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ABSTRACT In aerospace engineering, condition monitoring is an important reference for evaluating the
performance of complex systems. Especially, effective anomaly detection, based on telemetry data, plays
an important role for the system health management of a spacecraft. With the advantages of easy-to-use,
high efficiency, and data-driven, the predicted model has been applied for anomalous point detection for
monitoring data. However, comparedwith the point abnormal mode, fragment anomaly is more attractive and
meaningful for the system identification. Therefore, the detection strategy of fragment anomaly is proposed
based on the uncertainty estimation of least square support vector machine and statistical analysis. Moreover,
some effective estimation indicators are presented to evaluate the performance of the detection method.
Experimental validations are also carried out for some typical simulation data sets and open source data
sets. In particular, relied on the analysis of fragment anomaly modes, experiments are conducted with the
real satellite telemetry data and different anomaly modes are injected to examine the applicability of the
proposed framework.

INDEX TERMS Satellite, anomaly detection, fragment anomaly, LS-SVM, uncertainty.

I. INTRODUCTION
With the improvement of system complex on structures and
functions, it is meaningful to estimate the status and perfor-
mance of an equipment or a system based on condition moni-
toring data [1], [2]. In addition, to improve system safety and
reliability, effective and in-time anomaly detection may help
avoid catastrophes and serious faults [3], [4]. Consequently,
anomaly detection based on condition monitoring data has
attracted considerable attentions from the researchers in the
field of reliability, testing, signal processing, data mining,
prognostics and health management, etc. [5], [6]. Particularly,
in aerospace engineering, the telemetry data is the only basis
for the ground staffs to judge the condition of spacecraft
in-orbit [7]. The anomalies in the telemetry may indicate
data error, communication link failure, sensor fault, equip-
ment failure, and even the degradation of system perfor-
mance. Given the high reliability requirement of spacecraft,
telemetry-data-based anomaly detection for the equipment or
system becomes necessary and important to save the high
failure cost [8].

Three methods are usually implemented for anomaly
detection with monitoring data, i.e., threshold-based method,
expert experience method and data-driven method. Specifi-
cally, threshold-based anomaly detection is the easiest and
fastest method used in different areas. However, the thresh-
old should be set by experience and design requirement
and is relatively large which may miss some anomalies [9].
The experience-based method is more effective than the
threshold-based one, because it has more injected prior
knowledge. While, the completeness of experience is limited
by knowledge which may restrict the detection ability [10].
At present, the data-driven method is becoming increasingly
popular in anomaly detection, with the advantages of easy-to-
extend, independent of area knowledge, and strong learning
ability, intensive research has been conducted based on this
type of method.

Generally, according to the dissimilarity of measure indi-
cators, data-driven anomaly detection can be classified
as similarity-based method, deviation-based method, and
probability-based method. For the similarity-based methods,
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we mainly referred to the methods of K-nearest neigh-
bor (KNN), brute force [11], and clustering [12], which
label the sample anomalous that has low similarity with the
normal samples. Thus, the accuracy of this method highly
depends on the selection of the similarity measure function.
The deviation-based methods include statistics [13], predic-
tion [14] and several classification [15] functions, which
construct a model to depict the normal data. Then, one can
compare the deviation between the model output and the real
sample to detect the anomalies when the test data is available.
The advantage of deviation-based anomaly detection is that
it can realize high testing efficiency. The last method is
based on the probability and it is also referring to frequent
items and association rules method [16]. This method judges
the probability of the test data from the normal data. Dis-
cretized representation needs to be applied for this method
where some detailed information may be missed. Given
that the telemetry data have the characteristics of pseudo-
period, strong regularity, and high requirement on detecting
efficiency, the deviation-based method is more feasible to
realize online detection for telemetry data. In particular, the
predicted-basedmethod is perhaps themost suitable choice in
aerospace application with online monitoring, i.e., detecting
anomalies with strong learning ability and does not rely on
expert experience.

Predicted-based method has been applied for anomaly
detection by comparing the normal range and the real value.
Namely, the model trained by the normal samples can give
the confidence interval for the testing sample. If the new test
sample exceeds the confidence interval, it will be highlighted.
Thus far, Naïve predictor, Single-layer linear network,
Multilayer perception [17], Gaussian Process Regres-
sion (GPR) [2], AR [18], ARMA [19], ARIMA [20], Kalman
Fitter (KF) [21], Support Vector Machine (SVM) [22] and
Least Square Support Vector Machine (LS-SVM) [23] have
been applied for anomaly detection. It is worth mentioning
that, due to strong nonlinear features and high performance,
LS-SVM is an important and effective prediction algorithm
that has been adopted for telemetry point prediction [24].
In this work, we focus on the implementation of LS-SVM
for the anomaly detection of satellite telemetry data.

However, compared with the anomalous points, fragment
anomaly, the anomalous subseries formed by several points,
is more useful in aerospace application, because it can indi-
cate meaningful anomaly modes, such as communication link
failure, sensor failure, component failure, etc. Hence, this
paper aims at proposing an anomaly detection framework that
concentrates on the fragment anomaly with LS-SVM algo-
rithm. Applying the LS-SVM algorithm, the predictive inter-
vals can be calculated with the marginalized model param-
eters. As a result, the anomaly detection capability can be
obtained with the predicted value as well as the interval
values. Moreover, the evaluation can be implemented by
considering multiple continuous point detection results at the
same time. Therefore, the fragment anomaly detection can be
realized and the confidence probability is also involved.

This paper is organized as follows. Section II will
briefly introduce and analyze the preliminary work, includ-
ing basic LS-SVM algorithm, time series prediction, and
LS-SVM-based anomaly detection. In Section III, the pro-
posed framework of anomaly detection, especially the
anomaly detection strategy for fragment anomaly, will be dis-
cussed in detail. Experimental results based on open source
data sets will be presented to validate the proposed framework
in Section IV. In Section V, a case study of anomaly detection
for aerospace application is described, in which fragment
anomalies are injected into the real normal telemetry series.
Finally, Section VI concludes the work and provides some
future research directions.

II. PRELIMINARY WORK
A. LS-SVM ALGORITHM
LS-SVM [25] algorithm is proposed as an improved SVM to
solve the optimization problem with large data set.

Given the training set D = {(xi, yi)}Ni=1, where the training
input xi ∈ Rn, the training target yi ∈ R, and N is the
sample size. Then, the associated regression function can be
written as

f (x) = wTφ (x)+ b (1)

where wT
∈ Rn, b ∈ R, and φ (·) is the setting kernel

function that used to solve nonlinear problem. For the
LS-SVM model, the optimization problem associated with
the regression function is shown in (2).

min J
w,b,e

(w, b, e) =
1
2
wTw+

γ

2

N∑
i=1

e2i

s.t. yi = wTφ (xi)+ b+ ei, i = 1, 2, . . . ,N (2)

where ei is the error between the estimated value and the real
one and γ is the regularization parameter. Compared with the
SVM model, LS-SVM introduces the sum of error squares
which converts the quadratic programming problems into
linear equations. Consequently, the Lagrangian relaxation of
the optimization problem can be expressed as (3).

L(w, b, e, α) = Q(w, b, e)−
N∑
i=1

αi[wTφ (xi)+ b+ ei − yi]

(3)

where αi are Lagrange multipliers. By solving partial deriva-
tives with respect to w, b, e, α, the optimality conditions of
the above Lagrangian function are

∂L
∂w
= 0⇒ w =

N∑
i=1
αiφ (xi),

∂L
∂b
= 0⇒

N∑
i=1
αi = 0,

∂L
∂ei
= 0⇒ αi = γ ei i = 1, 2, · · · ,N ,

∂L
∂αi
= 0⇒ wTφ (xi)+ b+ ei − yi = 0

i = 1, 2, · · · ,N .

(4)
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The above equalities can be converted into a matrix form as: 0
⇀

1
T

⇀

1 �+ γ−1I

[ b
α

]
=

[
0
y

]
(5)

where E1 = [1, 1, . . . , 1], �kj = K (xk , xj), α = [α1, . . . , αN ],
and y = [y1, . . . , yN ].
Let A = �+ γ−1I, then,

b =

⇀

1
T
A−1y

⇀

1
T
A−1

⇀

1
, α = A−1(y− b

⇀

1) (6)

Finally, we can obtain the prediction function of LS-SVM as:

f (x) =
N∑
i=1

αiK (x, xi)+ b (7)

B. TIME SERIES PREDICTION WITH LS-SVM
From the introduction in subsection II.A, LS-SVM can real-
ize function regression and prediction. The main proce-
dures of time series prediction based on LS-SVM are shown
in Fig. 1 and detailed description is listed as follows.

FIGURE 1. Time series prediction based on LS-SVM.

(1) Constructing the input vectors
For time series x(t), t = 1, 2, . . . ,N , the phase-space
reconstruction series is (8).

X (t) = F{x(t), x(t − τ ), · · ·, x[t − (m− 1)τ ]} (8)

where τ and m are the delay interval and embedded
dimension, respectively. Thus, the reconstructed phase
space can be achieved with the observed value as well
as its m-dimension delayed value.

(2) Setting the model parameters
The key parameters for LS-SVM are the regularization
parameter γ and the parameters of kernel function
which are determined by the setting type of kernel
function.

(3) LS-SVM model training
Based on the input vectors construction and parameters
setting, we can train the LS-SVM model as described
in subsection II.A. First, construct the kernel function
matrix and solve the linear equation equations of N
dimensions. Then, compute the Lagrange multipliers α
and deviant b and determine the decision function f (x).

(4) Prediction with new input
One-step prediction can be realized with the decision
function f (x) and the new input vector.

C. ANOMALY DETECTION BASED ON UNCERTAINTY
ESTIMATION OF LS-SVM
Unfortunately, the LS-SVM model cannot provide predic-
tive intervals. Alternatively, one can marginalize the model
parameters to compute the variance of the predicted value.
As a result, the predicted intervals with confidence level P can
be estimatedwith the variance, and uncertainty representation
capability of the LS-SVM will be improved. This estimated
uncertainty interval can be used as the normal range for the
detected value. The updated valuewhich exceeds the intervals
can be treated as anomalous point with confidence level P.
While, if the updated value locates in the intervals, it can be
labeled as normal point.
The whole LS-SVM-based anomaly detection framework

is shown in Fig. 2 [24].

FIGURE 2. The framework of anomaly detection based on LS-SVM time
series prediction.

From Fig. 2, the predicted interval can be obtained by
computing the predicted errors. If the prediction error exceeds
the normal range, the new point will be labeled as anoma-
lous. For processing the anomalies, there are two strate-
gies, i.e., anomaly detection and mitigation (ADAM) and
anomaly detection only (AD) [17]. To keep the accuracy of
a long-period detection, the AD strategy is applied in this
work which merely highlights the anomalous sample without
adding the predicted point into the input vector.

Note that the key step to realize anomaly detection based
on the above framework is to calculate the normal range
of prediction error. In the related papers, the normal range
of error is defined by multiple times of the maximum error
during the training process and it is significantly influenced
by the performance of training. In [17], themean and variance
of the predicted error are computed by 10-fold cross vali-
dation with the cost of time-consuming computation. Thus,
to effectively estimate the normal interval of the prediction
error, the measurement error is estimated by considering both
error level of training data andmodel estimation. The detailed
description is presented as follows.

First, we assume that the model parameter w and the error
vector e obey Gaussian distribution.

w ∼ N (0,
1
µ
) (9)

e ∼ N (0,
1
ζ
) (10)

where 1
µ
and 1

ζ
are the variances of wj(j = 1, 2, . . . , nh) and

ei(i = 1, 2, . . . ,N ), respectively.
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By equal variance processing w and e, the optimized ques-
tions in (2) can be transformed to

min
w,b,e

J (w, b, e) = µEw + ζEd (11)

where

Ew =
1
2
wTw (12)

Ed =
1
2

N∑
i=1

e2i (13)

Here µ and ζ are the regularized parameters.
Then, the optimal solution of LS-SVM regression is

given by

y∗ = w∗Tφ (x)+ b∗ (14)

The new predicted value yN+1 corresponding to a new update
input vector xN+1 can be computed with (14). The observa-
tion value of yN+1 is

YN+1 = yN+1 + eN+1 (15)

whereE(eN+1) = 0 andD(eN+1) = 1/ζN+1. Due to the inde-
pendence of y and e, the mean and variance of observation
YN+1 can be derived as

E(YN+1) = E(yN+1)+ E(eN+1) = y∗N+1 (16)

D(YN+1) = D(yN+1)+ 1/ζN+1 (17)

Based on (16), the predicted value can be viewed as the
mean of true value. Hence, the variance can be obtained as

D(yN+1) = E[(y− y∗)2]

= E{[(wTφ (x)+ b)− (w∗Tφ (x)+ b∗)]2}

= ϕ (x)TQϕ (x)

= ϕ (x)TH−1ϕ (x) (18)

where ϕ (x) = [φ (x); E1] and Q = convar(w, b) is the
covariance matrix.

Q = H−1 =

 ∂2J
∂w2

∂2J
∂b∂w

∂2J
∂w∂b

∂2J
∂b2


−1

(19)

The detailed solution of D(yN+1) can be found in [26].
Finally, one has YN+1−yN+1 ∼ N (0,

√
D(YN+1)). By setting

the confidence level as P = 100%(1 − α), the confidence
interval of variance is[

tα/2,N−1
√
D(YN+1), tα/2,N−1

√
D(YN+1)

]
(20)

and the normal range of the prediction is[
yN+1 + tα/2,N−1

√
D(YN+1), yN+1 + tα/2,N−1

√
D(YN+1)

]
(21)

Thus, anomaly detection based on uncertainty estimation
of LS-SVM can be realized by comparing the new point and
the confidence interval.

III. PROPOSED FRAMEWORK FOR ANOMALY DETECTION
Compared with the anomalous points which are generally
caused by the influence of noise, error code, and instan-
taneous events, more meaningful and effective anomalies
always appear in the fragment mode. The former framework
shown in Fig. 2 makes no condition on the relationships
of different points, for which the system may face some
unnecessary false-alarms. In the real application, unneces-
sary false-alarms may significantly affect the performance of
anomaly detection method. In this work, the detection frame-
work for fragment anomaly is proposed based on statistics
theory.

A. FRAGMENT ANOMALY DETECTION STRATEGY
Fragment anomaly is an extension of point anomaly,
in which the time series fragment is composed of time
series points. One example of fragment anomaly is shown
in Fig. 3.

FIGURE 3. One example of fragment anomaly.

In Fig. 3, the normal series is a sinusoidal series with
noise, and one fragment anomaly appears at the time
index from 400 to 432 with the changed period. In this
work, we define a time series observation as O(t0) at time
instant t0. Thus, a time fragment (TF) can be written as
TF(l, t0) with the ending time instant t0 and interval l,
i.e., TF(l, t0) = [O(t0 − l + 1),O(t0 − l + 2), · · ·,O(t0)].
The purpose of fragment anomaly detection is to dis-
cover the anomalous degree of the corresponding time
subseries

In aerospace application, the anomalies in the telemetry
data can show the degraded or abrupt characteristics. In what
follows, we present two kinds of detection strategies for
fragment anomaly.
Strategy I:
Applying the point anomaly detection method, we can

detect each potential anomalous point with confidence prob-
ability P. If the observation value at time instant t is detected
as normal, then |O(t)| = 0. Otherwise |O(t)| = 1.
We denote the number of anomalies in the time fragment

TF(l, t0) as

|TF(l, t0)| = |O(t0 − l + 1),O(t0 − l + 2), · · ·,O(t0)|

=

l∑
i=1

|O(t0 − l + i)| (22)
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For the time series fragment with length l, the anomaly
probability for |TF(l, t0)| can be calculated as

P(|TF(l, t0)|) =
(
l
|TF(l, t0)|

)
(1− P)|TF(l,t0)|Pl−|TF(l,t0)|

(23)

It is easy to know that the confidence probability of the
normal state equals P for each observation point and the prob-
ability of one point exceeding this range is 1-P. We assume
that the observation points are independent to each other.
Thus, |TF(l, t0)| follows the Bernoulli distribution, which
allows us to calculate the probability of anomalies with
the number of |TF(l, t0)| in the fragment. The higher the
value of |TF(l, t0)| is, the lower the probability P(|TF(l, t0)|)
remains (which means that P(|TF(l, t0)|) is small in general).
Once this situation comes out, we can treat it as the anomalous
fragment. Without loss of generality, we can set the lower
bound (LB) for the threshold of |TF(l, t0)| and label the
fragment anomalous as |TF(l, t0)| ≥ LB.

P(TF(l, t0),LB)

= P(|TF(l, t0)| = LB)+ P(|TF(l, t0)| = LB+ 1)

+ . . .+ P(|TF(l, t0)| = l)

=

l∑
|TF(l,t0)|=LB

(
l
|TF(l, t0)|

)
(1− P)|TF(l,t0)|Pl−|TF(l,t0)|

(24)

where l and LB should be selected appropriately to
make P(TF(l, t0),LB) stay in a very low level, e.g.,
P(TF(l, t0),LB) ≤ 1%. This means the probability of frag-
ment anomaly equals 1 − P(TF(l, t0),LB) ≥ 99% when the
number of anomalous points is larger than the LB in a single
fragment. Namely, once the number of anomalies exceeds the
LB being detected, it is a fragment anomaly with confidence
level 99%.

Therefore, the confidence level c should be considered
based on l and LB as 1− P(TF(l, t0),LB) ≥ c.
Strategy II:
On the other hand, we can also use the error series for

anomaly detection.We assume that the errors follow indepen-
dent normal distributions such that no trend for the random
error series exists. For the error series with number h showing
monotonic feature, the associated probability is

P(h) =
1
2
·
1
3
· . . . ·

1
h
· 2 =

2
h!

(25)

When h = 7, we can obtain P(h = 7) ≥ 2/(7!) ≈
0.04% which is a very low probability. Thus, there is a small
probability of fragment anomaly. However, this strategy is
very sensitive to the assumption. Once the error series is not
generated from normal distributions, we may need to set a
much larger h for this strategy.
As shown in Fig. 4, sliding window is applied to obtain

the detected segmentation of time series. In the detection,
the point anomaly and the error series of the former obser-
vation points (with length l-1 in the sliding window) are

FIGURE 4. The algorithm flow of fragment anomaly detection.

considered. The procedure of fragment anomaly detection is
introduced as follows.
Step 1: Checking the parameters setting for the model
The key parameters, i.e., the length of detected time series

fragment l, the lower bound of the number of anomalous
points LB, and the continuous monotonic length h, are
required to be set in advance. In addition, all of the parameters
should satisfy {

1− P(TF(l, t0),LB) ≥ c,
P(h) = 2

h! ≥ c.
(26)

In the real application, the users can determine the parameter
of l and h by controlling the probability bound of c. In this
work, false alarm is one of the most important factors restrict-
ing the applicability of the method. So c is considered larger
than 99%.
Step 2: Point anomaly detection with LS-SVM algorithm
According to the time series prediction with LS-SVM, the

predicted error can be computed to determine the detected
result.
Step 3: Fragment anomaly detection with strategy I
We can compare the number of point anomalies |TF(l, t0)|

with the setting threshold LB. If |TF(l, t0)| ≥ LB, the detected
fragment is labeled as anomalous and the anomalous location
is marked as [C1, C2] which represents the time range from
t0−l+1 to t0. If no anomaly is detected, [C1,C2] is defined as
a null set and the algorithm continues to the next time instant.
Step 4: Fragment anomaly detection with strategy II
In this step, we need to combine the current error and

former errors of length h-1 to judge the monotonic feature.
If the monotonic situation occurs, the detected fragment
is determined as anomalous, and the anomalous location
is marked as [C3, C4] which represents the time range
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from t0 − h + 1 to t0. If no anomaly is detected, [C3, C4]
is defined as a null set and the algorithm continues to the next
time instant.
Step 5: Fusion of the two anomalous results
The union of two types of detected results is calculated to

obtain the fusion result, i.e., [C1, C2] ∪ [ C3, C4].
Step 6: If all of the detections cannot be ended, then repeat

Steps 1 to 5. Otherwise, fuse all the detected anomalous
fragments and end the detection.

B. EVALUATION CRITERIA FOR FRAGMENT
ANOMALY DETECTION
For point anomaly detection, FPR (False positive rate), FNR
(False negative rate), and ACC (Accuracy) are used to com-
pare and evaluate the detection results. However, these indi-
cators cannot be applied to estimate the performance of frag-
ment anomaly detection. Therefore, for fragment anomaly
detection, we will compare the whole detection results with
the actual anomalous range in the series, from which the
coincidence degree is addressed.

First, the coincidence range is computed by comparing the
detected anomalous range and the actual anomalous range.
We record the results in Table 1.

TABLE 1. Coincidence degree for fragment anomaly detection.

Then, we define the following new anomalous detection
evaluation criteria to evaluate and verify the performance of
fragment anomaly detection.
(1) True Negative True Rate (TNTR)

TNTR =
ITN
TA

(27)

TNTR represents the ratio of the detected range of an
actual fragment anomaly. This means that the larger
TNTR is, the higher the detected ratio is. For example,
TNTR = 100% implies that all of the anomalous sam-
ples are highlighted. When TNTR =0 (or TNTR 6= 0),
no anomalous sample is detected and the missing rate
is 100% (some of the anomalous samples are detected).

(2) True Negative Detected Rate (TNDR)

TNDR =
ITN
DA

(28)

TNDR is the ratio of the true negative detected range
of the overall detected results, which indicates that the
larger TNDR is, the lower the false detected ratio is.
When TNDR = 0, all of the actual anomalous samples
are missed and the complete false detection happens.

According to the two proposed evaluation criteria, we can
summarize the detection mechanisms as follows.
(1) Anomaly detection achieves better performance when

TNTR and TNDR are large.

1) The larger TNTR is, the higher the detected ratio is.
When TNTR = 100%, all of the anomalous samples
are discovered.

(2) The larger TNDR is, the lower the false detection ratio
is. When TNDR = 100%, no false detection happens.

(3) When TNTR = 0, no anomalous samples are
highlighted.

(4) When TNDR = 0, complete false detection happens.
(6) If there are n actual anomalous fragments, we need

to calculate TNTR n times for each single segment.
If there are m detected anomalous fragments, we need
to calculate TNDR m times for each single detected
series.

(7) When two or more detected fragments have the
same intersection with an actual anomalous fragment,
the final TNDR can be obtained by fusing several
different TNDRs.

Next, we will show some instances to assist the interpreta-
tion of the above evaluation criteria.

As shown in Fig. 5, the segments marked in orange are
the actual anomalous subsequence (6 in total), with the index
ranges [a, c], [f, k], [m, o], [p, q], [u, x], and [y, z], respec-
tively. Correspondingly, the segments with blue mark are the
detected anomalous fragments, which locate at [b, d], [e, g],
[h, l], [n, r], [s, t], and [v, w], respectively. Note that different
intersections represent different detection cases.

FIGURE 5. Some cases of fragment anomaly detection.

(1) The first detected fragment, referred to [b, d], is inter-
secting with one actual anomaly fragment (the first
anomalous fragment), and its indicators TNTR and
TNDR are computed as follows.

TNTR1 =
ITN
TA
=
c− b+ 1
c− a+ 1

(29)

TNDR1 =
ITN
DA
=

c− b+ 1
d − b+ 1

(30)

(2) Because the second detected fragment of [e, g] inter-
sects with the actual anomaly fragment [f, k] (so does
the third detected fragment [h, l]), the corresponding
TNTR and TNDR are calculated as

TNTR2 =
g− f + 1
k − f + 1

+
k − h+ 1
k − f + 1

(31)

TNDR2 =
g− f + 1
g− e+ 1

(32)

TNDR3 =
k − h+ 1
l − h+ 1

(33)

TNDR[(2&3)2] =
(g− f + 1)+ (k − h+ 1)
(g− e+ 1)+ (l − h+ 1)

(34)
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(3) The fourth detected fragment intersects with the third
and the fourth true anomaly fragments simultaneously,
thus one has

TNTR3 =
o− n+ 1
o− m+ 1

(35)

TNTR4 =
q− p+ 1
q− p+ 1

= 100% (36)

TNDR4 =
(o− n+ 1)+ (q− p+ 1)

(r − n+ 1)
(37)

(4) [s, t] has no intersection with the actual anomaly,
so TNDR5 = 0.

(5) The real anomaly fragment [u, x] overlays the detected
anomalous fragment [v, w], hence

TNDR6 =
w− v+ 1
w− v+ 1

= 100% (38)

TNTR5 =
w− v+ 1
x − u+ 1

(39)

(6) The sixth anomaly fragment is not detected, so
TNTR6 = 0.

It is worth pointing out that the above evaluation criteria
can only been applied after knowing the anomaly labels.
Therefore, in this work, the anomalies in the actual telemetry
are simulated with expert experience to verify the perfor-
mance of the proposed framework.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
To evaluate performance of the proposed framework for
anomaly detection, in this section, two types of public data
sets are adopted to conduct experiments as follows:
(1) Open-source simulated data sets of MA time series are

first applied to verify the performance of the proposed
method.

(2) Open-source benchmark data set of NASA electromag-
netic valve time series from space shuttle is used to test
the detection ability for the real data set.

A. DATA SETS DESCRIPTION
(1) Simulated data sets

Simulated data of MA are generated from the stochastic
process that used to test SVR algorithm in [27]. Specifically,
the normal data samples are generated from specific distribu-
tion, in which we define anomalies as the data samples that
do not fit the distribution. The anomalous samples are added
into the normal data set randomly and the normal data series
is given by (40).

x0 = sin(
30π
N
· t)+ n0 (40)

whereN = 1200 and n0 is the Gaussian noise with zero mean
and variance 0.1.

Two types of abnormal series are presented as:

x1 = x0 + e1(t)

x2 = x0 + e1(t)+ e2(t) (41)

FIGURE 6. MA time series.

where e1 is the Gaussian noise with mean 0 and variance 0.5
and the abnormal index of t ranges from 580 to 600. Besides,
e2(t) = sin ( 30πN · t) with the anomaly is located between
800 and 850. Fig.6 shows the normal MA time series and the
simulated anomalous MA time series.

(2) Open-source benchmark Marotta data set
The Marotta series was obtained from NASA open-source

benchmark data set, which is the state monitoring data of
electromagnetic valve in space shuttle [28], [29]. In each
cycle, the raw data includes 1000 samples and the normal
and abnormal samples are marked by the engineers of NASA.
To improve the operating efficiency of the algorithm, we
re-sample the raw data set and allow each cycle to have
250 samples in the experiments.

Fig.7 shows the Marotta data set involving the normal and
abnormal samples.

FIGURE 7. Abnormal series of Marotta data set for space shuttle.

In Fig. 7, the subseries marked with red star are the abnor-
mal data samples recorded in two cycles.

B. EXPERIMENTAL RESULTS WITH MA DATA SET
As introduced in Section IV-A, the artificial anomalies are
injected into theMA series located in [580, 600]∪ [800,850].
The first 400 data samples are used to train the model, and
the latter 800 data samples are adopted as testing samples.
In the experiments, the embedded dimension is set to 20 and
the RBF kernel function is applied. The hyper-parameters are
optimized as C = 1.57532 and σ = 10.3102.
The experimental results of x2 are shown in Fig. 8 and

Fig. 9.
For the fragment anomaly detection with strategy I, l is

set as 6, LB is 3, and the detected anomalous fragment
t = [581, 602] ∪ [800, 817] ∪ [826, 848].
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FIGURE 8. The error series and the normal range for MA predicted errors
with simulated anomalies.

FIGURE 9. The fragment anomaly detection of MA series.

For the fragment anomaly detection with strategy II, h is
set as 7 and the detected result is t = [817, 827].
By integrating the two anomalous ranges, the final detected

result is t = [581, 602] ∪ [800, 848], which is very close
to the actual anomalous location [580, 600] ∪ [800, 850].
In particular, the evaluated indicators TNTR and TNDR for
the first detected anomaly fragment are

TNDR1 =
600− 581+ 1
602− 581+ 1

=
20
22
= 90.9%,

TNTR1 =
600− 581+ 1
600− 580+ 1

=
20
21
= 95.2%,

and TNTR and TNDR for the second anomaly fragment are

TNTR2 =
848− 800+ 1
850− 800+ 1

=
49
51
= 96.1%,

TNDR2 =
848− 800+ 1
848− 800+ 1

= 100%.

C. EXPERIMENTAL RESULTS WITH MAROTTA DATA SET
FROM SPACE SHUTTLE
The experimental results with Marotta data set from space
shuttle are shown in Fig. 10 and Fig. 11.

The detected result based on strategy I with l = 6 and
LB = 3 is t = [257, 279] ∪ [309, 325] ∪ [507, 524],
while the detected results based on strategy II with h = 7
are t = [296, 303] ∪ [520, 527] and t = [266, 280] ∪
[305, 316]. By fusing the two types of anomalous ranges,
the final detected result is t = [257, 280] ∪ [296, 303] ∪
[305, 325] ∪ [507, 527], which is very close to the actual
fragment anomalies.

According to the results shown in Fig. 11, we can find that
the detected results are very close to the marked anomalies

FIGURE 10. Error series and the normal range for Marotta predicted
errors with simulated anomalies.

FIGURE 11. Anomaly fragment detection of Marotta value.

by experts. Basically, all of the anomalous fragments can be
detected with the accurate locations and ranges. Because the
accurate range is not provided by experts, the quantitative
results of TNTR and TNDR are not given here.

V. CASE STUDY: ANOMALY DETECTION FOR
AEROSPACE APPLICATION
A. FRAGMENT ANOMALY DESCRIPTION IN
TELEMETRY DATA
Among the telemetry series, some aperiodicity telemetry
series are generally influenced by the remote controlling
which is relatively easy to detect with expert rules. Also,
the degradation characteristics is hard to appear in short-
term test with the low degradation speed. Given that the
satellite orbit is relatively regular and the working condition
has the periodic specialty, the analog telemetry series with the
pseudo-periodic phenomenon are the focus of current work.
In detail, we select the temperature and pressure series of
catalytic bed from the actual satellite data sets to evaluate the
proposed method. Actually, abnormal data samples are rare
during the normal satellite in-orbit operation. Thus, we sim-
ulated artificial anomalies according to the expert experience
and failure analysis of the actual satellites.

Three types of anomalies are defined as follows.

(1) Amplitude and trend anomaly
This type of anomaly may reflect the error of data lost,
error code, and messy code. It can reveal the short-
term changes in amplitude and trend with the following
specific forms.
Type I anomaly: continuous unchangeable state in a
short term.
Type II anomaly: sequence shocks in the time series.
Type III anomaly: unexpected concave side or convex
side, including sine/cosine type and triangular pulse
type.
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FIGURE 12. Type I amplitude anomaly in temperature telemetry.

FIGURE 13. Type I time axis anomaly in temperature telemetry.

FIGURE 14. Sine convex anomaly in pressure series.

(2) Anomaly in time axis
The anomaly type represents mode switch error in the
telemetry data. In what follows, we present two detailed
sub-anomalies examples.
Type I anomaly: period compression.
Type II anomaly: period extension.

(3) Anomaly in noise
Short-term high power noise may be used to simulate
the influence of the changes in spatial environments.
The above simulation anomalies are added in temper-
ature and pressure series of catalytic bed, respectively.
Fig. 12 shows the Type I amplitude anomaly I located in
[353, 368], and Fig. 13 shows the Type I time axis
anomaly located in [199, 254].

Fig. 14 represents the Type III amplitude anomaly located
in [624,649], in which the sine convex anomaly is added into
the actual pressure data set. Fig. 15 depicts the triangular
pulse type added in the raw data set.

In this work, due to the similarity of the experiments as
well as the limited paper space, we only describe the results
of some typical experiments on different types of anomaly
fragments.

B. DETECTION FOR AMPLITUDE AND TREND ANOMALY
(1) Experiments on temperature series of catalytic bed with
Type I amplitude and trend anomaly.

FIGURE 15. Triangular anomaly in pressure series.

FIGURE 16. Training and predicted result for temperature series.

FIGURE 17. Error series and the normal range for temperature series with
simulated anomalies.

Experimental setting: we set the embedded dimension
as 10 and the anomaly detection parameters as l = 6,
LB = 3, and h = 8. The optimized parameters searched by
cross-validation are gam = 231.7315 and sig2 = 1.384763.
The detected results are presented in Figs. 16-18. Specifi-

cally, the training and prediction results are shown in Fig. 16,
the predicted error series and the normal range of errors are
given in Fig. 17, and the detected anomalous fragment is
provided in Fig. 18.

The detected result is [342, 362] and the injecting anoma-
lous range is [342, 358]. Thus, the detection is almost
completely conforming to the real condition. In addition,
TNTR and TNDR are

TNTR =
358− 342+ 1
358− 342+ 1

= 100%
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FIGURE 18. Detected anomalous fragment of temperature series with
anomalies.

FIGURE 19. Pressure series of catalytic bed with amplitude and trend
anomaly of Type II.

FIGURE 20. Detected anomalous fragment of pressure series.

and

TNDR =
358− 342+ 1
362− 342+ 1

=
17
21
= 81.0%,

respectively.
(2) Anomaly detection for pressure series with Type II

amplitude and trend anomaly.
For the pressure series, we add sequence shocks to it. Then,

the Type II amplitude and trend anomaly can be observed
in Fig.19, where the anomalies are injected in [630, 650].
Fig. 20 shows the detected anomalous fragment. With the
same meanings, the detailed legends of curves are omitted
in the following detection figures.

The detected anomalies are located in [630, 650] and the
actual anomalous happened at [631, 649]. The TNTR and
TNDR are computed as follows.

TNDR =
649− 631+ 1
650− 630+ 1

=
19
21
= 90.48%,

TNTR =
649− 631+ 1
649− 631+ 1

= 100%.

FIGURE 21. Training and predicted results for pressure series with
simulated cosine anomalies.

FIGURE 22. Detected fragment anomalies in pressure series with
simulated cosine anomalies.

(3) Anomaly detection for pressure series with Type III
amplitude and trend anomaly.

The amplitude anomaly of cosine type is injected
in [583,599]. The embedded dimension is set as 40,
gam = 20, sig2 = 0.215, and the other parameters
remain unchanged. The detected results are shown in
Fig. 21 and Fig. 22.

The detected range is [584,597] and the actual anomalous
fragment is [583,599], thus, the interval is highly coincident.
We also obtain

TNTR =
597− 584+ 1
599− 583+ 1

=
14
17
= 82.4%,

TNDR =
597− 584+ 1
597− 584+ 1

= 100%.

Hence, we can conclude that 82.4% actual anomalies are
detected and no false detection happens.

(4) Anomaly detection for pressure series with Type III
amplitude and trend anomaly.

A very small triangular anomaly is simulated and added
into the normal pressure series, which locates in [597,613].
Embedded dimension equals to 40, gam = 20, sig2 = 0.215,
l = 7, LB = 3, h = 9, and p = 95%. The detected results are
shown in Fig. 23 and Fig. 24.

The detected ranges are [598,608] and [610,616], and
the actual anomalies are in [597,613]. The TNTR and
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FIGURE 23. Predicted error for pressure series with simulated triangular
anomalies.

FIGURE 24. Detected anomalous fragment in pressure series with
simulated triangular anomalies.

TNDR are

TNTR =
(608− 598+ 1)+ (613− 610+ 1)

613− 597+ 1

=
11+ 4
17

= 88.2%,

TNDR1 =
608− 598+ 1
608− 598+ 1

= 100%,

TNDR2 =
613− 610+ 1
616− 610+ 1

=
4
7
= 57.1%.

The two detected fragments are matching the same actual
anomalous fragment, so we can obtain

TNDR1[(1&2)] =
15

7+ 11
= 83.3%.

C. ANOMALY DETECTION FOR THE TIME AXIS ANOMALY
In this experiment, the anomaly with period compression is
injected into the temperature series. The embedded dimen-
sion is set as 10 and the anomaly detection parameters are
l = 6, LB = 3, and h = 8. The optimized parame-
ters searched by cross-validation are gam = 117.9015 and
sig2 = 1.02117. Then, the detected results are given in
Fig.25 and Fig.26.

The injected anomalies are located in [199, 254] and the
detected anomalous fragment is [211, 216] ∪ [239, 244]. In
addition, the TNTR and TNDR are

TNTR1 =
(216− 211+ 1)+ (244− 239)+ 1

254− 199+ 1

=
13
56
= 23.2%,

FIGURE 25. Predicted error for temperature series with period
compression anomalies.

FIGURE 26. Detected fragment anomalies in temperature series with
period compression anomalies.

FIGURE 27. Detected fragment anomalies in pressure series with high
power noise anomalies.

TNDR1 =
216− 211+ 1
216− 211+ 1

= 100%,

TNDR2 =
244− 239+ 1
244− 239+ 1

= 100%.

D. ANOMALY DETECTION FOR NOISE INTERFERENCE
An anomaly fragment is injected into pressure series with
short-term high power noise. For the normal series, the train-
ing variance is 0.008. Thus, we simulated the high power
noise with variance 0.025 (3 times to the normal value).
The actual anomalous range is [340, 370] and the other
parameters keep the same. One detected result is shown
in Fig.27.

Given the influence of variance on the raw data, we imple-
ment 6 times detection to calculate the average values of
TNTR and TNDR. Table 2 shows the results.

From Table 2, one can observe that, for each detection, the
anomalous range can be closely detected.
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TABLE 2. Anomaly detection for noise.

E. EXPERIMENT ANALYSIS AND DISCUSSION
In this section, three types of anomaly fragment (which is
unable to be detected by the threshold method), i.e., ampli-
tude anomaly, time axis anomaly and noise interference, are
injected into the real satellite telemetry data. In addition,
some experiments are performed on the detailed subtypes
of the above anomaly modes. The proposed framework can
highlight all injected anomaly fragments. The only difference
is that to label the whole or part of the anomaly fragments.
This result is meaningful to the real aerospace application,
because, with these highlights, we can accurately position
the potential failures to improve the maintenance efficiency.
Moreover, the false detection always happens near the actual
anomalous fragment, which can provide early warnings to the
ground staffs in the online application.

For the anomaly fragment which lasts a relative long time,
missing detection may happen due to the influence of predic-
tion window and the AD strategy. In particular, the TNTR and
TNDR depend on the anomaly types and the model parame-
ters. Therefore, in aerospace application, the characteristics
of pseudo cycle and rare anomaly in telemetry data make the
proposed framework effective to realize anomalous fragment
detection.

VI. CONCLUSION
The contributions of this work can be concluded as follows:
(1) a data-driven fragment anomaly detection method based
on LS-SVM is proposed; (2) effective evaluation indica-
tors are introduced to estimate the performance of fragment
anomaly detection; (3) the predicted anomaly detection is
applied to condition monitoring data sets (actual satellite with
typical anomaly modes) to prove the effectiveness of the
proposed anomaly detection framework.

However, this framework has some limitations and fur-
ther research is required in the future. For instance, most
of the parameters are set by experiments and expert experi-
ence, e.g. the fragment length of l and h, which should be
improved by combining the optimization algorithms and data
characteristics. In addition, the adaptive updating strategy
should focus more on the improvement of on-line detection
performance. Moreover, anomaly detection for multivariate
samples deserves a comprehensive study in the future.
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