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ABSTRACT This paper proposes a novel protocol, called an aggregation-based topology learning (ATL)
protocol, to identify energy holes in a randomly deployed hierarchical wireless sensor network (HWSN).
The approach taken in the protocol design is to learn the routing topology of a tree-structured HWSN in
real-time, as an integral part of the sensed data collection and aggregation process in the network. The learnt
topology is then examined to identify high energy-consuming nodes, that are more likely to create energy
holes in the network. The major challenge in designing this protocol is to code topology data in such a way
that it can be carried in length-constrained messages supported by current sensor technologies. To address
this challenge, three topology coding methods are proposed. A theoretical analysis of the three topology
coding methods is carried out to find the optimum method among the three, and this optimum method is
used in the ATL protocol. The ATL protocol is tested and evaluated on a real WSN test bed in terms of
completeness, correctness and energy costs. Based on the evaluation results, we have identified two classes
of high energy-consuming nodes, which are: 1) nodes that carry topology data from more downstream nodes
and 2) nodes that more frequently switch between different upstream nodes. This finding is significant as it
provides an insight as how topology-learning, as well as data collection, may be used to prolong the life-time
of a HWSN. In addition, the evaluation results also show that the energy cost incurred in a data collection
process integrated with our proposed topology-learning facility is at a similar level as for the process without
the facility, thereby implying that the cost incurred in topology-learning by using our proposed method is
negligible. These findings indicate that, by integrating the topology-learning process with the sensed data
collection and aggregation process, the ATL protocol can identify high energy-consuming nodes, i.e., nodes
that are more likely to create energy holes, in a random HWSN deployment, in an effective and cost-efficient
manner.

INDEX TERMS Hierarchical wireless sensor networks, random deployment, energy holes, data aggregation,
routing topology.

I. INTRODUCTION
Tracking military vehicles in a battlefield, monitoring envi-
ronmental phenomenon and tracking real-time events in a
smart context, such as smart cities facilitated by Internet of
Things (IoTs), are just a few of the many potential applica-
tions ofWireless Sensor Networks (WSNs). AWSN typically
consists of a base station (BS) and a collection of sensor
nodes that are deployed to monitor some physical phenomena
and to send the monitored data to the BS at regular intervals.
In such a network, nodes are typically deployed in large
numbers ranging from several hundreds to even thousands.
With such a large number of nodes, the network deployment
is largely random, resulting in a random routing topology.
Such a topology often has non-uniform node distribution in
different parts of the network, causing some nodes in the
network to deplete their energy faster than the others and

creating the so called energy holes in the network. In such
cases, it would be beneficial to equip theWSNwith the ability
to identify high energy-consuming nodes in real-time, so that
anticipated energy holes in the network could be identified
and replacements be deployed before network operations
are affected. This will ultimately prolong the lifetime of a
randomly deployed WSN.

Sensor nodes are usually organized in a hierarchical tree
structure where upstream nodes, that are closer to the BS ,
relay data from downstream nodes, that are farther away from
the BS , and each downstream node is connected to exactly
one upstream neighbour [1]. Such a network is often referred
to as a hierarchical WSN (HWSN).

In a HWSN, the nodes closer to the BS often deplete their
energy faster than other nodes in the network and energy
holes are more likely to be created around the BS . This is
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because nodes closer to the BS receive and transmit more
messages, and the energy consumed by a node is largely
dependent on the communication cost imposed on it (which
is, in turn, dependent on the number and length of messages
received and transmitted by the node).

To reduce communication costs in HWSNs, a technique
called data aggregation is often used with a data collection
process. With data aggregation, each non-leaf node (i.e. an
aggregator A) collects and aggregates data from its down-
stream neighbours and forwards the aggregated data in a
single transmission to an upstream neighbour. This results
in a reduced number of data transmissions by each node in
the network. However, this also means that now the energy
holes are no longer limited to the nodes closer to the BS . Any
node, at any hop in the network, can create an energy hole if
it receives and transmits more messages than other nodes in
the network.

To identify nodes creating energy holes in a HWSN that
uses data aggregation, the number of messages received and
transmitted by each node in the network need to be deter-
mined. In other words, to identify energy holes, the BS needs
to know the number of downstream and upstream neighbours
of each node in the network. The more downstream and
upstream neighbours that a node has, the more messages
the node will receive and transmit. Since, in a HWSN, each
downstream node is connected to exactly one upstream neigh-
bour, the BS only needs to know the number of downstream
neighbours for each node to identify energy holes. One way
of doing this is for each node in the network to record and
transmit the IDs of its 1-hop downstream neighbours and
their positions in the tree hierarchy to its 1-hop upstream
neighbours. In other words, the topology data ‘seen’ by each
node should be collected in a bottom-up manner. The major
challenge, however, is how to record (or code) the topology
data such that it can be carried in length-constrainedmessages
supported by sensor nodes.

To address this challenge, this paper proposes three topol-
ogy data coding methods, a Full Mapping (FM) method,
Partial Mapping (PM) method and Revised Partial Map-
ping (RPM) method. With the FM method, each node codes
the topology data of all its downstream neighbours in the form
of their IDs and hop counts, and transmits the data to one
of its 1-hop upstream neighbours without aggregation or any
further processing. This, however, incurs high transmission
costs as the messages carrying the topology data could be
long. In the PM method, the concept of data aggregation
is applied to topology data collection. Here each non-leaf
node acts as an aggregator and codes the topology of the tree
headed by itself using two sets of values. The first set lists
the IDs of the nodes in the tree in an orderly manner, and the
position occupied by each node’s ID in the set is captured
by using an index number. The second set lists the index
numbers of the aggregator’s 1-hop downstream neighbours.
In this way, its 1-hop upstream neighbour could map the IDs
present in the first set with the index numbers contained in the
second set. As the second set only contains the index numbers

of the aggregator’s 1-hop downstream neighbours, rather than
the index numbers of all the nodes in the tree headed by the
aggregator, the PMmethod requires shorter messages to carry
topology data than the FMmethod. However, the PMmethod
only works for a network with a hop count of no more than 4.
The RPM method is designed to overcome the limitation of
the PMmethod by using the second set of the topology data to
capture the index numbers of the leaf nodes of the tree headed
by the aggregator, rather than the index numbers of its 1-hop
downstream neighbours. Among the three coding methods,
the RPM method is the most preferable one, as it generates
short messages to carry the topology data and works for a
network with any number of hops and nodes. We have carried
out a theoretical analysis to evaluate the RPMmethod against
the other two methods.

Using the RPM method, we have designed and
implemented a novel protocol, called an Aggregation based
Topology Learning (ATL) protocol, that facilitates real-time
learning of a HWSN’s routing topology. The implementation
is done on a real WSN test bed. We have carried out a
number of experiments on the test bed and have made some
interesting discoveries from the experiments.

The remainder of this paper is organized as follows. The
related work is discussed in Section II. Section III describes
the three topology coding methods and carries out a the-
oretical analysis of the three methods. Section IV presents
the design preliminaries, namely notations, assumptions and
design requirements, for the ATL protocol. SectionV gives an
overview of the ATL protocol, followed by a detailed descrip-
tion of the protocol. Section VI describes the experiments car-
ried out on a real WSN test bed and discusses the results and
findings from the experiments. Finally, SectionVII concludes
the paper.

II. RELATED WORK
This section gives an overview of the related work under two
categories. In the first category, it discusses the work relevant
to the topology learning problem in WSNs and in the second
category, it discusses the work relevant to the energy hole
problem in WSNs.

A. ON LEARNING WSN TOPOLOGY
There is very little related work published in literature which
directly addresses the topology learning problem in WSNs.
In our literature research, we were able to identify only a few
proposals [2]–[5] that are most relevant to our work.

Deb et al. [2] have proposed a TopDisc algorithm for a
BS to learn approximate topology in a cluster-based WSN.
In this proposal, each cluster is monitored by a cluster head
and each node is a member of at least one cluster. To learn
the WSN topology, the BS (i.e. the monitoring node for the
entire network) initiates a topology discovery request and
sends it to all the cluster heads in the network. The cluster
heads, upon receipt of this request, collect and aggregate
responses from the nodes in their respective clusters before
sending the responses to the BS . One of the challenging
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issues with this approach is how to discover a set of cluster
heads in a network that could collectively provide a complete
topological picture for the network. The TopDisc algorithm
uses a greedy strategy to discover such a set of cluster heads.
This strategy may not always produce an optimal solution in
terms of the completeness of the learnt topology. In addition,
the topology learning process makes use of separate control
messages (i.e. topology discovery requests and responses),
which will impose additional energy costs in a WSN.

Staddon et al. [3] have proposed a method that allows
a BS to identify failed nodes in a WSN. In this method,
routing messages are used to carry topological informa-
tion from the nodes in the network to the BS . In other
words, when a routing message passes through a node, the
node also adds the topological information about its neigh-
bours into the routing message before forwarding the mes-
sage further. The BS applies a divide and conquer strategy
to identify any failed nodes in the network, based on the
received information. With respect to communication costs,
the BS requires O(logn) routing messages to identify one
failed node and O(dlogn) routing messages to identify all
the failed nodes in the network, where n is the number of
probably failed nodes and d is the number of actually failed
nodes.

Marinakis et al. [4] have proposed a Monte-Carlo Expec-
tation Maximization (MCEM) based algorithm to determine
the state of a WSN in a managed indoor environment. The
WSN under consideration is assumed to be deployed at the
junctions of the hallways of a large building. The algorithm
uses the sequence of events generated by people passing
within view of different nodes to determine a connectivity
map and travel times between nodes.

Peralta et al. [5] have proposed the use of a Collaborative
Wireless Sensor Network (CWSN) model to represent the
state of a network and to capture its properties before the net-
work is actually deployed. CWSN is amathematical approach
for the modelling and analysis of a WSN. The graphical
representation of the model allows the visualization of the
communication interfaces between nodes, state of the nodes
and state of the links. This allows for a better organization and
management of the network when it is actually deployed. The
CWSNmodel may only be applicable to non-random deploy-
ments of WSNs and does not support real-time learning of a
routing topology.

B. ON IDENTIFYING ENERGY HOLES
The analysis of energy consumption by each node and the
network lifetime of a WSN is a widely studied problem in
literature. Several proposals have been published to address
this problem [6]–[25]. We here discuss the most notable
proposals.

Chen et al. [6] have used a mathematical model to estimate
the communication load on each node in a multi-hop WSN.
The findings from this work confirm that a node closer to the
BS consumes more energy than a node farther away from the
BS due to the increased communication load on the nodes

closer to the BS . The authors suggest that the mathematical
model can be used to predict the operational lifetime of a
network and to identify nodes with heavy communication
load in the network.

Cheng et al. [7] have proposed two models: a network life-
timemodel and a deployment cost model for network lifetime
analysis. The two models are used to establish the estimated
network lifetime against different network deployment strate-
gies. The authors suggest that, using the two models, suitable
network deployment strategies can be formulated to help with
the actual deployment of a WSN.

Zhao et al. [8] have described an idea of a residual energy
scan (eScan) that allows a BS to acquire information about
the resource distribution in terms of remaining energy level
in the network. Each node regularly carries out local scans to
get an update information about its remaining energy level.
When a request is received from the BS , the nodes aggregate
and forward their local scans towards the BS . The scans
received by the BS provide a summary information of the
geographical distribution of energy resources in the network.
However, the eScans do not provide detailed information
about the energy level at any particular node.

Zhao et al. [9] have proposed to use aggregates of net-
work properties, called the network digests, to indicate node
failures and resource depletions in a network. Each node
regularly computes digests of network properties like packet
loss rates, remaining energy levels, etc. and uses these digests
to alert the BS about any erroneous conditions within the
network. To improve the accuracy of the computed digests,
the authors suggest to exclude data links with heavy packet
loss and asymmetry from the digest computations.

L. Zhang et al. [10] have proposed a generic distributed
progressive algorithm (DPA) to maximize network lifetime
for a WSN. They define network lifetime as the time period
from the deployment of the network to the time when BS
can no longer receive data from any node in the network.
In DPA, a lifetime vector is used to define the lifetimes of
all active nodes in an ascending order. DPA runs iteratively
in a distributed manner to produce the values in the lifetime
vector. During each iteration, each node makes localised
estimations for its lifetime based on its remaining energy level
and communicates the estimated lifetime to its neighbours
using flooding. With each iteration, the BS gets a better
lifetime vector than the previous one and this continues till
DPA stabilises, at which point the BS gets the lifetime vector
with the maximum values.

Kacimi et al. [11] have discussed load-balancing
techniques to maximize the network lifetime. To do so,
a distributed heuristic solution is proposed that adjusts the
transmission power of sensor nodes in order to balance their
energy consumption.

Rout et al. [12] designate the area around the BS as a
bottleneck zone and propose the use of duty cycling and
network coding to enhance the lifetime of the nodes in this
area. Each node in the bottleneck zone combines all the data it
receives and sends the combined data in a single transmission.
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This reduces the number of transmissions to the BS and
improves the lifetime of the nodes in the bottleneck zone.

Liu et al. [13] have proposed three algorithms to reduce
hotspots or energy holes in a network and increase the net-
work lifetime. To optimise network lifetime using the first
algorithm (GlobalSame), they propose to adjust the values of
network parameters (e.g. transmission radius, transmission
rate, etc.) globally. In the second algorithm (RingSame),
the authors propose that the network lifetime can be further
increased by adjusting the values of the network parameters
based on the network conditions in different regions. Using
the third algorithm (NodeDiff), they propose that, to further
increase the network lifetime, the values of the network
parameters should be adjusted for each individual node in the
network based on its distance from the BS .
Different from the above mentioned proposals, this paper

describes a real-time routing topology learning approach by
which high energy-consuming nodes, and the likely energy
holes, in a HWSN can be identified by using the same proce-
dure and same set of communicationmessages that are widely
used for data collections in HWSNs.

III. TOPOLOGY DATA CODING METHODS
The task of learning the routing topology of a HWSN involves
finding answers to the following questions: (i) how to express
a node’s topology data, and (ii) how to get such topology
data to the BS . With respect to question (ii), we can con-
sider topology data collection in a HWSN as a normal data
(i.e. sensed data) collection process. Since a sensed data col-
lection process often makes use of data aggregation to reduce
communication costs, therefore topology data collection can
alsomake use of data aggregation for the same reason. Apply-
ing data aggregation to topology data collection, each node
(starting from the first non-leaf nodes) collects topology data
from its 1-hop downstream neighbours, aggregates the col-
lected topology data with its own topology data and transmits
the aggregated topology data to a 1-hop upstream neighbour.
Each 1-hop upstream neighbour then learns the downstream
routing topology using the topology data received from its
1-hop downstream neighbours. In this way, each upstream
node, and finally the BS , can learn the downstream routing
topology as part of the data collection process.

The questions that remain are how to express a node’s
topology data and how such topology datamay be aggregated.
To address these questions, we have designed three methods,
i.e. the FullMapping (FM)method, the Partial Mapping (PM)
method and the Revised PM (RPM) method.

A. FULL MAPPING (FM) METHOD
The basic idea behind the FMmethod is that if the BS knows
the identity and hop count of each node in the network, then
the BS can work out the tree topology of the network. In other
words, in a bottom-up fashion starting from the first non-leaf
node layer, if a node (referred as a tree-head) can pass the
identity of each of its 1-hop downstream neighbours along
with their positions in the tree hierarchy to a 1-hop upstream

neighbour, then the 1-hop upstream neighbour can learn the
topology of the tree headed by this tree-head.

To explain this method and for the sake of clarity, we first
give two definitions.
Definition 1 (Topology Identity (TID)): TID is used to

express a node’s topology data. It comprises of two attributes,
i.e. Node_ID and Hop_Count, where Node_ID is an integer
that uniquely identifies a node in the network and Hop_Count
is an integer that refers to the node’s hierarchical position
in the network in terms of its hop count from the BS . TID
for a node X (expressed as TIDX ) is given as <Node_IDX ,
Hop_CountX >.
Definition 2 (Neighbourhood Topology Data With FM

(NT_Data_FM)): NT_Data_FM is used to express aggre-
gated topology data at a node. NT_Data_FM for a leaf node
is the same as its TID, as it does not have any downstream
neighbours. For a tree-head X with m downstream neigh-
bours, NT_Data_FMX is given as:

NT_Data_FMX = < Node_IDX ,Hop_CountX >,

< Node_ID1,Hop_Count1 >, ...,

< Node_IDm,Hop_Countm > (1)

With the use of above definitions, we now describe the FM
method. Each node in the network, starting from the first non-
leaf node layer, collects the TIDs of its 1-hop downstream
neighbours, appends its ownTID to the collected TIDs to con-
struct the so-called NT_Data_FM of this node, and sends it
to a 1-hop upstream neighbour. Similarly, the 1-hop upstream
neighbour performs the same operations. Once all such data
are delivered to the BS , the BS can learn the topology of the
entire tree.

Now let us use the network structure shown in Fig. 1 to
further illustrate how the BS learns the routing topology
using the FM method. Based on Definition_1, the TID of
node J is: <J, 5>. According to Definition_2 and assum-
ing that the TIDJ has been collected by G, G generates
NT_Data_FMG = TIDG, TIDJ = <G, 4>, <J, 5>. Next, G
sends this data to D, which is G’s 1-hop upstream neighbour.
Similarly, D appends its own TID, <D, 3>, to the received
NT_Data_FMG. As D does not have any other downstream
neighbours, so NT_Data_FMD = <D, 3>, <G, 4>, <J, 5>.
D then sends this data to its 1-hop upstream neighbour, i.e. B.
B carries out similar steps and generates NT_Data_FMB =
<B, 2>, <D, 3>, <G, 4>, <J, 5>. Next, B sends this data
to its 1-hop upstream neighbour, i.e. A. By using a similar
process, A also collects the topology data of the right branch
of the tree from node C, i.e. NT_Data_FMC = <C, 2>,
<E, 3>, <F, 3>, <H, 4>, <I, 4>. Using the topology data
from both B and C, A generates NT_Data_FMA = <A, 1>,
<B, 2>, <D, 3>, <G, 4>, <J, 5>, <C, 2>, <E, 3>,
<F, 3>, <H, 4>, <I, 4> and sends it to the BS . Using the
topology data from A, the BS can learn the topology of the
tree.

The main limitation of the FM method is that length of
NT_data_FM generated at each hop increases proportional
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FIGURE 1. Full mapping method explained.

to the number of downstream neighbours. This is because,
with FM, there is actually no aggregation of topology data
during the data collection process. At each hop, new topology
data are simply appended (i.e. concatenated) to the received
NT_Data_FM. This will lead to two issues.

The first issue is the level of communication over-
head introduced by the FM method. A node with many
downstream neighbours requires a longer message to carry
its NT_Data_FM. In addition, the length of this message
increases as it propagates hop-by-hop towards the BS . The
longer the message is, the higher the transmission cost and
thus the higher the communication overhead. This commu-
nication overhead is particularly high if long messages are
generated at the leaf end of the tree, the network is very large
and/or the hierarchy of the tree has many levels.

The second issue is the limited network size that could be
supported by the FM method. Based on the current sensor
technology, sensor nodes typically support a message length
of around a hundred bytes. For example, a standard TinyOS
message is just 36 bytes long with 5 bytes of header, 29 bytes
of data payload and 2 bytes of CRC [26]. The CC2420
radio used by the sensor nodes allows a maximum packet
length of 128 bytes, so the data payload length in a TinyOS
message can be increased up to 121 bytes [27]. Let’s assume
a data payload length of 40 bytes. Using 1-byte to code each
Node_ID and 1-byte to code each Hop_Count, a node can
code the topology data for a maximum of 20 downstream
neighbours over a maximum of 20 hops (20 nodes can be
spread over a maximum of 20 hops) where 20 bytes are used

to code the Node_IDs for 20 downstream neighbours and
20 bytes are used to code the Hop_Counts.

To reduce the length of the messages carrying the collected
topology data, we need to devise a different way of expressing
a node’s topology data that allows the aggregation of topology
data as it propagates towards the BS . In the following, we
describe such a method, which is called the Partial Map-
ping (PM) method.

B. PARTIAL MAPPING (PM) METHOD
As mentioned above, the PM method is aimed at expressing
the topology of a tree with a shorter message than the FM
method. The idea used is to express the topology data at a
tree-head using two sets: the first set lists the identities of the
nodes in the tree in an orderly fashion, starting with the tree-
head Node_ID and followed by the Node_IDs passed by its
1-hop downstream neighbours in a left-to-right fashion. Each
Node_ID in the first set is given an index number that starts
from 0 and increments by 1 for each subsequent Node_ID in
the set. The second set of the topology data lists the index
numbers for the 1-hop downstream neighbours of the tree-
head. When a 1-hop upstream neighbour of the tree-head
receives this topology data, it can infer the topology of the tree
headed by this tree-head by mapping the Node_IDs present
in the first set with the index numbers contained in the second
set. That is to say, it can work out which node is the tree head,
which node is the first child of the tree head (indicated by
the first index number in the second set), which node is the
second child of the tree head (indicated by the second index
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number in the second set), and so on. Different from the FM
method, that encodes both the Node_IDs and the positions
(hop counts) of all the nodes in a tree, the PMmethod encodes
the Node_IDs of all the nodes in a tree but only the positions
of the 1-hop downstream neighbours of the tree-head. In this
way, the PM method cuts out the position information of
the nodes that are not 1-hop downstream neighbours of the
tree-head from the topology data, thus reducing the size of a
message carrying the topology data.

To further explain this method, we first define four terms
used in the PM method.
Definition 3 (Family):A family is formed by a node and its

1-hop downstream neighbours. The node is called the parent
and its 1-hop downstream neighbours are the children of the
parent.
Definition 4 (Extended Family): An extended family is

formed by a node, called the tree-head, and all the down-
stream nodes (i.e. children, grandchildren, greatgrandchil-
dren and so on) in the tree headed by this node.
Definition 5 (Extended Family Node_IDs (EF-ID)): This is

a set of Node_IDs for the nodes in an extended family. The
Node_IDs are listed in the set based on the ‘family positions’
of the nodes, such that a tree-head’s 1-hop downstream neigh-
bour is followed by its children, grandchildren and so on.
Definition 6 (Nodes’ Positions in the Extended Family

(NP-EF)): This is a set of integers, called index_numbers,
assigned just to the 1-hop downstream neighbours (i.e. the
children) of a tree-head to indicate their respective positions
in EF-ID.
Definition 7 (Neighbourhood Topology Data With PM

(NT_Data_PM)): NT_Data_PM uses a node’s EF-ID and
NP-EF to express aggregated topology data at a node.
NT_Data_PM for a leaf node only contain its own Node_ID
in EF-ID and a null value in NP-EF. For a tree-head X with m
1-hop downstream neighbours, NT_Data_PMX is given as:

NT_Data_PMX

= EF − IDX ,NP− EFX
= {Node_IDX ,Node_IDs of Child1

and its children, ...,Node_IDs of Childm

and its children},{index_number of Child1,

..., index_number of Childm} (2)

With the use of above definitions, we now describe the
PM method. Each node in the network, starting from the
first non-leaf node layer, collects the Node_IDs of all its
downstream neighbours, appends its own Node_ID to the
collected Node_IDs and constructs the so-called EF-ID of
this node. It then determines the positions occupied by
its 1-hop downstream neighbours in EF-ID and puts these
positions in NP-EF. It then constructs NT_Data_PM using
EF-ID andNP-EF and sends it to a 1-hop upstream neighbour.
Once the 1-hop upstream neighbour gets this data, it uses
NP-EF to determine the family positions in EF-ID. The 1-hop
downstream neighbours of the sending node are determined

directly from the index_numbers present in NP-EF, while
the other downstream neighbours are conveyed using the
agreed order of the Node_IDs’ appearances in the data
structure 2.

Using Fig. 2, we now illustrate how the BS learns rout-
ing topology using the PM method. At the lowest level
(i.e. hop 5), there is only one leaf node J, so its EF-ID
only contain its own Node_ID and its NP-EF is null, i.e.
NT_Data_PMJ = EF-IDJ , NP-EFJ = {J, {}}, {}.
At hop 4, there are three nodes; G is a tree-head and H and I

are leaf nodes. G has one 1-hop downstream neighbour J,
so NT_Data_PMG ={G, {J}}, {1} where 1 indicates the
family position of its 1-hop downstream neighbour J. Since
H and I are leaf nodes so NT_Data_PMH ={H, {}}, {} and
NT_Data_PMI ={I, {}}, {}.
At hop 3, there are three nodes; D and F are tree-heads and

E is a leaf node. D has one 1-hop downstream neighbour G, so
NT_Data_PMD ={D, {G, J}}, {1} where 1 indicates the fam-
ily position of its 1-hop downstream neighbour G. F has two
1-hop downstream neighbours H and I, so NT_Data_PMF
={F, {H, I}}, {1, 2} where 1 and 2 indicate the family
positions of its 1-hop downstream neighbours H and I. Since
E is a leaf node so NT_Data_PME ={E, {}}, {}.
At hop 2, there are two nodes; B and C and both are

tree-heads. B has one 1-hop downstream neighbour D,
so NT_Data_PMB ={B, {D, G, J}}, {1} where 1 indi-
cates the family position of its 1-hop downstream neighbour
D. C has two 1-hop downstream neighbours E and F, so
NT_Data_PMC = {C, {E, F, H, I}, {1, 2} where 1 and 2 indi-
cate the family positions of its two 1-hop downstream neigh-
bours E and F.

At hop 1, there is only one node, A, which is a tree-head.
Node A has two 1-hop downstream neighbours B and C, so
NT_Data_PMA ={A, {B, D, G, J, C, E, F, H, I}}, {1, 5},
where 1 and 5 indicate the family positions of its two 1-hop
downstream neighbours B and C.

When the BS receives NT_Data_PMA, it gets to know
that A is its 1-hop downstream neighbour. It then uses the
index_numbers {1, 5} and gets to know that B and C are its
2-hop downstream neighbours and the remaining nodes D, G,
J, E, F, H and I are its 3-hop downstream neighbours.

It can be seen that the PM method actually pro-
vides a certain degree of topology data aggregation: the
NT_Data_PM is restructured at each hop and only the
index_numbers for the 1-hop downstream neighbours are
recorded in NT_Data_PM. As a result, fewer bytes are
required to carry NT_Data_PM than NT_Data_FM. For
example, let’s compare NT_Data_PMA with NT_Data_FMA.
Assuming that each Node_ID is coded using a 1-byte code
(allowing the maximum network size of 256 nodes), and
each index_number is coded using a 1-byte code, then
NT_Data_PMA generates 96 bits (12 bytes) of topology data,
as compared to a 160 bits (20 bytes) of topology data gener-
ated by NT_Data_FMA.
The PM method is more efficient, in terms of cutting

down the length of a message carrying the topology data,
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FIGURE 2. Partial mapping method explained.

as compared to the FM method. However, the PM method
works only when the network is limited to 4 hops (hop 0 - 3).
For example, in Fig. 2, the BS learns that G, H, I and J are
its 3-hop downstream neighbours, which is actually not the
case. With the PM method, a node can only distinguish its
1-hop and 2-hop downstream neighbours from its down-
stream neighbours in other hops and all the downstream
neighbours in other hops get categorised as a node’s 3-hop
downstream neighbours. A typical WSN deployment con-
tains a large number of sensor nodes and it is very likely
that the network has a hierarchical structure with 5 or
more hops. This means that the PM method cannot be
applied to learn the routing topology in a real WSN
environment.

C. REVISED PARTIAL MAPPING (RPM) METHOD
To address the limitation of the PM method, we propose two
modifications to the PM method. The first modification is to
divide the tree headed by a tree-head into a set of branches,
where a branch refers to a unique path formed by the tree-
head’s downstream neighbours to connect exactly one leaf
node to the tree-head. The second modification is to code
the index numbers of the leaf nodes in the second set of
the topology data, instead of the index numbers of the 1-hop
downstream neighbours of the tree-head. We now apply these
modifications to the PM method and explain the Revised
Partial Mapping (RPM) method.

The idea used in the RPM method is to express the topol-
ogy data for the different branches in the tree headed by a
tree-head using two sets. The first set lists tree-head’s own
Node_ID and the Node_IDs in each branch in an orderly
fashion, and the second set lists the index numbers of the leaf
nodes in these branches.

To express a node’s topology data in the RPM method, we
replace EF-ID and NP-EF in the topology data with two new
fields. The two fields and the corresponding data structure for
RPM are defined as follows:
Definition 8 (Branch-Based Extended Family Node_IDs

(BEF-ID)): This is a set of Node_IDs representing the nodes
on each branch headed by a tree-head. For each branch, the
Node_IDs are listed based on their position in the branch,
such that the node at the top of the branch occupies the first
available position, followed by the next node in the branch
and so on till the leaf node at the bottom of the branch.
Definition 9 (Leaf Nodes’ Positions in the Extended Family

(LNP-EF)): This is a set of integers, called index_numbers,
assigned just to the leaf nodes (i.e. the bottom most node) on
each branch to indicate their respective positions in BEF-ID.
Definition 10 (Neighbourhood Topology Data With RPM

(NT_Data_RPM)): NT_Data_RPM uses a node’s BEF-ID
and LNP-EF to express aggregated topology data at a node.
NT_Data_RPM for a leaf node only contain its own Node_ID
in BEF-ID and a 0 value in LNP-EF. For a tree-head X with b
branches and nj nodes (where 1 ≤ j ≤ b) along each branch,
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FIGURE 3. Data structure used in RPM.

NT_Data_RPMX is given as:

NT_Data_RPMX

= BEF − IDX ,LNP− EFX
= {Node_IDX ,Node_IDs of n1
children on branch 1, ...,Node_IDs
of nb children on branch b}, {index_number
of leaf node n1, ..., index_number
of leaf node nb} (3)

The data structure for NT_Data_RPM is shown in Fig. 3.
With the use of above definitions, we now describe the

RPM method. Each node in the network, starting from
the first non-leaf node layer, collects the Node_IDs for all
its branches, appends its own Node_ID to the collected
Node_IDs and constructs its BEF-ID. It then determines
the positions occupied by leaf nodes in BEF-ID for each
branch and put these positions in LNP-EF. It then constructs
NT_Data_RPM using BEF-ID and LNP-EF, and sends it
to a 1-hop upstream neighbour. When a 1-hop upstream
neighbour receives this data, it first separates the branches
in BEF-ID by using the index_numbers in LNP-EF. Once
the branches have been separated, the node determines the
hop position for each Node_ID using the agreed order of
Node_IDs appearance in each branch, as specified in the data
structure 3.

Using Fig. 4, we now illustrate how the BS learns routing
topology using the RPM method. On the left side of the
tree headed by node A, there is only one branch connecting
leaf node J to A. At hop 5, J produces NT_Data_RPM that
contains just its own Node_ID in BEF-ID and a 0 value in
LNP-EF, as it is a leaf node. At hop 4, G heads one branch
with leaf node J and produces NT_Data_RPMG = {G, {J}},
{1}, where 1 is the index_number for leaf node J in BEF-
IDG. Similarly, at hop 3 and hop 2, nodes D and B generate
NT_Data_RPMD = {D, {G, J}}, {2} and NT_Data_RPMB =
{B, {D, G, J}}, {3}, where 2 and 3 indicate the index_number

for their only leaf node J in BEF-IDD and BEF-IDB
respectively.

On the right side of the tree headed by node A,
there are three branches connecting leaf nodes E, H and
I to A. At hop 4, there are two leaf nodes, H and I, so
NT_Data_RPMH = {H, {}}, {0} and NT_Data_RPMI =
{I, {}}, {0}. Similarly, at hop 3, E being a leaf node gen-
erates NT_Data_RPME = {E, {}}, {0}. The other node F
at hop 3 heads two branches with leaf nodes H and I, so
NT_Data_RPMF = {F, {H, I}}, {1, 2} where 1 and 2 are
the index_numbers for the leaf nodes H and I in BEF-IDF .
At hop 2, C heads three branches with leaf nodes E, H
and I and its topology data is described as NT_Data_RPMC
= {C, {E}, {F, H}, {F, I}}, {1, 3, 5}, where 1, 3 and
5 indicate the index_numbers of the three leaf nodes in
BEF-IDC .
At hop 1, A heads four branches with leaf nodes J, E,

H and I, so NT_Data_RPMA = {A, {B, D, G, J}, {C, E},
{C, F, H}, {C, F, I}}, {4, 6, 9, 12}, where 4, 6, 9 and
12 indicate the index_numbers of the four leaf nodes in
BEF-IDA.

When the BS receives NT_Data_RPMA, it gets to know
that A is its 1-hop downstream neighbour and using the
index_numbers present in LNP-EFA, it determines that there
are four branches (say b1, b2, b3, b4) in BEF-IDA. Using
the index_numbers {4, 6, 9, 12} in LNP-EFA, it separates
the four branches as b1: {B, D, G, J}, b2: {C, E}, b3:
{C, F, H} and b4: {C, F, I}. Next the BS identifies the
hop positions for the nodes in the four branches. Since A
is a 1-hop downstream neighbour, so for b1, B would be
a 2-hop downstream neighbour, D would be a 3-hop down-
stream neighbour, Gwould be a 4-hop downstream neighbour
and J would be a 5-hop downstream neighbour to BS . Using
the same logic, C is identified as a 2-hop downstream neigh-
bour, E and F are identified as 3-hop downstream neighbours
and H and I are identified as 4-hop downstream neighbours
to BS .
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FIGURE 4. Revised partial mapping method explained.

In comparison with the PM method, the RPM method can
express the routing topology of a HWSN over a higher num-
ber of hops. It also uses fewer bytes to code the topology data
than the FM method, which means that the topology data of
more nodes could be coded into NT_Data_RPM. For exam-
ple, let’s compare NT_Data_RPMA with NT_Data_PMA
and NT_Data_FMA. NT_Data_RPMA correctly describes
that the tree headed by A extends over 5 hops, whereas
NT_Data_PMA described that the tree headed by A extends
over just 3 hops. Assuming that each Node_ID is coded
using a 1-byte code (allowing the maximum network size of
256 nodes), and each index_number is coded using a 1-byte
code, then NT_Data_RPMA generates 136 bits (17 bytes) of
topology data, as compared to a 160 bits (20 bytes) topology
data generated by NT_Data_FMA.
The RPMmethod gives a better performance than both the

FM and PMmethods, however, the RPMmethod comes with
two costs. The first one is the computational cost introduced
by the aggregation and message restructuring carried out at
each node, which is the price for the benefits offered by the
RPM method. The second cost is the communication cost
associated with the message carrying NT_Data_RPM. Since
the Node_ID of each node along each branch is added in
the message, so an upstream node with multiple leaf nodes
will be added multiple times in the message. For example,
in Fig. 4, C’s Node_ID is added three times in BEF-IDA at
hop 1, for the three branches reported by C. The addition of

an upstream node multiple times creates redundancy in the
message carrying NT_Data_RPM. The communication cost
of the RPMmethod would be low if there is a low redundancy
(i.e. fewer number of repeated Node_IDs) in the message and
high otherwise. As the redundancy in the message, in turn,
depends on how nodes connect to each other to form the
branches, so the performance of the RPM method actually
depends on the routing topology.

D. THEORETICAL ANALYSIS
This section compares the three topology coding methods.
With each of the methods and for a given data payload length,
we analyse howmuch of the routing topology (i.e. the number
of nodes and the number of hops in the network) can be learnt
by the BS .

As mentioned in Section III-C, the performance of the
RPM method depends on the routing topology. However,
this is not the case for the other two methods, i.e. their
performance is independent of the routing topology. For a
data payload length of ‘d’ bytes, ‘m’ 1-hop downstream
neighbours and ‘b’ branches:
• A maximum of h_FM hops and a maximum of n_FM
nodes can be coded with the FM method, where:

h_FM =
d
2

(4)

n_FM =
d
2

(5)
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As discussed in Section III-A, the FM method requires
the Node_ID and Hop_Count of each node to code the
topology data. This means that maximum nodes and
maximum hops that can be coded using the FM method
each would be one half of d and this is the case, regard-
less of any values of m or b.

• A maximum of h_PM hops and a maximum of n_PM
nodes can be coded with the PM method, where:

h_PM = 3 (6)

n_PM = d − m (7)

As discussed in Section III-B, the PM method only
works when the network is limited till hop 3 and this
is true, regardless of any values of d, m or b. Since m
bytes are required to code the index_numbers ofm 1-hop
downstream neighbours, so the remaining bytes can be
used to code a maximum of d − m nodes.

To evaluate and compare the performance of the RPM
method against the other two methods, we consider two
routing topologies:

1) Best Routing Topology: Nodes are connected such that
NT_Data_RPM contains zero redundancy.

2) Worst Routing Topology: Nodes are connected such
that NT_Data_RPM contains the maximum possible
redundancy.

For both routing topologies, we compare the maximum
number of hops that can be coded using the RPM method
against the PM method, and the maximum number of nodes
that can be coded using the RPM method against the FM
method. This comparison is reasonable as the RPM method
aims to code more hops than the PM method and more nodes
than the FM method in the topology data.

1) BEST ROUTING TOPOLOGY
Fig. 5 shows the best routing topology for a HWSN
that would generate zero redundancy with the RPM
method. The network consists of i + b nodes, where
C1, C2, ..., Ci are the non-leaf nodes and L1, L2, ..., Lb are the
leaf nodes along b branches. All the non-leaf nodes are along
one branch that connects leaf node L1 at hop i+ 1 to the BS .
All the other branches connect leaf nodes L2, ..., Lb at hop 1
directly to the BS . To code Node_IDs and index_numbers in
this routing topology, data payload length of ‘d’ bytes should
be at least:

d = i+ 2b (8)

where i bytes are required to code Node_IDs for i non-leaf
nodes and 2b bytes are required to code the Node_IDs and
index_numbers of b leaf nodes.
Under the best routing topology and for a data payload

length of ‘d’ bytes, ‘m’ 1-hop downstream neighbours and
‘b’ branches:
• A maximum of h0_RPM hops can be coded with the
RPM method, where:

h0_RPM = d − 2b+ 1 = i+ 1 (9)

FIGURE 5. Best routing topology for zero redundancy.

As ‘2b’ bytes are reserved to code the Node_IDs and
index_numbers for leaf nodes along ‘b’ branches, so
the remaining bytes can represent non-leaf nodes along
‘d - 2b’ hops. 1 is added to ‘d - 2b’ hops to include the
hop for the leaf node along the longest branch.

• As no redundant nodes are present in NT_Data_RPM,
therefore the number of redundant nodes r0_RPM in
NT_Data_RPM is given as:

r0_RPM = 0 (10)

• With no redundant nodes in NT_Data_RPM, a maxi-
mum of n0_RPM nodes can be coded with the RPM
method, where:

n0_RPM = d − b = i+ b (11)

As ‘b’ bytes are used to code the index_numbers for leaf
nodes along ‘b’ branches, so the remaining ‘d - b’ bytes
can be used to code the Node_IDs.

• With no redundant nodes in NT_Data_RPM, redun-
dancy R0_RPM in NT_Data_RPM is calculated as:

R0_RPM =
r0_RPM
n0_RPM

∗ 100 = 0 (12)

Comparing equations 6 and 9, RPM performs better than
the PM method when:

h0_RPM > h_PM
d − 2b+ 1 > 3

b >
d − 2
2

(13)

When b is equal to d−2
2 , both RPM and PM can code the same

number of maximum hops (i.e. 3) in the topology data. When
b is greater than d−2

2 , the RPM method can only code the
topology data if all the b branches terminate at hop 1.
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FIGURE 6. Comparing RPM against FM and PM under best routing topology.

Comparing equations 5 and 11, RPM performs better than
the FM method when:

n0_RPM > n_FM

d − b >
d
2

b >
d
2

(14)

When b is equal to d
2 , both RPM and FM can code the same

number of maximum nodes in the topology data. When b is
greater than d

2 , it is no longer possible to code the topology
data using the RPM method with ‘d’ bytes.

Fig. 6 compares h0_RPM against h_PM and n0_RPM
against n_FM at zero redundancy (i.e. R0_RPM) for data
payload lengths of 20, 40, 60, 80, 100 and 120 bytes respec-
tively. Based on the results, on average, RPM gives a 92%
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better performance than the PM method and a 96% better
performance than the FM method under the best routing
topology.

FIGURE 7. Worst routing topology for maximum possible redundancy.

2) WORST ROUTING TOPOLOGY
Fig. 7 shows the worst routing topology for a HWSN that
would generate maximum possible redundancy with the
RPM method. The network consists of i + b nodes, where
C1, C2, ..., Ci are the non-leaf nodes and L1, L2, ..., Lb are
the leaf nodes along b branches. All the non-leaf nodes are
along one branch till hop i. This branch connects leaf nodes
L1, L2, ..., Lb present at hop i+1 to theBS . To codeNode_IDs
and index_numbers in this routing topology, data payload
length of ‘d’ bytes should be at least:

d = ib+ 2b (15)

where ib bytes are required to code Node_IDs for i non-leaf
nodes b times (one time for each branch) and 2b bytes are
required to code the Node_IDs and index_numbers of b leaf
nodes.

Under the worst routing topology and for a data payload
length of ‘d’ bytes, ‘m’ 1-hop downstream neighbours and
‘b’ branches:
• A maximum of hmax_RPM hops can be coded with the
RPM method, where:

hmax_RPM =
d − 2b
b
+ 1

=
ib+ 2b− 2b

b
+ 1 = i+ 1 (16)

As ‘2b’ bytes are reserved to code the Node_IDs and
index_numbers for leaf nodes along ‘b’ branches and
each non-leaf Node_ID is added b times in the topol-
ogy data, so the remaining bytes can represent non-leaf

nodes along d−2b
b hops. 1 is added to d−2b

b hops to
include the hop for the leaf nodes.

• A maximum of rmax_RPM redundant nodes can be
present in NT_Data_RPM, where:

rmax_RPM = (hmax_RPM− 1) ∗ (b− 1)

= i ∗ (b− 1) (17)

Here 1 is subtracted from hmax_RPM to exclude the last
hop i + 1 that contains leaf nodes. For the remaining
i hops, a redundancy of b − 1 is generated at each
hop as each non-leaf Node_ID is added b times in
NT_Data_RPM.

• With rmax_RPM redundant nodes in NT_Data_RPM,
a maximum of nmax_RPM nodes can be coded with the
RPM method, where:

nmax_RPM = n0_RPM− rmax_RPM

= (d − b)− i ∗ (b− 1) = i+ b (18)

Here rmax_RPM is subtracted from n0_RPM to get the
number of unique Node_IDs present in NT_Data_RPM.

• With rmax_RPM redundant nodes in NT_Data_RPM,
maximum possible redundancy Rmax_RPM in
NT_Data_RPM is calculated as:

Rmax_RPM =
rmax_RPM
n0_RPM

∗ 100 (19)

Comparing equations 6 and 16, RPM performs better than
the PM method when:

hmax_RPM > h_PM
d − 2b
b
+ 1 > 3

d
b
− 1 > 3

d
b

> 4

b >
d
4

(20)

When b is equal to d
4 , both RPM and PM can code the same

number of maximum hops (i.e. 3) in the topology data. When
b is greater than d

4 , the RPM method can only code the
topology data if all the b branches terminate either at hop 1
or hop 2.

Comparing equations 5 and 18, RPM performs better than
the FM method when:

nmax_RPM > n_FM

(d − b)− i ∗ (b− 1) >
d
2

(21)

which is possible, when:

i <
d − 2b
b

b <
d

i+ 2
(22)
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FIGURE 8. Comparing RPM against FM and PM under worst routing topology.

When b is equal to d
i+2 , both RPM and FM can code the

same number of maximum nodes in the topology data. When
b is greater than d

i+2 , it is no longer possible to code the
topology data using the RPM method with ‘d’ bytes.

Fig. 8 compares hmax_RPM against h_PM and nmax_RPM
against n_FM for maximum possible redundancy
(i.e. Rmax_RPM) for data payload lengths of 20, 40, 60,
80, 100 and 120 bytes respectively. Based on the results, on

average, RPM gives a 40% better performance than the PM
method and a 35% better performance than the FM method
under the worst routing topology.

To evaluate the RPM method, we have designed an
Aggregation based Topology Learning (ATL) protocol using
this method. In the remaining part of this paper, we dis-
cuss the design, implementation and evaluation of the
ATL protocol.
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IV. ATL DESIGN PRELIMINARIES
This section describes the design preliminaries for the ATL
protocol, i.e. the notation, assumptions and design require-
ments used for the protocol design.

A. NOTATIONS
The notations used in the description of the ATL protocol are
summarised in Table 1.

TABLE 1. Notations used in protocol.

B. ASSUMPTIONS
The following assumptions are used in the design of the ATL
protocol:
(A1) There is only one BS in the network and there are no

energy and memory constraints on the BS .
(A2) The nodes in the network are organized in a tree

structure where each node is connected to exactly one
1-hop upstream neighbour (i.e. its parent) at any given
time. However each node may have any number of
1-hop downstream neighbours (i.e. its child nodes).

(A3) For simplicity, trees or subtrees are collectively called
trees, and the head of a tree is referred to as tree-head.

(A4) The parent and child relationships are already estab-
lished prior to the execution of the ATL protocol.

(A5) Each node knows its hop count from the BS .
(A6) The clocks of all nodes are synchronised with the BS .
(A7) The ATL protocol collects topology data in uniform

length z intervals.
(A8) A tree-head collects and processes NT_Data_RPM

from each of its child nodes independent of the other
child nodes during the z interval, i.e. a message car-
rying NT_Data_RPM is processed at the tree-head as
soon as it is received.

(A9) A tree-head forms its own NT_Data_RPM at the com-
pletion of the z interval.

(A10) The ATL protocol does not deal with data integrity
issues in the network.

C. DESIGN REQUIREMENTS
Three requirements have been specified for the design of the
ATL protocol, and these are:
(R1) Completeness: The routing topology learnt should con-

tain all the active nodes in the network.
(R2) Correctness: The routing topology learnt should cor-

rectly capture the topological connections among the

nodes in the network. The routing topology learnt
should also correctly identify the high-energy consum-
ing nodes, that are likely to create energy holes, in the
network.

(R3) Energy Costs: The energy cost incurred in learning the
routing topology should be as low as possible.

V. THE ATL PROTOCOL
This section gives an overview of the ATL protocol and
describes the detailed design of the protocol including the
messages and the algorithms that it uses.

A. PROTOCOL OVERVIEW
The ATL protocol uses the pull-based data collection method,
whereby topology data collections are periodically initiated
by the BS through issuing a query message once every z
interval [28].

The working of the ATL protocol, based on the four
functional blocks (discussed later in Section V-B), can be
described in two phases: (i) query construction and transmis-
sion, and (ii) topology learning, topology data aggregation
and query response transmission.

In the first phase, the BS constructs and broadcasts a query
message QBS to its 1-hop downstream neighbours (e.g. A).
A, in turn, forwards QBS further in the network to its 1-hop
downstream neighbours. This process continues in the same
manner till QBS reaches the L nodes.
In the second phase, starting at the L nodes, each node

packs the topology data into a query response message QRL
and sends it to its 1-hop upstream neighbour (e.g.A). A learns
the topology of the tree headed by itself based on the topology
data carried in the received QRL messages, generates new
topology data for this tree (which involves the aggregation
of its own topology data with those received), packs the new
topology data into QRA and sends it to a 1-hop upstream
neighbour. The process continues at each hop until the BS
receives QRmessages from its 1-hop downstream neighbours
and learns the routing topology.

Based on the topology data carried in the QR messages
and the data structure depicted in Fig. 3, the BS learns the
downstream routing topology. Fig. 9 illustrates the two phases
and the operations involved in these phases.

B. PROTOCOL IN DETAIL
The ATL protocol consists of four functional blocks, i.e.
Query Construction and Transmission, Query Response
Construction and Transmission, Topology Learning and
Topology Data Aggregation. The messages and algorithms
corresponding to the four building blocks are explained as
follows:

1) QUERY CONSTRUCTION AND TRANSMISSION (QUERY
MESSAGE FORMAT)
To learn the routing topology of a HWSN, the BS constructs
a query message QBS at the start of a z interval, to solicit
topology data (i.e. NT_Data_RPM) from each sensor node
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FIGURE 9. Sketch of ATL protocol.

in the network. QBS has the following structure:

QBS = Node_IDBS ,TDHop,TDNetwork
where TDNetwork = h ∗ TDHop (23)

TDNetwork is the time by which the BS expects responses,
in the form of topology data, from its 1-hop downstream
neighbours. This marks the completion of the z interval.
Once constructed, QBS is broadcasted by the BS to its

1-hop downstream neighbours. When a 1-hop downstream
neighbour Y receives QBS , it immediately forwards the query
to its 1-hop downstream neighbours. Y also starts a timeout
upon the transmission of a QBS . Timeout at Y, denoted as
TOY , is given as:

TOY = TDNetwork − {hY ∗ TDHop} (24)

TOY sets the time at which Y sends its response, in the form
of its topology data, to the BS .

2) QUERY RESPONSE CONSTRUCTION AND TRANSMISSION
(QUERY RESPONSE MESSAGE FORMAT)
To respond to the query message QBS , each node in the
network constructs a query response message ‘QR’. For a
node Y, QR is denoted as QRY and contains its topology
data, i.e. NT_Data_RPMY . NT_Data_RPMY contains Y’s
own topology data aggregated with the topology data from its
1-hop downstream neighbours, received before the expiry of
TOY . When TOY expires, Y sends QRY to its 1-hop upstream
neighbour.

The structure of the QR message is defined in Fig. 3 and
the respective fields are already explained in Section III-C.

3) TOPOLOGY LEARNING (TOPOLOGY LEARNING (TL)
ALGORITHM)
The topology learning process at a tree-head is the process of
identifying the topological positions of Node_IDs, contained

in the QR messages received from its 1-hop downstream
neighbours. To do so, each tree-head (including the BS) uses
the Topology Learning (TL) algorithm. For a tree-head Y, the
input to the TL algorithm is NT_Data_RPMX , contained in
QRX , received from a 1-hop downstream neighbour X. The
output of the TL algorithm is a routing topology produced for
the tree headed by Y.

Upon the receipt of QRX , the tree-headYfirst identifies the
Node_ID at the first position in BEF-IDX (i.e. Node_IDX )
as a 1-hop downstream neighbour. It then examines the
index_numbers in LNP-EFX . This determines the number of
branches present in BEF-IDX . Y then separates the branches
in BEF-IDX using the index_numbers in LNP-EFX . For each
such branch, Y determines the hop positions for each node,
where the first Node_ID in the branch is a 2-hop downstream
neighbour, the secondNode_ID is a 3-hop downstream neigh-
bour and so on till the last Node_ID in the branch.

The pseudo code for the TL algorithm at a tree-head Y is
provided in Algorithm 1.

Under assumption (A8), a tree-head Y processes the
NT_Data_RPM from each of its 1-hop downstream neigh-
bours independently. This means that as soon as Y gets
QRX from a 1-hop downstream neighbour X, it processes
NT_Data_RPMX to learn the routing topology conveyed
by X.

It is important to mention that there may be message
corruptions or losses in the network. As queries are sent
periodically at every z interval, the message corruptions or
losses are not expected to affect the topology learning in the
network.

4) TOPOLOGY DATA AGGREGATION (TOPOLOGY DATA
AGGREGATION (TDA) ALGORITHM)
The topology data aggregation process is used by each node
to aggregate its own topology data with the topology data
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Algorithm 1 Topology Learning (TL) Algorithm
%Topology Learning at a Tree-head Y%

Input: NT_Data_RPMX = {BEF-IDX , LNP-EFX}
Output: Identification of Topological Positions of Nodes in
BEF-IDX

1. Identify 1-hop downstream neighbour.
BEF-IDX [0] is a 1-hop downstream neighbour.

2. Identify the number of branches b in BEF-IDX .
b = Total index_numbers in LNP-EFX

3. i← 1

4. For each b:
4.1. j← 2
while i ≤ LNP-EFX [b] do

4.2.1. BEF-IDX [i] is a j-hop downstream neighbour.
4.2.2. i = i + 1
4.2.3. j = j + 1

end while

received from its downstream neighbours while it constructs
an outgoing QR. To do so, each node uses the Topology Data
Aggregation (TDA) algorithm. For a node Y, the input to
the TDA algorithm is NT_Data_RPMX , contained in QRX ,
received from a 1-hop downstream neighbour X. The output
of the TDA algorithm is the aggregated topology data pro-
duced by Y, i.e. NT_Data_RPMY .

Upon the receipt of QRX , the node Y first identifies the
number of branches in BEF-IDX . For each such branch,
it adds BEF-IDX [0] as the first Node_ID and then adds the
Node_IDs from the branch into BEF-IDY . Y also determines
the index_number for the last Node_ID for each branch in
BEF-IDY and puts this index_number in LNP-EFY .
The pseudo code for the TDA algorithm at a node Y is

provided in Algorithm 2.
It is important to understand the working of the TDA

algorithm if a node Y has no downstream neighbours. If Y
receives no QR messages by the time when TOY expires,
it produces NT_Data_RPM that contains just Node_IDY in
BEF-IDY and a 0 value in LNP-EFY , i.e. NT_Data_RPMY =
{Node_IDY , {}}, {0}.
At the expiry of TOY , the node Y sends QRY , containing

NT_Data_RPMY , to its 1-hop upstream neighbour. This con-
tains aggregated topology data for Y and all its 1-hop down-
stream neighbours, from which topology data was received
before the expiry of TOY .

VI. EXPERIMENTAL EVALUATION
This section reports the experiments carried out to assess
the completeness, correctness and energy costs of the ATL
protocol. It first describes the environment under which the

Algorithm 2 Topology Data Aggregation (TDA) Algorithm
%Topology Data Aggregation at a Node Y%

Input: NT_Data_RPMX = {BEF-IDX , LNP-EFX}
Output: NT_Data_RPMY = {BEF-IDY , LNP-EFY }

1. Identify the number of branches b in BEF-IDX .
b = Total index_numbers in LNP-EFX

2. i← 1

3. For each b:
3.1. BEF-IDY = {BEF-IDY } ‖ {BEF-IDX [0]}
while i ≤ LNP-EFX [b] do

3.2.1. BEF-IDY = {BEF-IDY } ‖ {BEF-IDX [i]}
3.2.2. i = i + 1

end while
3.3. Add index_number i-1 to LNP-EFY

experiments were carried out and then discusses the experi-
mental results and findings.

FIGURE 10. Network layout on flocklab test bed.

A. EXPERIMENT ENVIRONMENT AND SETUP
We have used the Flocklab wireless sensor network test
bed [29] to evaluate the ATL protocol. The test bed consists
of 31 nodes, out of which 27 nodes are deployed indoors and
4 nodes are deployed outdoors. Fig. 10 shows the layout of
the test bed. This layout is generated by using the connectivity
map provided on Flocklab website [30]. Based on this layout
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and with node 1 as the head of the tree (i.e. BS), the test bed
has a topology of a hierarchical tree with 4 hops.

The ATL protocol is implemented on TinyOS [26] using
NesC [31], a programming language used to build WSN
applications on TinyOS platform. BothQBS andQRmessages
are routed using CTP (Collection Tree Protocol) [32]. The
data payload length of QBS is fixed at 3 bytes. For the data
payload length of QR, two lengths, i.e. 27 bytes and 42 bytes,
have been selected to investigate the impact of data payload
length on completeness, correctness and energy costs of ATL.

The time for each experiment run is fixed at 1200 seconds.
Initially, each experiment was run for a time ranging between
600 to 3600 seconds, where 600 seconds is the default
duration set in FlockLab XML test configuration file and
3600 seconds is the maximum duration supported by the
Flocklab test bed. Fig. 11 shows the percentage of partici-
pating nodes versus different run time for the experiments.
Since the percentage of participating nodes remains the same
after 1200 seconds, so 1200 seconds is chosen as the time
for each experiment run. These 1200 seconds are divided
into 240 intervals of 5 seconds each and each node has the
tendency to generate 240 QR messages during an experiment
run. 16 experiments are carried out so each result plotted in
the graphs is the average of 3840 results.

FIGURE 11. Percentage of participating nodes.

The parameter values used in the experiments are sum-
marised in Table 2.

TABLE 2. Experiment Settings

B. RESULTS AND DISCUSSIONS
As the energy consumed by a node is largely dependent on
its communication load, we have considered two factors in
the evaluation of the ATL protocol. These two factors are:
data payload length and number of messages received and
transmitted by a node. To investigate the impact of these
two factors on the ATL protocol, we have considered four
scenarios in our experiments:

• Scenario 1 (S1): data payload length is 27 bytes and all
the nodes in the network receive and transmit uniform
number of messages.

• Scenario 2 (S2): data payload length is 27 bytes and
different nodes in the network receive and transmit non-
uniform number of messages.

• Scenario 3 (S3): data payload length is 42 bytes and all
the nodes in the network receive and transmit uniform
number of messages.

• Scenario 4 (S4): data payload length is 42 bytes and
different nodes in the network receive and transmit non-
uniform number of messages.

For S1 and S3, we excluded node 3 while running the
experiments. This is because, from the connectivity map
provided on the Flocklab website [30], it was observed that
20 of the 30 nodes are within the communication radius of
node 3. If node 3 is included in the network, it will bear
much higher communication load than other nodes in the
network, violating our assumption used in carrying out the
experiments. For S3 and S4, we increased the data payload
length for QR messages. The reason for this was that, when
working with S1 and S2, it was noticed that topology data for
some nodes was not reported to the BS , even when it was
present in the QR messages of the nodes in the lower hops.
Increasing the data payload length for a QR message allows
BS to receive topology data from all the nodes in the network.

In the following sections, we evaluate the ATL pro-
tocol against the three design requirements mentioned
in Section IV-C. We first give the detailed results for S1 from
this evaluation. We then compare the results for all the four
scenarios and present our findings.

1) S1: SMALL DATA PAYLOAD LENGTH AND UNIFORM
NUMBER OF MESSAGE EXCHANGES ACROSS
THE NETWORK
The results of the protocol run for S1 are as follows:

(i) Completeness:TheBS gets data from 26 nodes, which
represents 89.66% of the network for a total of 29 nodes
in the network.

(ii) Correctness: Fig. 12 shows the learnt routing topology
at the BS on the Flocklab test bed. From Fig. 12,
we see that the BS has five 1-hop downstream neigh-
bours (nodes 2, 4, 8, 15, 33), four 2-hop downstream
neighbours (nodes 6, 16, 31, 32), ten 3-hop down-
stream neighbours (nodes 10, 18, 20, 22, 25, 26, 27,
28, 200, 202) and seven 4-hop downstream neighbours
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FIGURE 12. Learnt routing topology in S1.

(nodes 7, 11, 13, 14, 17, 19, 24). Comparing this with
the real network layout shown in Fig. 10, we can
see that the test bed actually forms a 5-hop network
instead of a 4-hop network. 12 nodes are identified as
being present in the same hop as originally perceived.
This represents 41.38% of the topological connections
among the nodes. 14 nodes are identified as being
present in a lower hop than originally perceived. That
is, nodes 10, 20, 22, 25, 26, 27, 28 are identified as
being in hop 3 instead of hop 2, and nodes 7, 11, 13,
14, 17, 19, 24 are identified as being in hop 4 instead
of hop 3. This represents 48.28% of the topological
connections among the nodes. The remaining 3 nodes
(nodes 23, 201, 204) are not identified at all, which
accounts for 10.34% of the network.
Based on the routing topology learnt in Fig. 12, we have
identified two classes of high energy-consuming nodes,
likely to create energy holes, in the network. The first
class contains nodes {6, 16, 31} and these are the nodes
with a large number of 1-hop downstream neighbours.
The second class contains nodes {7, 11, 13, 14, 17, 19}
and these are the nodes that connect to different
1-hop upstream neighbours (i.e. nodes {10, 20, 23, 24,
25, 26}) at different times. In the following section,
we verify if these nodes are actually the high energy-
consuming nodes in the network.

(iii) Energy Costs: To investigate the energy costs imposed
on each node, for computation and communication
of NT_Data_RPM, we have used the power profil-
ing service in FlockLab. Fig. 13 shows the energy

FIGURE 13. Node-wise energy consumption in S1.

FIGURE 14. Hop-wise energy consumption in S1.

consumption by each node in the test bed. The average
energy consumption is measured to be 2.80 mA and the
energy consumption for different nodes varies between
0.64 mA to 4.77 mA.
To further investigate the variations in energy consump-
tion per node, we put the nodes into four groups based
on their hop counts (as determined in Fig. 12) and plot
their energy consumption in Fig. 14. From the results
shown in the figure, it can be seen that the nodes that
consume the lowest level of energy are the nodes in the
hop-1 group, i.e. nodes 2, 4, 8, 15, 33. As these nodes
receive QR messages from just one or two nodes in the
hop-2 group, these nodes receive, process and transmit
the fewest QR messages in the network. On contrary,
the energy consumed by the nodes in the hop-2 group,
i.e. nodes 6, 16, 31, 32 is the highest compared to the
nodes in the other groups. As these nodes receive QR
messages from the nodes in the hop-3 group, which
contains the highest number of nodes in the network,
these nodes receive, process and transmit the most QR
messages in the network. The energy consumed by
nodes in the hop-3 group, i.e. nodes 10, 18, 20, 22,
25, 26, 27, 28, 200, 202 is lower than that by the
nodes in the hop-2 group. This result is also within
our expectation as there are fewer nodes in the hop-4
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FIGURE 15. Branch-wise energy consumption in S1.

group than there were in the hop-3 group. The energy
consumed by nodes in the hop-4 group, i.e. nodes 7,
11, 13, 14, 17, 19, 24 is also lower than that by the
nodes in the hop-2 group but higher than the nodes
in the hop-3 group. We further investigated the high
energy consumption by these nodes and examined the
topology data communicated for these nodes. From
the topology data, we found that these nodes connect
to different nodes in hop-3 group at different times,
e.g. node 14 connected to node 25 at one time, while
at another time it connected to node 26 instead. This
behaviour indicates a routing inconsistency and CTP
allows a node to resolve routing inconsistencies by
broadcasting routing beacons [32]. A similar behaviour
is observed for all the nodes in hop-4 group and the
broadcast of routing beacons explains the high energy
consumption by the nodes in the hop-4 group. It is
interesting to note that all of these nodes are confined
to the top-right region and are farthest from the BS ,
as shown in Fig. 10. For future reference, we call the
group of nodes in the top-right region (i.e. nodes 7, 11,
13, 14, 17, 19) as the Energy_Drain_1 group and the
nodes within their broadcast range (i.e. nodes 10, 20,
23, 24, 25, 26) as the Energy_Drain_2 group.
To verify the observations made above, we have plotted
nodes’ energy consumptions based on tree branches
terminating at different hops in Fig. 15.We have identi-
fied 15 branches in the network and classified them into

four different groups based on the hops at which these
branches terminate. There are 2 branches terminating
at hop-1, 1 branch terminating at hop-2, 5 branches ter-
minating at hop-3 and 7 branches terminating at hop-4.
From the figure, we canmake two observations. Firstly,
branches in the same group (i.e. terminating at the
same hop) have a similar level of energy consumption.
Secondly, branches in different groups consume differ-
ent levels of energy, and the differences are consistent
and obvious. On average, each hop increases energy
consumption by 3.92 mA in a branch.
To verify if the high energy-consuming nodes have
been correctly identified by the ATL protocol, we plot
the nodes’ energy consumptions on a normal distri-
bution in Fig. 16. There are 14 nodes (excluding the
outdoor node 200) with energy consumptions greater
than the average energy consumption and out of these
14 nodes, 12 nodes have been identified by the ATL
protocol, thus providing an accuracy of 85.71%.
To further assess the cost incurred by topology learning
using the ATL protocol, we conducted another set of
experiments to assess the energy consumption by each
node when the topology learning feature is enabled
versus when the topology learning feature is disabled.
The results are shown in Fig. 17. From the results, it can
be seen that the energy consumption in the two cases
are at a similar level, averaging at 2.80mA and 2.99mA
respectively. The results indicate that when the
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FIGURE 16. Normal distribution of node-wise energy consumption in S1.

FIGURE 17. Energy consumption per node when topology learning is
enabled vs when it is disabled.

topology learning feature is enabled, the extra energy
cost incurred is negligible, so we can say that the topol-
ogy learning method implemented in the ATL protocol
is energy-efficient.
As demonstrated in Sections III-C, the performance
of the RPM method greatly depends on the routing
topology and the redundancy introduced by it in the
topology data.We nowmeasure the redundancy present
in the QR messages, carrying the topology data, that
are received at the BS . We call a byte carrying a redun-
dant Node_ID as a redundant byte. Table 3 shows the
number of redundant bytes present in the QR messages
received at the BS . From the table, it can be seen that
for a total of 52 used bytes, there are 12 redundant
bytes, representing 23.1% of the used bytes. However,
the data payload length of a QR message is 27 bytes,
which means that there are 12 redundant bytes for a
total of 135 bytes, representing 8.9% of the total bytes.

2) COMPARISON BETWEEN THE FOUR SCENARIOS
Table 4 summaries the results collected for all the four
scenarios. From these results, we can make the following
observations:

TABLE 3. Redundant Node_IDs in QR Messages

(i) Completeness: The routing topology learnt in S3 and
S4 contains all the active nodes in the network, while
the routing topology learnt in S1 contains 26 of the 29
active nodes and the routing topology learnt in S2 only
contains 20 of the 30 active nodes. Due to the small data
payload length of the QR message, topology data from
some nodes can not be added in the QR message of the
upstream neighbours. This affects a larger number of
nodes in S2 as compared to S1, as a lot of nodes are
dependent on node 3 in S2.

(ii) Correctness: The closest match to the real network
layout, shown in Fig. 10, is observed only in S4 where
86.67% nodes are identified as being present in the
same hop as originally perceived. With respect to the
identification of high energy-consuming nodes, S1 per-
forms the best where 85.71% of the high energy-
consuming nodes are correctly identified by ATL. It is
important to state that in both S3 and S4, due to
increased data payload length, 27 nodes have energy
consumption higher than the average energy consump-
tion. To calculate correctness in both these scenar-
ios, we have considered very high energy-consuming
nodes, which constitute 5 nodes in S3 and 13 nodes in
S4 respectively.

(iii) Energy Costs: Fig. 18 shows the energy consump-
tion by each node in the test bed in the four scenar-
ios. The two dotted straight lines in each figure indi-
cate the average energy consumption in the respective
scenarios.
In all four scenarios, the hop-1 group contains almost
the same number of nodes. However, the energy con-
sumption in the hop-1 group is much higher in S3
and S4 as compared to S1 and S2, due to large data
payload length of QR message in S3 and S4. A large
number of nodes are present in the hop-2 group in S2
and S4 as compared to S1 and S3. As 20 of the 30
nodes in the test bed are within the communication
radius of node 3, more nodes communicate directly
with node 3 and appear in the hop-2 group. The energy
consumption in the hop-2 group in S1, S3 and S4 is high
as compared to the other groups. This is because this
group receives and processes QR messages from the
hop-3 group, which has the largest number of nodes.
The energy consumption in the hop-2 group in S2 is
comparatively low as there are only seven nodes in
its hop-3 group. The energy consumption in the hop-3
group in S1 is a bit lower as compared to S2, S3 and S4.
This is because no nodes from the Energy_Drain_1
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TABLE 4. Comparing the Four Scenarios

group are present in S1’s hop-3 group, whereas two,
two and five nodes from the Energy_Drain_1 group are
present in the hop-3 groups in S2, S3 and S4 respec-
tively. A small number of nodes are present in the hop-4
group in S2 and S4 as compared to S1 and S3, and
their energy consumption is also lower as compared
to S1 and S3. This is because only one node from the
Energy_Drain_1 group is present in their respective
hop-4 groups, whereas six and four nodes from the
Energy_Drain_1 group are present in the hop-4 groups
in S1 and S3 respectively.

For all the four scenarios, branches in different groups
consume different levels of energy, and the differ-
ences are consistent and obvious. On average, each
hop increases energy consumption by 3.87 mA in a
branch. In all four groups, the energy consumption
levels in S3 and S4 are noticeably higher than the
energy consumption levels observed in S1 and S2. The
energy consumption in S1 and S2 is almost at the same
level in the first two groups. This is because S2 has
no branches containing node 3 in the first two groups.
In the third group, energy consumption level in S2

VOLUME 5, 2017 21415



A. Naureen et al.: Identifying Energy Holes in Randomly Deployed HWSNs

FIGURE 18. Comparing node-wise energy consumption in S1 - S4.

is still lower than that in S1, despite the inclusion of
node 3 in one of its branches. This is because all the
branches in S1 include either node 6 or node 16, and
as discussed in Section VI-B.1, these nodes have high
energy consumption levels. In the last group, energy
consumption level in S2 is higher than that in S1,
as the only branch in S2 includes node 3 and only
two of the seven branches in S1 include node 6 and
node 16. The energy consumption level in S4 is higher
than S3 in the first three groups but lower in the last
group. This is because in S4, more nodes communi-
cate directly with node 3 and generate more branches
in the first three groups. In the last group, energy
consumption level in S4 is lower than that of S3, as
there is only one branch in S4 as compared to five
branches in S3.
Finally, S2 and S4 have a lower number of redundant
bytes as compared to S1 and S3. This is because in
S2 and S4, more nodes communicate directly with
node 3 and appear in lower hops, thus reducing
the number of redundant Node_IDs carried in the
QR messages.

3) FINDINGS
The findings from our experiments are summarised as
follows:
• By using the ATL protocol, high energy-consuming
nodes, i.e. nodes that more likely create energy holes in
a HWSN, can be identified.

• The energy consumed by a node is largely dependent
on its communication load (i.e. the length and num-
ber of messages received and transmitted by the node).
In other words, the energy consumed by a node is low
when it receives and transmits only a few messages with
a small data payload length and high when it receives
and transmits many messages with a large data payload
length.

• The energy consumed by a node is also dependent on the
routing conditions in the network. In other words, the
energy consumed by a node is low when it consistently
connects to the same node throughout the network oper-
ation and is high when it connects to different nodes at
different times.

• The routing topology learnt using the ATL protocol is
dependent on the communication load imposed on each
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node in the network. With a small data payload length,
the routing topology learnt may be incomplete. This
incompleteness is more noticeable if different nodes in
the network also receive and transmit non-uniform num-
ber of messages. With a large data payload length, the
routing topology learnt is likely to be complete for both
uniform and non-uniform number of messages received
and transmitted by different nodes in the network.

• The number of nodes appearing in each hop is also
dependent on the communication load imposed on each
node in the network. With a small data payload length
and uniform number of message exchanges throughout
the network, more nodes are likely to appear in higher
hops, i.e. towards leaf end of the network. On the other
hand, with a large data payload length and non-uniform
number of message exchanges throughout the network,
more nodes are likely to appear in lower hops, i.e.
towards the BS .

• The energy cost introduced at each node by the topology
learning capability, facilitated by the ATL protocol, is
negligible when this capability is implemented as an
integral part of a sensed data collection and aggregation
process.

VII. CONCLUSION
This paper has presented the design and evaluation of a novel
ATL protocol for randomly deployed HWSNs. The protocol
is designed for tree-structured WSNs and aims to identify
energy holes in such a network by collecting and aggregating
topology data from the nodes in the network, while keeping
the energy costs to a minimum. This is achieved by proposing
and investigating three topology coding methods, i.e. FM,
PM and RPMmethods. By carrying out a theoretical analysis
of the three topology coding methods, the RPM method
has been found to carry maximum amount of topology data
among the three methods and is therefore used in the ATL
protocol. Performance evaluations of the ATL protocol have
been conducted on a real-world WSN test bed to evaluate
its completeness, correctness, and energy costs under four
different scenarios. The results of the four scenarios have
also been compared for node-wise, hop-wise and branch-
wise energy consumption. Based on the evaluation results,
we have identified two classes of high energy-consuming
nodes in the test bed: (1) nodes that have a large number of
1-hop downstream neighbours, and (2) nodes that connect to
different 1-hop upstream neighbours at different times. Using
the received topology data, the BS can identify nodes falling
in these two classes. Furthermore, the energy cost of the ATL
protocol is at a negligible level. Thismeans that using theATL
protocol, the high energy-consuming nodes that are likely to
create energy holes in a randomly deployed HWSN can be
identified in a cost-efficient manner. An important consider-
ation with the ATL protocol, however, is setting the optimum
data payload length for the messages carrying the topology
data; it should be small enough to minimize the energy costs
and large enough to carry the complete routing topology.

In our future work, we will study how to set this optimum
data payload length.
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