(SA, S ′A, CA,1, CA,2, CA,3, CA,4, CA,5,CA,6) and CTB =
(SB, S ′B,CB,1,CB,2,CB,3,CB,4,CB,5,CB,6). Subsequently, it
uses tdA for the computation as follows:

If node tA is the leaf node, then we let j = att(tA). If j ∈
S ′A, then DecryptNode(CTA,T

′
tA , tA) = e(T ′tA ,CA,5) = e(T ′tA ,

EA,j) = e(gqtA (0)/tA,j , grA,3tA,j ) = e(g, g)rA,3qtA (0). Otherwise,
we define DecryptNode(CTA,T ′tA , tA) =⊥.
Next, we consider tA to be a non-leaf node. DecryptNode

(CTA,T ′tA , tA) executes as follows:
Suppose that z′A is the child of tA. Then, it runs algorithm

DecryptNode(CTA,T ′tA , tA) and stores the output asOA,z′A . Let

FtA be an arbitrary kA,t -sized set of child nodes z′A such that
OA,z′A 6=⊥. If no such set exists, then the node is not satisfied

and the function returns ⊥.
Otherwise, it computes the following:

OtA =
∏

z′A∈FtA

O

a
i,F ′tA

(0)

z′A

=

∏
i∈FtA

(e(g, g)rA,3qtA (0))
a
i,F ′tA

(0)

=

∏
i∈FtA

(e(g, g)
rA,3qparent(z′A)

(index(z′A)))
a
i,F ′tA

(0)

=

∏
i∈FtA

e(g, g)
rA,3qtA (i)

a
i,F ′tA

(0)

= e(g, g)rA,3qtA (0),

where i = index(z′A),F
′
tA = index(z′A) : z

′
A ∈ FtA .

Then, DecryptNode(CTA,T ′tA , r
′
A) = e(g, g)yA,2rA,3 =

Y
rA,3
A,2 . Finally, it recovers

M
rA,1
A = CA,3/H2(S ′A,Y

rA,3
A,2 ).

Then, it uses tdB to recoverM
rB,1
B = CB,3/H2(S ′B,Y

rB,3
B,2 ) using

the same method as above.
• If CA,6 = H3(M

rA,1
A ,CA,1,CA,2,CA,3,CA,4,CA,5) (resp.

CB,6 = H3(M
rB,1
B ,CB,1,CB,2,CB,3,CB,4,CB,5)), it com-

putes the following: e(M
rA,1
A ,CB,1) and e(M

rB,1
B ,CA,1).

Then, it outputs 1 for e(M
rA,1
A ,CB,1) = e(M

rB,1
B ,CA,1);

otherwise, it outputs 0. Here, rA,1, rA,3 (resp. rB,1, rB,3)
are the randomness used in the generation of
CTA (resp. CTB).

• Otherwise, it outputs ⊥.

V. SECURITY ANALYSIS
A. SECURITY OF SCHEME
The following subsection provides the security proof of the
presented KP-ABEwET scheme.
Theorem 2: Our proposed scheme is OW-CCA secure

against the adversary who is authorized with a trapdoor
based on the BDH assumption in the random oracle model.
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Proof: Suppose thatA is the adversary that can break the
presented KP-ABEwET scheme. Then, there is an algorithm
C to solve the BDH problemwith a non-negligible advantage.
Given a 4-tuple (g,A,B,C) = (g, ga, gb, gc), the objective of
algorithm C is to compute e(g, g)abc.

Init Suppose that there is a universe U . A chooses a set of
attributes S as his target.

Setup Let Y1 = e(A,B) = e(g, g)ab,Y2 = e(g, g)y

(y ∈ Zp). For i ∈ U , C sets Xi as follows: if i ∈ S, it
chooses a random αi ∈ Zp and sets Xi = gαi (xi = αi);
otherwise, it chooses a random τi ∈ Zp and sets Xi =
gbτi = Bτi . Then, C gives the public parameters pp =
(X1,X2, · · · ,X|U |,Y1,Y2,H1,H2,H3) to A. Here, H1 is a
random oracle controlled by C, as described below.

Phase 1 A performs the following types of queries poly-
nomially times.

• H1-query: A may issue queries to the random oracle
H1. To respond to these queries, C maintains a list of
tuples H1. Each element in the list is a tuple of the form
(Sλ, δλ, ηλ). The list is initially empty. Responding to
query (Sλ, δλ), C runs as follows:

– If the query (Sλ, δλ) already appears in the H1 list
in the form (Sλ, δλ, ηλ), then C responds to A with
H1(Sλ, δλ) = ηλ.

– Otherwise, C just takes ηλ ∈ G2, and then it
responds to A with H1(Sλ, δλ) = ηλ. C adds the
tuple (Sλ, δλ, ηλ) to the H1 list.

• Key retrieve queries: A performs many queries for pri-
vate keys for many access structures T, where S does
not satisfy T. C sends sk to A as follows:
(1) C builds two algorithms: SatT and DNSatT, as
follows:
SatT(Tx ,S, vx): This algorithm constructs the polyno-
mials for the nodes of an access sub-tree with a satisfied
root node when Tx(S) = 1. It takes as inputs a set of
attributes S, an access tree Tx and a random number
vx ∈ Zp, and it outputs a polynomial qx of degree dx
for the root node x as follows:
Let qx(0) = vx and randomly choose dx other points
of the polynomial qx to construct qx . The algorithm
constructs polynomials for each child node x ′ of x by
executing the algorithm SatT(Tx ′ ,S, qx(index(x ′))).
DNSatT(Tx ,S, gvx ): This algorithm constructs the
polynomials for the nodes whenTx(S) = 0. It takes a set
of attributes S, an access tree Tx and a random element
gvx ∈ G1, where vx ∈ Zp, and it outputs a polynomial qx
of degree dx for the root node x as follows:
Because Tx(S) = 0, the root node has less than dx
satisfied children. Suppose that sx is the number of
satisfied children of x, which implies that sx < dx .
The algorithm chooses a random number vx ′ ∈ Zp for
each satisfied child x ′ of x. Let qx(index(x ′)) = vx ′ and
randomly choose other dx − sx points of the polynomial
qx to construct qx .
We obtain qx(·) for each node in T as follows.

If the node x ′ is a satisfied node, then it executes the
algorithm SatT(Tx ′ ,S, qx(index(x ′))). Here, we know
qx(index(x ′)).
Otherwise, it runs the algorithm DNSatT(Tx ′ ,S,
gqx (index(x

′))). Here, we know gqx (index(x
′)).

In the above algorithms, we know qx for each leaf
node x clearly satisfying Tx ; otherwise, we know gqx (0).
Furthermore, qr (0) = a.
(2) C constructs a polynomial Qx(·) = bqx(·) and sets
y1 = Qr (0) = bqr (0) = ab.
(3) Let i = att(x) and j = att(t). If i ∈ S, then
Dx = gQx (0)/xi = gbqx (0)/αi = Bqx (0)/αi ; otherwise,
Dx = gQx (0)/xi = gbqx (0)/bτi = gqx (0)/τi . Then, Tt =
gQt (0)/xj = gbqt (0)/bτj = gqt (0)/τj.

• Decryption queries: Suppose that the ciphertext CTλ =
(Sλ, S ′λ,Cλ,1,Cλ,2,Cλ,3,Cλ,4,Cλ,5,Cλ,6), i=att(x).

– If i /∈ S, then C generates a private key as above
and calls the Decrypt algorithm with the valid sk
and provides the output to A.

– Otherwise, C proceeds as follows:

∗ If Sλ is already included in theH1 list in the form
of (Sλ, δλ, ηλ), then C executes as follows:
a. M ||r1 = Cλ,2 ⊕ H1(Sλ, δλ)
b. Determine whether Cλ,1 = gr1 and Cλ,6 =
H3(M r1 ,Cλ,1,Cλ,2,Cλ,3,Cλ,4,Cλ,5) are estab-
lished. If yes, C outputs M to A. Otherwise, it
outputs ⊥ to A.

∗ Otherwise, it outputs ⊥ to A.

• Trapdoor queries:A performsmany queries for trapdoor
for many access structuresT′. C sends tr toA as follows:
C constructs a polynomial Qt (·) as in key retrieve
queries. Let j = att(t); then, output td = Tt =
gQt (0)/xj = gbqt (0)/bτj = gqt (0)/τj to A.

Challenge: C randomly chooses a message M∗ as a chal-
lenge message and outputs the ciphertext as follows:

C chooses random numbers r1, r2 ∈ Zq, S ′ and W ∈

{0, 1}k+l . Then, it outputs
CT ∗ = (S, S ′,C1 = gr1 ,C2 = M∗||r1 ⊕

H1(S,W ),C3 = M∗r1H2(S ′,Y
r3
2 ),C4 = {Ei = X ci }i∈S =

{Ei = Cαi}i∈S ,C5 = {Ej = X r2j }j∈S ′ ,C6 =

H3(M∗r1 ,C1,C2,C3,C4,C5)).
C responds to A with the challenge ciphertext CT ∗.
Phase 2:A performs more queries as in phase 1. However,

the restriction is that CT ∗ does not appear in the decryption
queries.
Guess: A submits a guess M ′. If M ′ = M∗, then it means

that A can recover e(g, g)abc from (ga, gb, gc).

B. SECURITY OF AUTHORIZATION
Finally, we provide the security proof of authorization.
Theorem 3: Our proposed scheme is T-CCA secure in

terms of authorization against the adversaryA2 based on the
tDBDH assumption in the random oracle model.

Proof: Suppose that A2 is the adversary that can break
our cryptosystem. Then, there is an algorithm C to solve the
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tDBDH problem as follows. The objective of algorithm C is
to distinguish between the 7-tuples (A,B,C,E,F,D,G) =
(ga, gb, gc, gu, gv, e(g, g)abc, e(g, g)ubv) and (A′,B′,C ′,E ′,
F ′,D′,G′) = (ga, gb, gc, gu, gv, e(g, g)d , e(g, g)w), where
a, b, c, d, u, v,w ∈ Zp.
Init Suppose that there is a universe U . A2 chooses two

sets of attributes S and S ′ as his target, where (S ′ ∩ S) = ∅.
Here, S is used for decryption, and S ′ is used for the trapdoor.
Setup Let Y1 = e(A,B) = e(g, g)ab,Y2 = e(E,B) =

e(g, g)ub. For i, j ∈ U , C sets Xi as follows:
• If i ∈ S, it chooses a random αi ∈ Zp and sets Xi =
gαi (xi = αi).

• Otherwise, it sets as follows:
– If j ∈ S ′, it chooses a random βj ∈ Zp and sets
Xj = gβj (xj = βj);

– Otherwise, it chooses a random τi ∈ Zp and sets
Xi = gbτi = Bτi (xi = bτi).

Subsequently, C provides the public parameters pp =
(X1,X2, · · · ,X|U |,Y1,Y2,H1,H2,H3) to A2. Here, H1 and
H2 are random oracles controlled by C, as described below.
Phase 1 A2 performs the following types of queries poly-

nomially times.
• H1-query: A may issue queries to the random oracle
H1. To respond to these queries, C maintains a list of
tuples H1. Each element in the list is a tuple of the form
(Sλ, δλ, ηλ). The list is initially empty. Responding to
query (Sλ, δλ), C runs as follows:
– If the query (Sλ, δλ) already appears in the H1 list

in the form (Sλ, δλ, ηλ), then C responds to A with
H1(Sλ, δλ) = ηλ.

– Otherwise, C just takes ηλ ∈ G2, and C responds
to A with H1(Sλ, δλ) = ηλ and adds the tuple
(Sλ, δλ, ηλ) to the H1 list.

• H2-query: A may issue queries to the random oracle
H2. To respond to these queries, C maintains a list of
tuples H2. Each element in the list is a tuple of the form
(S ′λ, θλ, µλ). The list is initially empty. Responding to
query (S ′λ, θλ), C runs as follows:
– If the query (S ′λ, θλ) already appears in the H2 list

in the form (S ′λ, θλ, µλ), C responds to A2 with
H2(S ′λ, θλ) = µλ.

– Otherwise, C just takes µλ ∈ G1, and C responds
to A2 with H2(S ′λ, θλ) = µλ and adds the tuple
(S ′λ, θλ, µλ) to the H2 list.

• Key retrieve queries: A2 performs many queries for
private keys for many access structures T and T′, where
S and S ′ do not satisfy T and T′, respectively. C sends
sk to A2 as follows:
(1) To generate secret key (Dx ,Tt ), C builds two algo-
rithms: SatT and DNSatT.
SatT(Tx ,S, vx): This algorithm constructs the polyno-
mials for the nodes when Tx(S) = 1. It takes a set of
attributes S, an access tree Tx and a random number
vx ∈ Zp, and it outputs a polynomial qx of degree dx
for the root node x as follows:

Let qx(0) = vx , and randomly choose dx other points
of the polynomial qx to construct qx . It constructs poly-
nomials for each child node x ′ of x by running the
algorithm SatT(Tx ′ ,S, qx(index(x ′))).
DNSatT(Tx ,S, gvx ): This algorithm constructs the
polynomials for the nodes when Tx(S) = 0. It takes
a set of attributes W , an access tree Tx and a random
element gvx ∈ G1, where vx ∈ Zp, and it outputs
a polynomial qx of degree dx for the root node x as
follows:
Because Tx(S) = 0, the root node has less than dx
satisfied children. Suppose that sx is the number of
satisfied children of x, which implies that sx < dx .
The algorithm chooses a random number vx ′ ∈ Zp for
each satisfied child x ′ of x. Let qx(index(x ′)) = vx ′ and
randomly choose other dx − sx points of the polynomial
qx to construct qx . If the node x ′ is a satisfied node,
then it runs the algorithm SatT(Tx ′ ,S, qx(index(x ′))).
If the node x ′ is not a satisfied node, then it executes
the algorithm DNSatT(Tx ′ ,S, gqx (index(x

′))).
In the above algorithms, we know qx for each leaf node
x clearly satisfying Tx ; otherwise, we know gqx (0). Fur-
thermore, qr (0) = a.
C constructs a polynomial Qx(·) = bqx(·) and sets y1 =
Qr (0) = bqr (0) = ab.
For T′, it obtains qt (·) for each node in T′ as follows.
If the node t ′ is a satisfied node, then it runs the
algorithm SatT′(T′t ′ ,S

′, qt (index(t ′))). Here, we know
qt (index(t ′)).
Otherwise, it executes the algorithm DNSatT′(T′x ′ ,S

′,

gqt (index(t
′))). Here, we know gqt (index(t

′)).
In the above algorithms, we know qt for each leaf node
t clearly satisfying T′t ; otherwise, we know gqt (0). Fur-
thermore, qr ′ (0) = u.
C constructs a polynomial Qt (·) = bqt (·) and sets y2 =
Qr ′ (0) = uqr ′ (0) = ub.
Let i = att(x) and j = att(t).
– If i = j, then it outputs ⊥.
– Otherwise,
∗ If i ∈ S, then Dx = gQx (0)/xi = gbqx (0)/αi =
Bqx (0)/αi ;

∗ Otherwise, Dx = gQx (0)/xi = gbqx (0)/bτi =
gqx (0)/τi .

– If j = i, then it outputs ⊥.
– Otherwise,
∗ If j ∈ S ′, then Tt = gQt (0)/tj = gbqt (0)/βj =
Bqt (0)/βj ;

∗ Otherwise, Tt = gQt (0)/tj = gbqt (0)/bτj =
gqt (0)/τj .

• Decryption queries: Suppose that the ciphertext CTλ =
(Sλ, S ′λ,Cλ,1,Cλ,2,Cλ,3,Cλ,4,Cλ,5,Cλ,6), i = att(x).
– If i /∈ S, C generates a private key of Dx

as above and calls the Decrypt algorithm with
Dx and saves M and r1, then it continues as
follows:
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∗ If Cλ,1 = gr1 and Cλ,6 = H3(M r1 ,Cλ,1,Cλ,2,
Cλ,3,Cλ,4,Cλ,5) are established, then C outputs
M to A2.

∗ Otherwise, C outputs ⊥ to A2.
– If i ∈ S, C proceeds as follows:
∗ If Sλ belongs to the H1 list in the form of

(Sλ, δλ, ηλ), then C executes as follows:
a. M ||r1 = Cλ,2 ⊕ H1(Sλ, δλ)
b. Checks whether Cλ,1 = gr1 and Cλ,6 =
H3(M r1 ,Cλ,1,Cλ,2,Cλ,3,Cλ,4,Cλ,5) are estab-
lished. If yes, C outputs M to A2. Otherwise, C
outputs ⊥ to A2.

∗ Otherwise, it outputs ⊥.
• Trapdoor queries: A2 performs many queries for the
trapdoor for many access structures T′, where S ′ does
not satisfy T′. C sends td to A2 as follows:
C uses the above algorithms: SatT and DNSatT.
Then, it obtains qt (·) for each node in the T′ as follows.
If the node t ′ is a satisfied node, then it runs the
algorithm SatT′(T′t ′ ,S

′, qt (index(t ′))). Here, we already
know qt (index(t ′)).
Otherwise, it runs the algorithm DNSatT′(T′x ′ ,S

′,

gqt (index(t
′))). Here, we already know gqt (index(t

′)).
In the above algorithms, we know qt for each leaf
node t clearly satisfying T′t ; otherwise, we know gqt (0).
Furthermore, qr ′ (0) = u.
C constructs a polynomial Qt (·) = bqt (·) and sets y2 =
Qr ′ (0) = uqr ′ (0) = ub. Let j = att(t).
If j ∈ S, then it outputs ⊥.
Otherwise,
– If j ∈ S ′, then Tt = gQt (0)/tj = gbqt (0)/βj = Bqt (0)/βj .
– Otherwise, Tt = gQt (0)/tj = gbqt (0)/bτj = gqt (0)/τj .

• Test queries: Suppose that the ciphertext CTλ =

(Sλ, S ′λ,Cλ,1,Cλ,2,Cλ,3,Cλ,4,Cλ,5,Cλ,6), CTλ′ =

(Sλ′ , S ′
λ′
, Cλ′,1, Cλ′,2, Cλ′,3, Cλ′,4, Cλ′,5, Cλ′,6),

jλ =att(tλ), jλ′ =att(tλ′ ).
– If jλ /∈ S ′ and jλ′ /∈ S ′, then C generates tdλ and tdλ′

as above and calls the Test algorithm with the valid
tdλ and tdλ′ , and it provides the output to A2.

– If jλ /∈ S ′ and jλ′ ∈ S ′, then C runs as follows:
∗ For ciphertext CTλ, C generates a tdλ as above,

runs the Test algorithm and can obtainM
rλ,1
λ with

the valid tdλ. Then, it checks whether Cλ,6 =
H3(M rλ,1 ,Cλ,1,Cλ,2,Cλ,3,Cλ,4,Cλ,5). If yes, it
stores M

rλ,1
λ . Otherwise, it outputs ⊥.

∗ For ciphertext CTλ′ ,
a. If S ′

λ′
belongs to the H2 list in the form

of (S ′
λ′
, θλ′ , µλ′ ), then C computes M

rλ′,1
λ′

=

Cλ′,3/H2(S ′λ′ , θλ′ ). Then, it checks whether
Cλ′,6 = H3(M rλ′,1 , Cλ′,1, Cλ′,2, Cλ′,3, Cλ′,4,
Cλ′,5) holds. If yes, it stores M

rλ′,1
λ′

. Otherwise,
it outputs ⊥.
b. Otherwise, it outputs ⊥

∗ Then, C uses the storage elements of M
rλ′,1
λ′

and M
rλ,1
λ to compute e(M

rλ,1
λ ,Cλ′,1) and

e(M
rλ′,1
λ′

,Cλ,1), respectively, and outputs 1 for

e(M
rλ,1
λ ,Cλ′,1) = e(M

rλ′,1
λ′

,Cλ,1) and outputs 0
otherwise. Here, rλ,1 (resp. rλ′,1) is the random-
ness used in the generation of CTλ (resp. CTλ′ ).

– If jλ ∈ S ′ and jλ′ /∈ S ′, C proceeds as follows:

∗ For ciphertext CTλ,
a. If S ′λ belongs to the H2 list in the form
of (S ′λ, θλ, µλ), then C computes M

rλ,1
λ =

Cλ,3/H2(S ′λ, θλ). Then, it checks whetherCλ,6 =
H3(M rλ,1 , Cλ,1, Cλ,2, Cλ,3, Cλ,4, Cλ,5) holds.
If yes, it stores M

rλ,1
λ . Otherwise, it outputs ⊥.

b. Otherwise, it outputs ⊥.
∗ For ciphertext CTλ′ , C generates a tdλ′ as

above, and then it runs the Test algo-
rithm and can obtain M

rλ′,1
λ′

with the valid
tdλ′ . Then, it checks whether Cλ′,6 =

H3(M rλ′,1 ,Cλ′,1,Cλ′,2,Cλ′,3,Cλ′,4,Cλ′,5) holds.
If yes, it stores M

rλ′,1
λ′

. Otherwise, it outputs ⊥.
∗ Then, C uses the storage elements of M

rλ′,1
λ′

and M
rλ,1
λ to compute e(M

rλ,1
λ ,Cλ′,1) and

e(M
rλ′,1
λ′

,Cλ,1), respectively, and outputs 1 for
e(M

rλ,1
λ ,Cλ′,1) = e(M

rλ′,1
λ′

,Cλ,1) and outputs 0
otherwise. Here, rλ,1 (resp. rλ′,1) is the random-
ness used in the generation of CTλ (resp. CTλ′ ).

– If jλ ∈ S ′ and jλ′ ∈ S ′, then C proceeds as follows:

∗ For ciphertext CTλ,
a. If S ′λ belongs to the H2 list in the form
of (S ′λ, θλ, µλ), then C computes M

rλ,1
λ =

Cλ,3/H2(S ′λ, θλ). Then, it checks whetherCλ,6 =
H3(M rλ,1 , Cλ,1, Cλ,2, Cλ,3, Cλ,4, Cλ,5) holds. If
yes, it stores M

rλ,1
λ . Otherwise, it outputs ⊥.

b. Otherwise, it outputs ⊥.
∗ For ciphertext CTλ′ ,

a. If S ′
λ′

belongs to the H2 list in the form
of (S ′

λ′
, θλ′ , µλ′ ), then C computes M

rλ′,1
λ′

=

Cλ′,3/H2(S ′λ′ , θλ′ ). Then, it checks whether
Cλ′,6 = H3(M rλ′,1 , Cλ′,1, Cλ′,2, Cλ′,3, Cλ′,4,
Cλ′,5) holds. If yes, it stores M

rλ′,1
λ′

. Otherwise,
it outputs ⊥.
b. Otherwise, it outputs ⊥

∗ Then, C uses the storage elements of M
rλ′,1
λ′

and M
rλ,1
λ to compute e(M

rλ,1
λ ,Cλ′,1) and

e(M
rλ′,1
λ′

,Cλ,1), respectively, and outputs 1 for
e(M

rλ,1
λ ,Cλ′,1) = e(M

rλ′,1
λ′

,Cλ,1) and outputs 0
otherwise. Here, rλ,1 (resp. rλ′,1) is the random-
ness used in the generation of CTλ (resp. CTλ′ ).

Challenge: C chooses a random number ϑ ∈ {0, 1} and
runs as follows:
If ϑ = 1, then C chooses one message M , D = e(g, g)abc,

G = e(g, g)ubv, and r1, r2 ∈ Zq. Let CT ∗1 = (S,S ′,C1 =

gr1 ,C2 = M ||r1 ⊕ H1(S,D),C3 = M r1H2(S ′,G),C4 =

{Ei = X ci }i∈S = {Ei = Cαi}i∈S ,C5 = {Ej = X zj }j∈S ′ =
{Ej = Fβj}j∈S ′ ,C6 = H3(M r1 ,C1,C2,C3,C4,C5)).
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TABLE 1. The comparison of computational complexity.

CT ∗2 = (S,S ′,C1 = gr2 ,C2 = M ||r2 ⊕ H1(S,D),C3 =

M r2H2(S ′,G),C4 = {Ei = X ci }i∈S = {Ei = Cαi}i∈S ,C5 =

{Ej = X zj }j∈S ′ = {Ej = Fβj}j∈S ′ ,C6 = H3
(M r1 ,C1,C2,C3,C4,C5)).
Then, it sends the challenge ciphertexts CT ∗1 and CT ∗2 to

the adversary.
If ϑ = 0, then C chooses two unequal messages, M1 and

M2, D′ = e(g, g)d , G′ = e(g, g)w and r1, r2 ∈ Zq.
Let CT ∗1 = (S,S ′,C1 = gr1 ,C2 = M1||r1 ⊕

H1(S,D′),C3 = M r1
1 H2(S ′,G′),C4 = {Ei = X ci }i∈S =

{Ei = Cαi}i∈S ,C5 = {Ej = X vj }j∈S ′ = {Ej = Fβj}j∈S ′ ,C6 =

H3(M r1 ,C1,C2,C3,C4,C5)).
CT ∗2 = (S,S ′,C1 = gr2 ,C2 = M2||r2 ⊕ H1(S,D′),C3 =

M r2
2 H2(S ′,G′),C4 = {Ei = X ci }i∈S = {Ei =

Cαi}i∈S ,C5 = {Ej = X vj }j∈S ′ = {Ej = Fβj}j∈S ′ ,C6 =

H3(M r1 ,C1,C2,C3,C4,C5)).
Then, it sends the challenge ciphertexts CT ∗1 and CT ∗2 to

the adversary.
Phase 2:A2 performsmore queries as in phase 1. However,

the restriction is that CT ∗1 and CT ∗2 do not appear in the
decryption and the test queries.
Guess: A2 provides a guess ϑ∗. If ϑ∗ = ϑ , then C

outputs ϑ = 1, which means that CT ∗1 and CT ∗2 contain
the same message, and declares that it was given a valid
7-tuple: (ga, gb, gc, gu, gv, e(g, g)abc, e(g, g)ubv); C outputs
ϑ = 0, which means that CT ∗1 and CT ∗2 contain different
messages, and declares that it was given a random 7-tuple:
(ga, gb, gc, gu, gv, e(g, g)d , e(g, g)w).

VI. PERFORMANCE EVALUATION
We theoretically analyze the asymptotic complexity of the
proposed scheme and other PKEwET schemes in Table 1.
We describe the computational complexity in terms of the
exponentiation operation E and the pairing operation P.
We denote the number of attributes required in the cipher-
text by |SC | and |S ′C |. In Table 1, CEnc, CDec and CTest
represent the encryption algorithms, decryption algorithms
and test algorithms, respectively. POA represents the proof
of authorization. From the second to the fourth columns,
we present the computational complexities of CEnc, CDec

and CTest . The fifth column indicates whether the underlying
schemes are attribute based. The sixth column shows whether
the schemes have the proof of authorization. The seventh
column highlights the security levels of the schemes. The last
column presents the underlying assumptions for guaranteeing
the security.

From Table 1, we observe that the computational com-
plexity of our scheme depends on the number of attributes
required by the ciphertext. Because our scheme incorporates
the ABE scenario, it may not be as efficient as the prevalent
works. The trade off is adjusted while offering the protection
of user identities. Furthermore, in contrast to previous works,
our scheme also allows the users to obtain fine-grained autho-
rization of ciphertexts. To the best of our knowledge,Ma et al.
first presented four types of authorizations in [29]. We find
that our proposed scheme can perform the authorization and
test in a more flexible manner because in our scheme, we
can perform the authorization using the attributes of users.
Furthermore, for the first time, the proof of authorization is
proven based on the tDBDH assumption.

In general, our scheme is more practical in the cloud
computing era. Users can store their ciphertexts on the could
server by using KP-ABEwET. The cloud server can be autho-
rized to perform some functionalities by transforming some
trapdoors secretly. Therefore, the could server can perform
the equality test independently. When users want to test
the ciphertexts, they submit their attributes and the tested
ciphertexts to the cloud sever. Accordingly, the cloud server
responds with a reasonable answer or ⊥. Meanwhile, it also
protects the identities of users.

VII. CONCLUSION
In this paper, a new cryptosystem called key-policy attribute-
based encryption with equality test (KP-ABEwET) is pre-
sented. To the best of our knowledge, KP-ABEwET is the
first attempt to combine the public key encryption supporting
equality test with key-policy attribute-based encryption. The
proposed scheme can be viewed as an extension of attribute-
based encryption with keyword search (ABEwKS) with the
difference that it can test whether the ciphertexts contain the
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same information that were encrypted by different public
keys. In contrast to previous schemes with equality test,
the new scheme supports testing the ciphertexts with fine-
grained authorization and also hides the identity of the user.
Moreover, the proposed scheme is one-way secure against
chosen-ciphertext attack (OW-CCA) based on the bilinear
Diffie-Hellman (BDH) problem. Furthermore, a new compu-
tational problem called twin-decision bilinear Diffie-Hellman
problem (tDBDH) is proposed and is proven to be as hard as
the DBDH problem. Finally, the security model of authoriza-
tion is presented, and the security of authorization based on
the tDBDH assumption is proven in the random oracle model.
To the best of our knowledge, this work is the first to prove
the security of authorization in such a scenario.
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