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ABSTRACT Existing machine-learning-based vehicle detection algorithms for intelligent vehicles have an
obvious disadvantage in that the detection effect decreases dramatically when the distribution of training
samples and the scene target samples do not match. To address this issue, a scene-adaptive vehicle detection
algorithm based on a composite deep structure is proposed in this paper. Inspired by the Bagging (Bootstrap
aggregating) mechanism, multiple relatively independent source samples are first used to build multiple
classifiers and then voting is used to generate target training samples with confidence scores. The automatic
feature extraction ability of deep convolutional neural network is then used to perform source-target scene
feature similarity calculations with a deep auto-encoder in order to design a composite deep-structure-based
scene-adaptive classifier and its training method. Experiments on the KITTI data set and a data set captured
by our group demonstrate that the proposed method performs better than existing machine-learning-based
vehicle detection methods. In addition, compared with existing scene-adaptive object detection methods, our
method improves the detection rate by an average of approximately 3%.

INDEX TERMS Image recognition, vehicle detection, scene adaptive, composite deep structure, deep
convolutional neural network.

I. INTRODUCTION
Existing monocular-vision-based vehicle detection methods
for intelligent vehicles generally fall into one of two cate-
gories: background-modeling-based methods and machine-
learning-based approaches.

Background-modeling-based methods firstly capture mul-
tiple image frames to build a background model and then
segment the foreground image by background subtraction.
On this basis, the target belonging to vehicles can be further
judged and extracted. This type of method applies only to
a static surveillance scene with a fixed camera, and often
fails for a dynamic background. In contrast, the machine-
learning-based approach extracts features from the image and
trains a vehicle classifier using a large number of training
samples. The sub-images belonging to the vehicle targets are
then verified in the road image with this classifier. Compared
with backgroundmodeling, machine-learning-basedmethods
are more robust to dynamic scenes and thus have gradually
become the mainstream method used in current research.

The core research activities of this approach relate to how
the image features should be expressed and how the vehicle
classifier should be built.

For feature expression, primary features with clear phys-
ical characteristics were often used in earlier studies, such
as shadows, symmetry, texture and vertical edges [1], [2].
These primary features have limited expression ability and
cannot describe the verities of vehicle classes. Therefore,
many purpose-designed general image descriptors have been
developed to improve the description ability of features,
such as the Haar-like feature, HOG (histogram of orientated
gradient), LBP (local binary patterns), SIFT (scale-invariant
feature transform) and Wavelet feature [3].The classifier
should be capable of accurately determining the optimal deci-
sion boundary, which is another factor that affects vehicle
detection performance. The most popular classifiers used for
the vehicle detection task are Adaboost and SVM (support
vector machine). The former classifier is an adaptive Boost-
ing algorithm which builds a strong classifier by combining
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several weak classifiers with linear weights [4]. The latter
classifier maps the data to a higher dimensional space and
searches for the optimal classification surface, which is the
surface with the largest interval between classes [5]. Recently,
several improved methods based on these two classifiers have
been proposed which further enhance the performance and
speed of the object detection tasks [6], [7].

Although machine-learning-based vehicle detection per-
forms well for many applications, some problems still exist
that require solving. One of the most critical problems is
the adaptability of the trained classifier. The existing training
method usually collects and labels a large number of samples
by hand to train a vehicle classifier. This classifier may work
well for some scenes but may fail for other scenes when there
is a large visual difference between the target scenes and the
source scenes where the training samples came from, due
to scene complexity, vehicle appearance and position differ-
ences. On the other hand, it is labor-intensive to recollect and
relabeled samples from the target scene each time, and it also
significantly reduces the degree of automation for vehicle
detection tasks in a new target scene.

Traditional machine-based methods are based on statistical
theory principles, which make the important assumption that
the distribution between the source data and the target test
data are the same. As the problem above shows, there are
often large differences in the data distribution between the
original training data set and the samples in the new target
scene. As a result, the original assumption is incorrect, which
makes it difficult for the original detector to effectively detect
vehicles in the new scene. To solve this, scene adaptive
learning or so-called ‘‘transfer learning’’ has gradually been
introduced into the field of machine learning. In contrast with
traditional statistical-learning-based methods, scene-adaptive
learning focuses on learning different data distributions and
using knowledge from existing scenes to help classifier learn-
ing in a new scene.

To achieve a successful transfer between the original detec-
tor and the samples in the target scene, new training samples
in the target scene should firstly be obtained. High quality
samples in the target scene can provide effective information
for any subsequent sample transfer and classifier training pro-
cess. There are two overall categories of sample generation
frameworks in the existing visual vehicle detection domain.
The first is manual sample labeling [8] and the second is auto-
mated sample labeling using the original classifiers [9], [10].
Due to a low degree of automation, manual sample labeling
is out of use while reliability of sample selection and labeling
for the latter method still needs to be improved. However,
once new samples have been selected and labeled, there is
still the important issue of designing the training method with
scene-adaptive learning capability.

Focusing on the automated sample selection and labeling
problem and the scene adaptive classifier training problem,
a scene-adaptive vehicle detection algorithm based on a com-
posite deep structure is proposed in this article. Inspired by
the Bagging (Bootstrap aggregating) mechanism, multiple

relatively independent source samples are firstly used to build
multiple classifiers and then voting is used to generate target
training samples with confidence scores. The automatic fea-
ture extraction ability of DCNN (Deep Convolutional Neural
Network) is then used to perform source-target scene feature
similarity calculations with a deep auto-encoder, in order
to design a composite deep-structure-based scene-adaptive
classifier and its training method.

In summary, the contribution of this work is with two parts.
First, we add a deep auto-encoder to traditional DCNN to get
a deep structure to make it have scene adaptive ability while
exist deep model do not have scene adaptive ability. Second,
to generate samples in target scene, we proposed a confidence
samples generation with voting mechanism.

II. RELATED WORK
Due to the growing requirement for the development of
intelligent transport systems and an increase of road video
surveillance and on-board video, vehicle detection tasks
in different scenarios is becoming increasingly important.
Therefore, research into the adaptive ability of existing vehi-
cle detectors in new scenes is receivingmore academic impor-
tance and practical significance.

As mentioned before, sample selection and classifier train-
ing are the two main aspects of scene-adaptive learning. For
automatic sample selection, Nair [11] has used a background
subtraction method to obtain the target sample for a fixed
camera. However, the robustness of the samples selected
by this method is relatively low, which can easily cause a
drift in the detectors. Rosenberg et al. [12] has proposed a
self-training method using semi-supervised learning, which
selects the sub-images with a high detection score as the
samples in the target scene. The limitation of this method
is that since only the sub images with a high score are cho-
sen, these samples cannot fully reflect the data distribution
characteristics of a new scene. Wang [13] has firstly detected
objects with an original detector in a new scene and then
combined text information such as motion, size, position,
appearance and trajectory to calculate the confidence score
of each sample. The effect of Wang’s method tightly relies
on prior information of the scene which has limited its appli-
cability. Sharma et al. [14] has used an additional tracking
process to detect objects and has chosen undetected objects
as positive samples and falsely-detected objects as negative
samples.

For scene-adaptive vehicle detection classifier training,
Li [15] has proposed a ConvNet-framework-based training
method which achieves classifier transfer by retaining the
shared filters and eliminating the non-shared filters. There
are not many other studies that specifically focus on vehicle-
detection-based classifier transfer learning and most studies
are concentrated on the field of pedestrian detection. Wang
has proposed a general transfer framework: Confidence-
Encoded SVM [13]. In this framework, a penalty item of
the source-target scenes correlation has been added to the
original SVM object function. Xian-Bin et al. [16] has
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expanded the original Adaboost algorithm and named it the
‘‘ITLAdaBoost’’. In ITLAdaBoost, the sample weights are
dynamically adjusted based on the classification error rates
of the source and target data sets separately. Misclassified
source sample weights are decreased and misclassified target
sample weights are increased. The final classifier remains a
linear combination of weak classifiers. Recently, deep model
has been applied in many object detection tasks including
supervised learning [17], [18] and semi-supervised learn-
ing [19], [20]. But all of the existed transfer classifier designs
and training methods mentioned are based on traditional
artificially-crafted features and shallow models which have
not utilized the feature automatic learning ability of deep
structure such as DCNN, Fast RCNN, YOLO2 and SSD.

Due to this, in our work, a deep-structure-based scene-
adaptive vehicle detection method will be proposed.

FIGURE 1. Bagging resemblance learning method.

III. CONFIDENCE SAMPLES GENERATION WITH
VOTING MECHANISM
The first half of the last section has outlined some existing
automatic sample selection methods. However, the samples
selected by those methods inevitably contain labeling noise
which gives different confidence levels of each labeled sam-
ples. Therefore, there is a requirement to find a new method
to not only select the target scene samples but also be able
to measure the confidence level of each sample. Bagging
(Bootstrap aggregating) is a resemblance learning method
which that matches different sub-classifiers to a resembling
strong classifier (Fig.1). In this framework, several sepa-
rate sub-training datasets are firstly prepared and each sub-
classifier is trained on a single dataset only. The final output
of each classifier is decided by each sub-classifier using a
voting mechanism.

Inspired by the voting mechanism, we have prepared a
few relatively independent source training data sets γk (k =
1, ...,K and K is the number of source training data sets).

All of the training data sets are captured under different
weather conditions, different scenarios and even different
camera equipment. Each vehicle classifier8k is trained with
Viola and Jones’ method using a single independent source
training data set γk . In the subsequent voting process, all
vehicle classifiers 8k make a judgment on the unknown
sample which is used to calculate a confidence score. It is
assumed here that k̂ out ofK classifiers consider the unknown
sample to be the vehicle and thus the confidence scores of this
sample is calculated with function (1).

s = c ∗ k̂/K (1)

In function (1), c is the upper limit of the confidence score s
and its value range is between [0,1] . In our work, K = 9
independent source training data sets are used.

IV. SCENE-ADAPTIVE CLASSIFIER TRAINING USING
COMPOSITE DEEP STRUCTURE
A. DESCRIPTION OF PROPOSED COMPOSITE
DEEP STRUCTURE
Traditional scene adaptive classifiers are largely based on
fixed artificial features. Thus they are only adapted at a
classifier parameter level rather than a feature representation
level. On the other hand, existing research results have proven
that feature expression determines the upper bound of the
classifier capacity and that training of the classifier can only
approximate this upper bound. Therefore, it is critical to find
an adaptionmethod at a feature level. Fortunately, the recently
developed deep model has the advantages of a flexible struc-
ture and the ability to feature self-learning, and thus is very
suitable for our application. Therefore, a type of deep model
known as the deep convolutional neural network (DCNN)
is used to extract features automatically. Additionally, based
on the basic structure of DCNN, a deep auto-encoder is
additionally expended so that the features extracted by the
DCNNcan be selectedwith their reconstruction error in target
samples. Here, the auto-encoder is used to reconstruct feature
of target samples and the role of it is to measure the similarity
of target-source samples in the DCNN feature space. If the
reconstruct error is small for a target samples, it means that
it is more similar to source samples in feature space and will
be given a bigger weights in training. This composite deep
structure ensures that features that are more adaptive to the
target scenewill be given a larger weight in training to achieve
classifier transference.

A two-stage DCNN is chosen for the extraction feature
vector and all the samples from the source scene and target
scene will be used in this step. The reason why DCNN is
applied here is due to its own structural advantages. Firstly,
as one of themost commonmodels in deep learning, DCNN is
a bio-inspired architecture and learns features implicitly from
the training data, enabling it to integrate feature extraction
capabilities into multilayer perception by structural recon-
struction and weight number reduction. Secondly, DCNN
uses a special structure for local weight sharing which is
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FIGURE 2. Structure and parameters of DCNN.

closer to actual biological neural networks and reduces the
computational complexity of the network.

The specific structure and parameters of the DCNN used
in this work is shown in Fig.2.

The designed DCNN vehicle classifier contains one input
layer, two convoluted sub-sampling hidden stages and one
feature vector output layer. The size of the input layer is
32×32 which is equal to the training image dimensions. The
convolutional kernel of the hidden layers is 5 × 5 and the
size of all the pools is 2×2.Max-pooling operation is chosen
for sub-sampling due to its superior performance. Therefore,
the size of the convolution layer and the sub-sampling layers
of the two hidden stages C1, S1, C2, S2 are 28×28, 14×14,
10×10 and 5×5, respectively. The feature vector output layer
contains 600 neurons and is connected to the sub-sampling
layer S2 and the secondary sub-sampling layer of the sub-
sampling layer S1. The feature vector is constructed here with
both S1 and S2 and aims to retain the image characteristic
information at multiple scales such as coarse and fine scale.

For the DCNN structure for feature generation, it is pre-
trained with the samples in source dataset with the popu-
lar supervised way of random gradient descent method and
the labels are put above the second DCNN layer. Beside,
the initial value of the training weight parameter is selected as
[−0.05, 0.05] and the objective function is also cross entropy
loss function.

FIGURE 3. Schematic diagram of composite deep structure.

The proposed composite deep structure based on DCNN
feature extraction is shown in Fig.3. As shown in this figure,

f is the output feature vector of DCNN. Based on this fea-
ture vector f , two additional hidden layers h1 and h2, one
reconstruction hidden layer h̃1, one reconstruction feature
layer f̃ and one classification layer y can be added. In the
structure proposed above, the output feature vector f , the
hidden layers h1, h2, h̃1 and there construction feature layer
f̃ essentially constitute a deep auto encoder. This deep auto
encoder only receives training samples from the target scene
and calculates the reconstruction error of each feature f . Here,
the purpose of this auto encoder is to assess the similarity of
samples between source and target scene and give different
weights of the features in target training function.

The parameters are propagated by functions (2)-(6).

h1 = σ
(
W T

1 f + b1
)

(2)

h2 = σ
(
W T

2 f + b2
)

(3)

ỹ = σ
(
W T

3 h2 + b3
)

(4)

h̃1 = σ
(
W̃ T

2 h2 + b̃2
)

(5)

f̃1 = σ
(
W̃ T

1 h1 + b̃1
)

(6)

In the functions above, σ (a) = 1/
[
1- exp (−a)

]
is the

activation function, W1,W2,W3, W̃1 and W̃2 are the weight
vectors and b1, b2, b3, b̃1 and b̃2 are the base vectors. These
weight vectors and base vectors are all the parameters that
need to be trained

B. TRAINING METHOD OF PROPOSED COMPOSITE
DEEP STRUCTURE
It is assumed that the feature extracted with DCNN of the
ntht training sample is fn and the corresponding label of this
sample is yn. Then the parameter set of this training sample
is {fn, yn, sn, kn}. Within the parameter set, kn = 1 if the
nth training sample is from the target scene and kn = 0
otherwise. Note that sn is the confidences core. sn = 1 if
the sample comes from the source scene and sn ∈ (0, 1] if it
comes from the target scene, which can be calculated with
function (1).

On the basis of this parameter set definition, the critical
object function L can be designed as follow:

L =
∑
n

e−αL
τ (fn ,̃fn)Lc (yn, ỹn, sn)+ βknLτ

(
fn, f̃n

)
(7)

In the object function, Lτ =
(
fn, f̃n

)
=
∥∥fn, f̃n∥∥2 is used to

calculate the reconstruction error. The feature extracted with
DCNN will be reconstructed with samples from the target
scene. A small reconstruction error indicates that that feature
is closer to the feature distribution of the target scene. This
feature will then be considered more valuable and given a
larger weight. Additionally, Lc = (yn, ỹn, sn) = snLE (yn, ỹn)
where LE = (yn, ỹn) = −yn log ỹn − (1− yn) log (1− ỹn)
is a cross entropy loss function. This function is utilized to
measure the difference between the estimated labels and the
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FIGURE 4. Typical images of five mentioned dataset.

actual labels. For Lc = (yn, ỹn, sn), a confidence score sn is
used to further determine the difference.

Finally, the parameters of the whole composite deep struc-
ture are adjusted with the back-propagation method.

V. EXPERIMENT AND ANALYSIS
In this section, the proposed scene-adaptive vehicle detec-
tion classifier is tested on two data sets: the KITTI road

FIGURE 5. ROC curve of different methods in KITTI data set.

image data set and video sequences captured by our group.
In these tests, if the coverage between the vehicle detection
box and the real vehicle external rectangular box is over 80%,
the vehicle detection is considered to be successfully. Based
on this definition, the ROC curve is utilized as the perfor-
mance evaluation method for all of the vehicle detection
methods.

A. KITTI DATA SET
In this subsection, the experiments are implemented using the
KITTI data set. This data set contains road images captured
in a variety of road conditions and the vehicles in images
are all precisely marked [22]. All images in the KITTI data
set are divided into two sections, which are the training
set and the test set. The training set contains 7481 images
with approximately 35000 vehicles and the test set contains
7518 images with approximately 27000 vehicles.

In these experiments, the source training samples are from
nine relatively independent vehicle data sets mentioned in
section 3 and there are 7500 in total. In detail, the nine data
sets are from six public dataset as follow: Caltech 2001, MIT
car data, UIUC Database, INRIA Car Dataset, TME Motor-
way dataset (Daylight), TME Motorway dataset (Sunset)
and three other dataset that captured by our group which are
in city daytime (OURS Daytime), city rainy time (OURS
Rainy) and city evening (OURS evening) respectively.
some typical images of the mentioned dataset are shown
in Fig.4.

The training set of KITTI is set as the target scene and used
to generate the target scene positive samples. The confidence
sample selection method mentioned in section 3 will be used
here to generate the target scene samples with an associated
confidence score. The value of c is set to 0.7, 0.8, 0.9 and 1.0
separately in the experiment. All negative training samples
are constituted of images that do not contain vehicles in the
KITTI set and there are 20000 in total. Finally, 2000 images
containing 7218 vehicles from the KITTI test set are selected
as the test set of this experiment.
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FIGURE 6. Detection results of different methods using the KITTI data set. (a) Vehicle detection results of DCNN; (b) Vehicle detection results of ConvNet;
(c) Vehicle detection results of YOLO2; (d) Vehicle detection results of SSD; (e) Vehicle detection results of our method.

To assess our method, the proposed algorithm is com-
pared with some existing state-of-the-art object recognition
algorithms, including non-scene-adaptive learning algo-
rithms and scene-adaptive learning algorithms. In this exper-
iment, the non-scene-adaptive learning algorithms are the
Cascaded Adaboost [5], DCNN [21], Faster R-CNN [23],
YOLO2 [24] and SSD [25] and the scene-adaptive learn-
ing algorithms are the Confidence-Encoded SVM [13],
the ITL-AdaBoost [16] and the ConvNet described in
article [15]. Here, all the deep model we compared are
use their original structure and they are first unsupervised
trained with VOC 2017 dataset to get initial network param-
eters and then supervised trained by the mentioned vehicle
dataset.

The ROC curve for each of these methods is shown
in Fig.5. In this curve, the abscissa shows the FPPI
(False Positives Per Image) of each method and the ordinate
shows the corresponding detection rate. The labels OURS-1,
OURS-0.9, OURS-0.8 and OURS-0.7 in the figure represent
our classifier with the value of c.

It can be seen from the ROC curve that the proposed scene-
adaptive vehicle detection classifier has the best detection

performance of all methods when c = 1. When FPPI is 1,
the detection rate of our method, ConvNet, ITL-AdaBoost
and Confidence-Encoded SVM are 93.75%, 90.50%, 85.25%
and 83.75% respectively. Additionally, when FPPI is 1,
the detection rates of three types of non-scene adaptive meth-
ods are relatively low. Fig.6 (a) -Fig.6 (c) show some of
the detection results of DCNN, ConvNet, YOLO2, SSD and
our method using the KITTI test set. In Fig.6, a green box
represents a correctly detected vehicle, a yellow dashed box
represents an undetected vehicle and a red dashed box repre-
sents a falsely detected vehicle.

B. VIDEO SEQUENCES CAPTURED BY OUR GROUP
For this test, our group captured a road video on a busy
road. The video is around 327 seconds long and contains
15000 frames. In the experiment, 250 frames of the first
5000 frames with an interval of 20-frames are selected for
the target scene positive sample generation and the remaining
10000 frames are chosen as the test set. The experiment ROC
curve is shown in Fig.7.

From the ROC curve, it can also be seen that the
proposed composite deep-structure-based scene-adaptive
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FIGURE 7. ROC curve of different methods in our video sequences
data set.

vehicle detection method outperforms existing scene-
adaptive object detection methods [13], [16], [15]. Fur-
thermore, the experimental results also demonstrate that a
scene-adaptive-based framework is superior to non-scene-
adaptive-based methods.

Based on the experiment results, we conclude that although
newly proposed deep model such as YOLO2 and SSD is
superior than most of the existed work, their performance
still drop significantly when the test set in target scene is
significantly different from the training set in training scene,
especially when training sample numbers are not very big.
In the contrary, our algorithm use a small amount of automatic
labeled test samples in target scene to adjust the deep model
to make it better satisfy the target scene.

VI. CONCLUSION
This paper has proposed a scene-adaptive vehicle detection
algorithm based on confidence sample generation with a
voting mechanism and a composite deep structure. Inspired
by the Bagging (Bootstrap aggregating)mechanism, multi-
ple relatively independent source samples have been firstly
used to build multiple classifiers and then voting is used to
generate confidence scores for the target training samples.
A composite deep-structure-based scene-adaptive classifier
and its training method have then been designed using the
automatic feature extraction ability of DCNN (Deep Con-
volutional Neural Network) and performing source-target
scene feature similarity calculation with a deep auto-encoder.
Experiments using the KITTI data set and our own data set
demonstrate that this method exhibits the advantages of a
high degree of automation and a high vehicle detection rate
compared with existing state-of-the-art methods. The limita-
tion of this method is that the confidence assignment method
is a simple linear function dependent on the sub-classifier
members which is relatively subjective and lacks a theoretical
basis. Therefore, research is still needed to investigate this
further.
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