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ABSTRACT The development of automated approaches employing computational methods using data from
publicly available drugs datasets for the prediction of drug side effects has been proposed. This paper presents
the use of a hybrid machine learning approach to construct side effect classifiers using an appropriate set of
data features. The presented approach utilizes the perspective of data analytics to investigate the effect of
drug distribution in the feature space, categorize side effects into several intervals, adopt suitable strategies
for each interval, and construct data models accordingly. To verify the applicability of the presented method
in side effect prediction, a series of experiments were conducted. The results showed that this approach was
able to take into account the characteristics of different types of side effects, thereby achieve better predictive
performance. Moreover, different feature selection schemes were coupled with the modeling methods to
examine the corresponding effects. In addition, analyses were performed to investigate the task difficulty in
terms of data distance and similarity. Examples of visualized networks of associations between drugs and
side effects are also discussed to further evaluate the results.

INDEX TERMS Drug side effect, data analytics, machine learning, predictive modeling, feature selection.

I. INTRODUCTION
Drug side effects (SEs) are a major cause of failure dur-
ing drug development. Adverse side effects of medication
can affect the quality of life among patients. Every year,
many Food and Drug Administration (FDA) approved drugs
are recalled because of their side effects, particularly when
side effects are unexpected but discovered to be major con-
cerns [1]. This process of post-market drug withdrawal is
costly. Therefore, the ability to evaluate the potential side
effects of drugs as early as possible is imperative during the
drug design and development processes. The results of these
evaluations can be used as guidance in the effort to reduce
side effects and provide safe therapies in the clinical setting.
The assessment of potential SEs can be implemented dur-
ing different stages of the drug development cycle, including
the early stages of drug design, different phases of clinical
trials, and post-marketing surveillance. Traditionally, preclin-
ical in vitro safety pharmacology profiling has been used to
predict side effects by testing compounds using biochemical
and cellular assays. However, the experimental detection of
SEs using extensive in vitro profiling remains challenging,

mainly due to the cost and efficiency required [2], [3]. Post-
market surveillance especially relies upon the spontaneous
reports provided by physicians and patients through the
Adverse Events Reporting system of the FDA, and it usually
takes time to accumulate these reports in the form of a formal
record [4], [5]. To address the problems associated with the
cost and efficiency of SE detection during the drug discovery
process, in silico approaches have been proposed to predict
SEs by developing computational methods to assess the avail-
able large public datasets of drugs at both the preclinical and
post-market stages (e.g., [6]-[8]).

When investigating drug-SE relationships, drugs can be
regarded as molecules that introduce perturbations to a bio-
logical system consisting of various molecular interactions.
These interactions include protein-protein interactions and
metabolic and signal transduction pathways [9], [10]. The
interactions of a drug with its targets may produce the
anticipated therapeutic effects; however, off-target interac-
tions may also occur and cause previously unexpected side
effects. These comprehensive interactions are often difficult
to predict, because both SEs and therapeutic effects occur
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are the result of the emergence of complex relationships
between a drug and a biological system. Existing studies
of SE prediction have focused on using the chemical struc-
tures or molecular pathways of the drugs for prediction or
explaining side effects based on known drug targets and their
pathways. Some SEs can be understood through analyzing
the biological properties of their modulated targets, whereas
others are better explained by considering only the chemical
properties of the drug compound. Low affinity binding to
proteins that are not usually considered drug targets and not
normally associated with drug responses may also lead to
side effects [11], [12]. Moreover, the complex effects of the
inhibition of multiple targets often cannot be predicted based
on a simple drug interaction profile [13], [14]. These studies
suggest that no definitive methodology has been developed
thus far to evaluate drug SEs, and the separation of biological
and chemical factors often leads to incomplete models that are
unable to provide a unified view of SEs [2], [15]. Therefore,
different drug features have to be considered simultaneously
in the prediction of side effects.

To predict side effects using computational methods, two
major issues have to be addressed: the information used to
characterize the drugs and the computational techniques used
for making the prediction. Regarding the drug-related infor-
mation, chemical and biological features are the two types
of data that have been most frequently used in the relevant
studies described above. Methods are developed based on the
selected drug features to investigate the correlations between
drug features and SEs. During the application of chemi-
cal structure-based approaches, drug side effects are usually
evaluated in association with their chemical structures. For
example, Scheiber et al. [16] performed a global analysis to
identify the chemical substructures associated with known
side effects. Yamanishi er al. [17] proposed a method to
predict pharmacological and side effect data using chem-
ical structures; however, their approach cannot be applied
to predict high-dimensional side effect profiles. To achieve
this goal, Pauwels et al. [9] developed a sparse canonical
correlation analysis method to predict the high-dimensional
side effect profiles of drug molecules based on their chemi-
cal structures. However, it may be difficult to select appro-
priate sparsity parameters and an appropriate number of
components.

Approaches that consider biological information often use
protein-target as features. The principle underlying these
approaches is the idea that drugs with similar in vitro protein-
binding profiles tend to exhibit similar side effects [18],
as reported previously [10], [19]. Some methods have been
developed to determine the association between drug SEs and
perturbed biological pathways because these pathways shared
the proteins that the drugs targeted. For example, Xie et al.
developed a chemical systems biology approach to identify
the off-targets of drugs. Then, the drug-protein interaction
pair with the best score was mapped to the known biologi-
cal pathways to identify the potential off-target binding net-
works of a drug [12]. However, these methods rely upon the
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availability of gene-expression data gathered during the
chemical perturbations produced by the drugs. The perfor-
mance of these methods depends heavily on the availability
of data regarding the three-dimensional structures of pro-
teins and the known biological pathways. These requirements
therefore limit the applicability of these approaches in small-
scale studies.

In addition to the aforementioned chemical and biological
drug information, phenotypic information (e.g., indication)
has been shown to be useful in drug-related studies, even
though it was not often considered. Liu et al. [3] investigated
the use of phenotypic information, together with chemical
and biological properties, in SEs prediction. They also com-
prehensively evaluated different combinations of features
to see how each feature set contributed to the prediction
accuracy. The results showed that approaches involving the
integration of chemical, biological, and phenotypic proper-
ties outperformed methods using only individual informa-
tion. Wang et al. also conducted an experimental study,
which showed that therapeutic indications are the information
source most useful in the prediction of drug side effects [20].

In the prediction of side effects, the most relevant com-
putational methods are those that employ machine learning
techniques to build classifiers based on known drug-side
effect associations. These methods have often been applied
to determining the associations between different drug fea-
tures, such as chemical structures, protein targets, molec-
ular pathways, and phenotypic information. For example,
Pauwels et al. used chemical structures as features and then
applied popular machine-learning methods (including the
k-nearest neighbor, the support vector machine, the ordi-
nary canonical correlation analysis, and the sparse canoni-
cal correlation analysis) to train models for prediction [9].
Mizutani et al. combined chemical structures and target pro-
teins as features, and adopted the sparse canonical correlation
method to build prediction models [21], [22]. Additionally,
Liu et al. [3] integrated a wide variety drug-related informa-
tion as features and then used machine-learning techniques to
train classifiers (including the logistic regression, the naive
Bayes, the k-nearest neighbor, the random forests and the
support vector machine), and causality analysis was used to
determine the molecular predictors of adverse drug reactions
in [23].

In addition, some researchers have attempted to predict
potential side effects based on the known side effects. For
example, Cheng et al. [24] plotted drugs, side effect terms
and the known side effects on a bipartite graph. The authors
used the known side effects as initial resources and applied
a network inference method based on resource allocation to
infer potential side effects. Additionally, in the most recent
work by Zhang et al., the authors mapped approved drugs,
side effect terms and drug-side effect associations to users,
items, and user-to-item ratings and incorporated the derived
drug predictions into recommendation tasks [25]. They pre-
sented two recommendation methods for predicting side
effects, an extended neighborhood-based method (INBM)
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and a revised Boltzmann machine-based method (RBMBM).
Extensive surveys of computational methods on side effect
predictions can be found in [2] and [26].

Drawing on data-enriched web databases, this work
attempts to develop a hybrid machine learning approach
to construct side effect classifiers with an appropriate set
of data features via the integration of different types of
online knowledge resources. To investigate the effect of data
(i.e., drug) distribution in the feature space, we categorized
side effects into several types depending on the distribu-
tion of data in different classes and then adopted suitable
strategies to build data models accordingly. To verify the
presented approach, a series of experiments were conducted.
The results showed that the presented approach could apply
a data analytics perspective to the consideration of the char-
acteristics of different types of side effects, thereby leading
to better predictive performance. Different feature selections
schemes were also evaluated to examine their effects. The
use of in silico side effect prediction based on various drug
features provides a prospective area of drug research that may
facilitate the improvement of drug safety during and after
clinical trials. In addition, examples of visualized networks of
associations between drugs and side effects are also analyzed
and discussed to further inspect the quantitative experimental
results. These results confirm the feasibility and effectiveness
of the approach developed herein.

Il. MATERIALS AND METHODS

As mentioned above, the increasing number of drug side
effects in the pharmaceutical industry indicates the need
to determine the contributing factors underlying drug side
effects and to develop automated methods to predict side
effects. Recent studies have shown that SEs are most fre-
quently caused by interactions between drugs and off-target
proteins, and in silico approaches have thus focused on
exploiting drug-target profiles to estimate the probability
of clinical SEs. However, it is also known that some side
effects occur as a consequence of non-specific interactions
between drugs and reactive metabolites or enhanced cellular
production of reactive oxygen or nitrogen species [27]. These
reactions may be triggered by well-defined chemical features.
In addition, though it is generally true that molecules with
similar structure may exhibit similar biological activity, it is
also known that small modifications of active compounds
can improve (or decrease) their potency and these active
compounds may be distinguished from inactive compounds
by the presence of small chemical differences.

The aforementioned factors reveal the importance of using
data mining or machine learning methods to explore these
integrated effects. Drug, target and disease spaces may be
evaluated in association to study the effect of drugs on dif-
ferent spaces. Therefore, we considered and evaluated mul-
tiple drug features to represent each drug data as a feature
vector and adopted different data mining or machine learning
methods to infer associations between drugs and side effects.
From both perspectives of data science and medical science,
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the drug SE prediction is a challenge. The main focus of this
work is to take the viewpoint of data analytics to develop
a more effective approach to enhance the overall prediction
performance. This computational method/model can be used
to analyze chosen diseases with specific knowledge resources
and clinical experiences [28]. The linkages between clinical
drugs and meaningful side effects for a target disease can
be further investigated, and then special attention can be
paid to controlling and dosing of the drug in the clinical
trials. For example, individual studies have been performed
for neurological diseases emphasizing on Alzheimer [15],
and cutaneous diseases on psoriasis [29]. Details of the data
features and the predictive methods used are described in the
following subsections.

A. DATA REPRESENTATION

In this work, three types of drug information were used to
describe drugs from the chemical and biological perspectives,
including their chemical substructures, associated proteins,
and indications. According to their corresponding functions,
the proteins were further categorized into four different types:
target, enzyme, transporter, and carrier proteins. That is,
there were six types of data features used to describe the
drugs. Though pathways may also serve as useful biolog-
ical features, they were not included in the binary vector
representation defined here for prediction, as their inclusion
would involve utilizing drug perturbed gene expression pro-
files, thereby limiting the large-scale applicability of the pre-
diction model. The overall data representation is illustrated
in Fig. 1.

(o~ cus p\r = Pa::- il T Vl”‘ = p:.:- Pi =~ Poss i~ 8= Sm):j
Iy A A
| C —

| PubChem | | UniProt | ‘ ND-FRT ‘ ‘ SIDER |
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FIGURE 1. Representation of drug data, in which n; to ng are the
numbers of different types of features, and m is the number of side
effects considered.

To retrieve chemical information regarding the
substructures of the drugs, we used the popular public drug
information database, DrugBank ([30]), to collect data on
FDA-approved small-molecule drugs (with PubChem Com-
pound ID) and map them to PubChem ([31]). Here, we used
SIMES (Simplified Molecular Input Line Entry Specifica-
tion) to translate information regarding the substructures of
the drugs. The substructures were defined based on segment
rules (obtained using the chemical toolbox, Open Babel) and
converted to PF2 format (that uses integers 0 to 1020 to
encode different substructures). In this way, the chemical sub-
structures defined in PubChem could be encoded as binary
features (i.e., c1 ~ ¢, in Fig. 1) as follows: the entry was 1 if
the corresponding PubChem substructure is present in the
drug; otherwise the entry was 0.
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We also retrieved protein data for each drug, which were
collected from DrugBank (with UniProt ID). The proteins
were mapped to UniProt Knowledgebase [32], which is the
knowledgebase includes the most comprehensive and com-
plete information for proteins. Similar to the aforementioned
binary feature representation used for chemical substruc-
tures, proteins (target, enzyme, transporter, and carrier) were
encoded as binary features for each drug (p', p¢, p", p°
in Fig. 1, respectively) to indicate the presence or absence
of the corresponding proteins.

The third type of data we collected was regarding the
therapeutic indications for the drugs. These indications were
obtained by mapping the drug names from DrugBank to
the treatment relationships between drugs and diseases.
These relationships were extracted from the National Drug
File-Reference Terminology, part of the Unified Medical
Language System (UMLS) [33]. Again, the retrieved indi-
cations were encoded as binary features for each drug
(i.e., i1 ~ ine in Fig. 1), with each feature indicating the pres-
ence or absence of the corresponding therapeutic indication.

In addition to organizing the aforementioned informa-
tion, we extracted data on side effect (keywords) from the
SIDER database ([34]), which contains information about
medicines in market and their associated adverse drug
reactions. SIDER uses STITCH compound identifiers to
represent drugs (http://stitch.embl.de/cgi/show_download_
page.pl), which can be mapped into PubChem compound
identifiers to ensure consistency with other drug relevant
data. Each side effect was regarded as a binary target class
(i.e., with a label of positive or negative) to indicate and
individually predict its occurrence in association with the data
for each drug.

B. CLASSIFICATION METHODS FOR SIDE

EFFECT PREDICTION

Using the aforementioned data representation, we regarded
the drug side effect prediction task as a binary classification
problem in the predictive modeling phase. That is, a binary
classifier was built in the training phase for each side effect
of the drugs (with or without causing this specific side
effect), and the classifier was then used in the testing phase
to predict the occurrence of side effects in association with
new drugs. For every classifier, the input was drug related
information (features), as described in the above section,
and the output indicated the occurrence of the side effect of
consideration. In this study, three representative data mod-
eling methods were adopted and applied to the collected
data, due to their computational efficiency. These approaches
included a statistical-based algorithm, (i.e., Bayesian classi-
fier), a distance-based algorithm, (i.e., k-nearest neighbor),
and an ensemble learning algorithm (i.e., random forest).
These methods have been most frequently used to compare
the performance of prediction models in different experimen-
tal situations, and their results were analyzed and discussed.
Though the SVM is also a popular data classification method,
it was not adopted for use in this study because the existing
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literature has shown that compared to other methods, the pre-
diction performance of the SVM is not robust and is
side effect dependent [9]. This method is also inefficient
(i.e., time-consuming) for classification cases that include a
large number of data features.

The first method, the Bayesian classifier, is a probabilistic
model where a classification is generated to relate a latent
variable probabilistically to the observed variables (i.e., side
effects). The classification then becomes an inference in the
probabilistic model to predict class membership probabilities
(e.g., the probability a data vector belonging to a particular
class). The second method, the nearest neighbor method, gen-
erates predictions for a drug based on the conclusions (often,
the voting results) of its nearest neighbors. Therefore, in the
application of this approach, the measurement of similarity
between data instances (i.e., drugs) is most important. In this
method, the Euclidean distance is used as a measure of simi-
larity. The third method, random forest, is a type of ensemble
machine learning algorithm called Bootstrap Aggregation (or
bagging). The main principle behind this type of method is
that a group of weak classifiers (decision trees) can be used
together to form a classifier with better performance. It com-
bines predictions from multiple models in ensembles and
has been found to perform better if the predictions from the
sub-models are uncorrelated or, at most, weakly correlated.
The details of the aforementioned classification methods are
described in [35]. These approaches were adopted to per-
form side effect prediction, and the development of a hybrid
approach for performance enhancement is presented in the
next subsection.

Though the machine learning procedure is an efficient
and convenient method to construct data models based on
known data instances that are subsequently used to pre-
dict unknown data, to ensure the success of this approach,
the problem of class imbalance must be overcome [36], [37].
Class imbalance means that in a classification task, when the
numbers of data instances within each class are quite differ-
ent, the classification performance of the standard classifier
may be damaged. Class imbalance is a crucial problem in
the machine learning community since data are often dis-
tributed unequally in real world applications. Corresponding
to a classification task, in this study, the input was a set of
drug features and the output indicated the classes of side
effects (i.e., positive or negative for drugs with or without
side effect, respectively). For a specific side effect, the num-
ber of FDA-approved drugs associated with this side effect
is often smaller than that of those that are not associated,
which means that the data instances for a specific side effect
may distribute unequally in different classes of data, and
consequently, the models cannot be successfully learned.
An additional data balancing procedure was thus required to
conciliate this problem.

C. A DELIBERATE METHOD FOR SIDE EFFECT PREDICTION
Taking into account both predictive performance of the
approach and the realistic data distribution, we divided all
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side effects into three intervals and applied different predic-
tion strategies based on the number of drugs causing each
side effect. Fig. 2 illustrates these situations. The first cat-
egory included side effects currently known to be caused
by a relatively small number of drugs. The prediction of
a side effect in this category for a specific (new) drug d
was determined based on the average distance (dissimilarity)
between this drug and the two classes of its nearest neighbors
(i.e., drugs with and without this side effect). That is, the near-
est neighbors of drug d were first selected, and the two
average distances d), and d,, (between drug d and the selected
drugs with and without the side effect of consideration,
respectively) were calculated. If the neighbors belonged to the
same class, a default maximum value (representing infinite)
was assigned as the average distance for the missing class.
Then, the two distances, d, and d,, were compared, and
the shorter distance was used to determine the classification
result (i.e., with or without this side effect). The rationale for
using this strategy was that side effects belonging to this inter-
val are caused by a small number of drugs, and the two classes
of drugs with and without SEs were likely to be seriously
imbalanced. Neither over-sampling nor under-sampling tech-
niques could be used to effectively solve this problem. Thus,
a simple, reasonable and workable distance-comparison strat-
egy was adopted, and the experimental results confirmed its
feasibility.

lowest ratio highest ratio

Modeling with
data balancing

Modeling without

Distance-based i
data balancing

e interval 1 »le interval 2 - | interval 3 &

num of drug

side effect (sorted by the number of drugs causing it)

FIGURE 2. Ratio of the two classes of drug data (without over with) for
each side effect (colors indicate intervals).

In contrast, for side effects included in the second and
the third intervals, classification models were built. For side
effects in the second category, the aforementioned data bal-
ancing strategy was used because while the number of side
effect-causing drugs reached a certain level of representative-
ness, the two classes of data were not yet balanced. No further
data processing was needed for the side effects included in the
third category since the two classes contained approximately
the same number of data records.

D. FEATURE SELECTION

With the above four types of features, a feature selection
scheme can be performed to choose a subset of the original
features to maximize the performance of a model-learning
algorithm. In this way, the dimension of feature vectors can be
reduced, and which often can reduce overfitting and the com-
putational effort in learning a model (classifier). In this study,
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three popular features selection methods were applied to
the original data, including univariate selection (chi-squared
and Pearson correlation coefficient), feature importance, and
principal component analysis. They were used to eliminate
irrelevant and redundant attributes. Each feature selection
method has its specific characteristics. Univariate selection
performs statistical test for non-negative features to select k
of the best features. Principal component analysis uses linear
algebra to transform the dataset into a compressed form.
Feature importance adopts bagged decision trees, such as
random forest and extra trees to estimate the importance of
features. More details on the above three algorithms can be
found in [17], and the evaluation results are presented in the
experimental section.

E. SIMILARITY MEASURES OF THE DRUGS

In addition to the descriptions of the data modeling and
prediction methods, this section briefly describes how data
similarity was calculated. Two types of measurement meth-
ods were developed to quantitatively evaluate the similarity of
drug-pairs. The first method applied was to directly measure
this distance (dissimilarity) using a binary representation,
as previously described. This type of similarity was used in
the data modeling procedure and result analysis (the k-nearest
neighbor method) due to its succinctness and simplicity. The
other method applied was to separately measure the similar-
ities of different types of features with their corresponding
domain-dependent strategies (from chemical to biological
perspectives) and then aggregate the results. This type of sim-
ilarity was not used in the data modeling procedure because
it involves additional calculations and feature weighting.
Rather, it was only used in the experimental section of the
result analysis to provide an alternative perspective regarding
the distribution of data.

In the first measurement method, a valid distance mea-
sure should be symmetric and have an obtainable minimum
value (usually zero) to obtain the distance between two drugs
represented by binary feature vectors. The distance between
two data instances can be calculated using the Minkowski
distance, and the most commonly used value of order in this
distance formula is 2 (Euclidean distance). The Euclidean
distance measure was applied during the performance of
drug-drug dissimilarity calculations. As indicated in previous
studies, using chemical features and biological features alone
is not enough to derive the relationships between drugs and
side effects; thus, we took all drug features into account. That
is, for any two drugs, dy, dy, represented as binary feature
vectors, the similarity between them was calculated using the
following equation:

distance (dy, dy) = \/Zzl:] |dx,k - dy,k| (D

Here, dy i, dy i represent the drug features and m is the total
number of drug features described above.

In contrast, in the second type of measurement, the sim-
ilarity between any two drugs was obtained by individually
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calculating the similarity between each type of feature con-
sidered (see below) and then summing them with weight-
ing factors. The first type of critical features indicated that
the presence of a chemical substructure that could be used
alone to calculate the similarity between two drugs. To mea-
sure the similarity in terms of their chemical substructures,
we retrieved the chemical information for these drugs and
translated the information into substructures, as described in
Section IL.A. In this method, each drug (d) could be repre-
sented as a set of integers (4(d)) indicating which substruc-
tures it included. Then, the similarity of two drugs, d, and d,
could be determined using the following equation:

_ |h(dy) N h(dy)|
|h(dy) U h(dy)|

in which |h(d,) N h(dy)| is the number of substructures
contained in both d, and d,; and |h(dy) U h(dy)| represents
the total number of different substructures included in the
two drugs.

The second type of critical drug feature included was
protein, and the proteins related to each drug were retrieved
from the DrugBank database. As indicated above, the drug-
related proteins were categorized into the following four
types according to their roles and functions in the therapeutic
mechanism: target, enzyme, transporter, and carrier. To calcu-
late the similarity between two drugs, dy, dy, in terms of the
relevant proteins required the measurement of the similarity
of the gene sequences of the proteins, which was achieved
using the equation below:

(@)

Simchem(dx dy)

Simprotein (dx, dv)
1 [P(dy)

|P(dy)]
P [P(dy)] i1 Doy &(Pido), Pidy)

3

In the above equation, the protein could be any one of the
four types of proteins mentioned; P(dy) and P(dy) were the
sets of proteins related to dy and dy, respectively, |P(dy)| and
|P(dy)| were the numbers of proteins in the corresponding
sets; and the function g represented the similarity of the gene
sequences included in the two proteins specified (i.e., Pi(dy)
and Pj(dy)). In this study, we calculated the Smith-Waterman
Sequence Alignment Score (a dynamic programming method
through which the longest common subsequence for two
sequences is identified to obtain an alignment score, the
details of which are described in [38]). The aforementioned
measurement process was applied to all the four types of
proteins (target, enzyme, transporter, and carrier) to obtain
a similarity value for each type of protein (i.e., Simyqrger,
Simenzymea Simtmnsportera Simearrier)-

The third type of critical drug features included was the
therapeutic indication. As described in Section II.A, the indi-
cations constituted a list of therapeutic relationships between
drugs and diseases. Therefore, the binary distance measure-
ment described in equation (1) could be directly used to
calculate the indication similarity between two drugs.
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The fourth type of feature included was the biological
pathway. Though the pathway information was not encoded
in the drug representation for the prediction task, this fea-
ture provided an alternative way to measure task difficulty
and was used for the experimental analysis described in a
later section. We thus describe how the pathway similarity
is calculated here. Pathway information was obtained from
the SMPDB (The Small Molecule Pathway Database, [39]).
To measure the similarity between two drugs, d, and d,
we first retrieved and compared the pathways involved in d,
and dy. Given the two sets of pathways path(d,) and path(d,)
for d, and d,, respectively, the Jaccard similarity equation
was used to calculate the pathway similarity of d, and d,,
as described below:

|path(d,) N path(dy)|
|path(dy) U path(dy)|

After separately calculating the aforementioned similarity
measures, we integrated the effects of all critical factors
to determine the overall drug similarity. Here, the linear
combination (i.e., weighted sum) of all factors was adopted,
as described below:

Sima (dx, dv) = ZieF

Here, in equation (5), F was the set of factors considered
as mentioned above, which included {chem, target, enzyme,
transporter, carrier, path}, and the weights of these factors
were determined by applying a preliminary test procedure to
each dataset.

Simpath (dx, dy) = “4)

w; X Simi(dx, dy) (5)

IIl. EVALUATIONS AND RESULTS
A. DATASETS
To evaluate the performance of our proposed drug side
effect prediction approach, four datasets were collected and
used. The first (called dataset-A) included the FDA-approved
small-molecule drugs obtained from DrugBank, with the
chemical substructures defined in PubChem and correspond-
ing drug side effects retrieved from SIDER. This dataset was
used in the first series of experiments, which included the per-
formance of extensive trials to verify the proposed approach,
and then in-depth analyses were performed to assess the
proposed approach from different perspectives. Before con-
ducting the experiments, we briefly analyzed the dataset used
for the first series of experiments (i.e., dataset-A), which
included 1002 different drugs and 3903 side effects, and a
total of 7257 features were used to characterize the drugs.
To observe the distribution of drug data over side
effects (and vice versa), we provided an overview of dataset-
A by plotting the number of side effects caused by each
drug (sorted in decreasing order), which are described
in Fig. 3(a), and the number of drugs causing each side effect,
which are illustrated in Fig. 3 (b). We observed that 4.49% of
drugs had less than 10 (inclusively) side effects; 55.29% of
drugs had between 10 and 100 different side effects; 39.32%
of drugs had between 100 and 500 side effects; and 0.9% of
drugs had more than 500 side effects. Additionally,
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FIGURE 3. Distribution of drugs and side effects included in dataset-A.

Fig. 3(b) shows that 0.64% of side effects had a high
rate of occurrence (occurring in association with more than
500 drugs); 6.87% of side effects occurred in association
with 100-500 drugs; 22.85% of all side effects occurred in
association with 10-100 drugs; and 69.64% of side effects
occurred in association with less than 10 drugs. These figures,
which illustrate the characteristics of dataset-A, were used to
determine the data intervals using the previously presented
hybrid approach.

The other three datasets included the Pauwels’s dataset [9],
Mizutani’s dataset [21] and Liu’s dataset [3]. These datasets
were selected because they are popular and publicly available,
and thus adopted in the second series of experiments for fur-
ther performance evaluation and comparison. The aforemen-
tioned three datasets (i.e., Pauwels’s, Mizutani’s and Liu’s
datasets) used have 888, 658, 832 drugs and 1385, 1339,
1385 side effects, respectively. Details of these datasets are
described in the original studies [3], [9], [21].

B. PERFORMANCE METRICS

In the experiments, we employed several criteria that are
frequently used in binary classification to evaluate the
utility of the different methods in the prediction of side
effect. We first measured the true positive (TP), false posi-
tive (FP), true negative (TN), and false negative (FN) rates
and then use them to calculate various performance metrics.
The first performance metric was accuracy, defined as the
proportion of correctly predicted instances relative to all pre-
dicted instances. The second performance metric was preci-
sion, defined as the proportion of retrieved instances that were
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relevant. The third performance metric was recall, defined
as the proportion of relevant instances that were retrieved.
Although often in conflicting in nature, the measures of
precision and recall are both important in evaluating the
performance of a prediction approach. Therefore, these two
measures can be combined with equal weights to obtain a
single metric, the F-measure. The four previously described
performance evaluation metrics were defined using the fol-
lowing equations:

TP + TN
accuracy = (6)
TP 4+ TN + FP + FN
... TP @
precision = —z T FP
TP
recall = ——— 3
TP + FN
precision X recall
F — measure = 2 x O]

precision + recall

In addition, the area under the ROC (Receiver Operat-
ing Characteristic) curve (called AUC) was calculated to
evaluate the predictive performance. AUC score has now
been widely used as a classification performance measure
in biomedical informatics. The ROC curve is obtained by
plotting the true positive rate (y-axis) against false positive
rate (x-axis) at different discrimination threshold values for
prediction score. Then, using the generated curve, results may
be positive (above the curve) or negative (below the curve).
After calculating the aforementioned performance metrics for
each side effect classifier, we summarized the performance
across all of the considered side effects. The measures over
all SEs (non-SE were excluded) classifiers were averaged to
obtain an overall score, which is reported in the following
sections.

TABLE 1. Results of different classifiers.

Dataset Method accuracy precision  recall F AUC
NB 0.919 0.377 0.431 0.402  0.700
k-NN 0.930 0.615 0.235 0.340  0.745

Dataset-A
RF 0.951 0.710 0.304 0426  0.894
Three intervals 0.952 0.711 0.714 0.713  0.987

C. EVALUATIONS OF SIDE EFFECT PREDICTION

At the first stage of evaluation, we adopted three popular
computationally efficient methods, Bayes, k-NN, and RF,
and applied them to the integrated dataset (i.e., Dataset-A)
to examine the performance of the approach using the com-
bined features for side effect prediction. The 10-fold cross
validation method was used to perform a more objective
assessment. Table 1 summarizes the results in terms of the
five performance metrics in classification, including accu-
racy, precision, recall, F-measures and AUCs. Notably that
the results reported here were averaged over all SE classifiers
only (not including non-SE classifiers that usually gave high
values in a dataset dominated by non-SE data); therefore
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TABLE 2. Comparison of the performance of the proposed method with those of other approaches for the three available datasets.

Dataset Method accuracy precision recall F AUC
Pauwels’s method [8] 0.931 0.361 0.517 0.425 0.897

Liu’s method [2] 0.934 0.400 0.643 0.493 0.920

Cheng’s method [22] 0.955 0.547 0.587 0.566 0.922

Pauwels RBMBM [23] 0.958 0.579 0.605 0.592 0.941
INBM [23] 0.961 0.605 0.608 0.607 0.934

Avg. scoring ensemble model [23] 0.962 0.612 0.621 0.616 0.949

Three intervals (this work) 0.916 0.590 0.673 0.629 0.972

Mizutani’s method [19] 0.927 0.387 0.527 0.446 0.890

Liu’s method [2] 0.930 0.418 0.637 0.505 0.918

Cheng’s method [22] 0.951 0.560 0.593 0.576 0.923

Mizutani | RBMBM [23] 0.954 0.581 0.614 0.597 0.939
INBM [23] 0.956 0.605 0.616 0.611 0.932

Avg. scoring ensemble model [23] 0.958 0.619 0.624 0.622 0.946

Three intervals (this work) 0.909 0.522 0.749 0.615 0.970

Liu’s method [2] 0.917 0.341 0.669 0.452 0.907

Cheng’s method [22] 0.954 0.550 0.589 0.569 0.922

Liu RBMBM [23] 0.957 0.581 0.608 0.594 0.941
INBM [23] 0.959 0.606 0.607 0.606 0.934

Avg. scoring ensemble model [23] 0.960 0.611 0.623 0.617 0.948

Three intervals (this work) 0.908 0.554 0.657 0.601 0.976

the performance became relatively low, compared to those
studies aggregating both SE and non-SE classifiers to obtain
the final performance. From this table, we observed that
all the three methods had relative high accuracy but low
precision, recall, and F-measures. These results indicate that
the performance of the classifiers had been overestimated.
This has been a problem in drug side effect prediction, and
required extra effort to tackle [20], [40]. The other problem
was that datasets used for side effect prediction are often
not balanced because they contain few SE-causing drugs and
many non-SE-causing drugs. In the study conducted by [20],
the authors incorporated a sample balancing strategy into
their data modeling method to alleviate this problem. The
results of this study showed that though the situation could
be improved by the application of such a strategy, recall
remained at a low level (with a rate of 0.24-0.52, depending
on the information resources used in the training phase).

To investigate the effect of data balancing, we also con-
ducted a series of trials for a comparison of performance.
Similar to the results reported in relevant studies, the over-
all predictive performance was improved after the training
dataset was balanced by randomly sampling the original data
within certain classes with a smaller number of records (here,
classes of data with side effects). However, it is notable that
the overall performance of the approach may not truly reflect
its real world performance. That is, for side effects caused
by a very small number of drugs (for example, only drug
Ropinirole (DrugBank identifier DB00268) was associated
with a side effect of abdominal adhesions according to the
database), randomly sampling the data from the positive class
resulted in the repetitive duplication of this small set of data.
As a result, the data in the training and testing sets became
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consistent, leading to the identification of an unrealistically
high predictive performance.

As described in Section II.C, we develop a deliberate
and practical interval-based method to predict the drug side
effects associated with each interval using corresponding
strategies. In the aforementioned dataset, side effects were
separated into the following three intervals: those caused
by less than 100 drugs, those caused by 100 to 500 drugs,
and those caused by more than 500 drugs, respectively. The
number of intervals and boundary values depended upon the
dataset used. The values indicated above were simply used
as an example to demonstrate the effect of our proposed
method. The last row in Table 1 shows the prediction results
of the presented method (i.e., three intervals). As shown,
our method appeared to perform better than the standard
approaches, especially regarding the most important perfor-
mance measures, recall and the F-measure. In addition to
the performance issue, our hybrid approach could address
extreme cases of data imbalance (that were not taken into
account in relevant studies) in which side effects are caused
only by very few drugs, as described above. These results
demonstrated the effectiveness and usefulness of our data
analytics method in practice.

To further examine the generalizability of the presented
hybrid method, we applied this method to the prediction
of drug side effects for the three additional datasets men-
tioned in Section III.A. Table 2 summaries the results of
our approach and results obtained using various approaches
proposed in well-known studies, which were used to compare
their performance with that of our method. The results of
the other approaches are extracted directly from the original
studies. These results indicated that, on average, the presented
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feature.

approach demonstrated better results in terms of recall and
the F-measure, the two most important factors in prediction,
while maintaining an accuracy above an appropriate level
of 0.9. These results, again, verified the performance of
the proposed method for predicting side effects in practical
applications.

D. EFFECTS OF FEATURE SELECTION
The second set of experiments was to investigate the effect
of applying feature selection schemes to the original data
for dimension reduction. As mentioned before, in the exper-
iments, three features selection methods were evaluated:
univariate selection (chi-squared and Pearson correlation
coefficient), feature importance, and principal component
analysis. Based on the experimental results shown in the
above section, the random forest method (which gave the best
performance among the original methods) was selected to
work with the feature selection methods for evaluation.
Theoretically speaking, each feature contributes to the
classification process. However, this does not mean that more
features equal better results. To further examine the effect of
different numbers of features selected by the three methods,
we performed a feature profiling trial. Fig. 4 presents the
representative results when the feature selection methods
were applied to the dataset with a largest number of data
features (i.e., Liu’s dataset). Similar results were obtained
for other datasets. The upper part of the figure shows the
F-measure (that concluded both precision and recall together)
under different feature combinations when the number of
selected features increased (indicated in the x-axis). The
lower part of the figure provides the ratio of each type
of features to be selected during the selection of the first
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twenty-five features. These results show that increasing the
number of features enhances the prediction performance.
As shown, in this example the best result (i.e., 0.45) is
obtained when thirty-eight features were selected, which is
better than the result (i.e., 0.41) of using all features. It can
also be seen that there was no obvious improvement when the
number of features selected was increased to a certain extent.
For instance, for each feature selection method, there were
only slight changes when the number of features selected
reached twenty. However, it is notable that the performance
of F-measure declined when more and more features were
selected. Here, a feature selection scheme aims to find the
subset of useful features (variables) and exclude the redun-
dant ones for building a good predictor. From a viewpoint of
machine learning, redundant features often provide no extra
information about the classes and thus are taken as noises
by the predictor. The predictors that use them in the training
phase will have poor generalization and performance.

IV. ANALYSIS AND DISCUSSION

A. MEASURING PREDICTION DIFFICULTY

THROUGH DATA DISTANCE

Notably, in the results presented in the above section,
the recall associated with all of the methods was not as pre-
cise as the accuracy obtained, though the proposed approach
demonstrated enhanced performance. To investigate the rea-
sons for this phenomenon, we further inspected and analyzed
the results of all side effects in detail. After examining the
results, we discovered that certain side effects (those caused
by approximately 50-70 drugs) were more difficult to predict
than others. Using the data balance strategy improved the
classification results for these side effects in all performance
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FIGURE 6. The similarity-based average distance between drugs with and without certain side effects.

metrics, while the success rates remained relatively low com-
pared with those of most of the other side effects in the same
dataset.

Using a data analysis perspective, we considered the afore-
mentioned problem as a data differentiation issue and, thus,
investigated the drug distribution within the data feature space
to measure the task difficulty. For each side effect, we cal-
culated the distance (and similarity) between drugs to deter-
mine how close drugs with and without a given side effect
were in the feature space. The two measurement methods
described in Section II.E were adopted. The first method was
used to compare two types of average distances (one is the
distance between the test drug and drugs with a specific SE;
and the other, the distance between the test drug and drugs
without this SE), during the process by using the k-nearest
neighbor method to generate predictions. The distance was
measured in terms of binary features using equation (1).
Fig. 5 illustrates the results for dataset-A as an example,
in which the x-axis represents the side effects sorted by the
number of drugs causing them, and the y-axis represents
the average distance between the test drug and the already
known drugs. In the figure, P and N represent positive and
negative neighbors (with and without a specific side effect)
of the test drug, respectively. As seen in the figure, for
side effects caused by only a few drugs (shown in Fig. 5
(left)), the two types of average distances were quite different.
This makes the drugs with and without SEs distinguishable,
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suggesting that the distance measures could be used to make
a successful prediction. In contrast, for side effects caused by
a relatively large number of drugs, as shown in Fig. 5 (right),
the two types of average distances were similar. That is,
it became more difficult to distinguish between the two types
of drugs, especially for SEs presented on the right-hand side
of Fig. 5 (right). This innate data characteristic introduced
difficulty in building a successful classifier.

In addition to binary vector-based distance measure-
ment, the second method was used to calculate the aver-
age similarity-based distance between drugs to differentiate
between drugs with and without side effects. The similarity
was determined as the weighted combination of drug features
described in Section IL.E, including substructure, protein,
pathway, and indication (i.e., equation (5)). Without losing
generalizability, the results reported here are based on the
combination of weights determined by the results of a pre-
liminary test. Fig. 6 shows the combined similarity-based
distance. As seen in this figure, the results were very similar
to those illustrated in Fig. 5. That is, if it was difficult to
distinguish between the two types of drugs using their average
distance, it was also difficult to achieve the same task using
their average similarity. The aforementioned analysis clari-
fied the reason why certain side effects were more difficult
to predict than others from a quantitative measurement of
data distance perspective. In other words, it was difficult to
distinguish between the two types of drugs with and without
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these side effects in terms of the numerical features available.
To enhance the performance, additional data features should
be investigated.

B. CORRELATION AND VISUALIZATION

To further investigate the factors contributing to and co-
occurring with drug side effects (i.e., the drug features
directly related to each side effect), we measured the Pearson
correlation coefficient for each drug feature and side effect
pair (as mentioned previously, 7257 features and 3903 side
effects were considered in this study). Based on the cor-
relations derived from the drug features and side effects,
we obtained 2927 direct relationships with a correlation coef-
ficient of 1. Among these associations, 994 (out of 4003) were
target proteins, 109 (out of 226) were enzymes, 8 (out of 24)
were carrier proteins, 15 (out of 881) were substructures and
1744 (out of 2005) were indications. These critical factors
should be taken into consideration in rational drug design.
The results also showed that target proteins and indications
for the drugs were the most important determining factors
when predicting the occurrence of side effects. These results
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are consistent with those of previous studies that performed
extensive experiments to confirm the importance of tar-
gets [41]-[43] and indications [20] in side effect prediction.

We constructed a graph including the side effects and the
six types of drug features as nodes with links represent-
ing strong associations measured, as described above (i.e.,
with a Pearson correlation coefficient of 1). Fig. 7 illustrates
the graph, in which the six types of features are indicated
with different colors. The figure indicates that biological
features were more directly correlated with drug side effects
than were chemical features. We also observed that in this
dataset, the nodes with links connecting to side effects were
mostly targets (proteins), and the nodes for the substructures
were less frequently linked to side effects. In fact, other
studies have shown that drugs with shared targets, or those
close in the interactome network, often share similar side
effects [44], [45]. With the aid of this data visualization, it was
much easier for users to determine the associations between
drugs and side effects.

Two cases were taken from the figure to serve as repre-
sentatives to illustrate the advantages and practicability of
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data visualization, rather than providing detailed case studies
and applications. The first example (marked as case 1 in
the figure, in which a single red node is surrounded by a
group of blue nodes) is the node for the side effect of citrate
toxicity, which had a large number of links connected to target
nodes of drugs, such as citrate synthase, isocitrate dehydro-
genase, and malate dehydrogenase. Citrate engages in the
tricarboxylic acid cycle. It is a series of chemical reactions
used by all aerobic organisms to generate energy through the
oxidation of acetyl-CoA, beginning with the transfer of acetyl
group from acetyl-CoA to oxaloacetate to form citrate. Cit-
rate toxicity is primarily a result of hypocalcemia (decreased
Ca as normal to bound to citrate) and metabolic effects. The
metabolism occurs predominately in the livers and kidneys,
and dysfunctions in these organs tend to cause problems
in citrate clearance therefore become risk factors for citrate
toxicity.

In contrast, the second example is the drug node borte-
zomib (Velcade, formerly PS-341), which causes several side
effects. This anticancer drug is a type of proteasome inhibitor
that is used to treat plasma cell myeloma by inhibiting and
depleting the malignant myeloma cells. However, it often
changes the levels of certain proteins, potentially causing
many side effects (i.e., strongly related to these side effects),
such as radiculitis (peripheral neuropathy), chronic fatigue
syndrome, leukopenia, gastrointestinal symptoms, and cuta-
neous eruption. The associations between this drug and the
side effects it may cause can be observed clearly from
the figure. These figures, which illustrate the associations
between drugs and side effects, provide not only the overall
perspective but also helpful references for users to consult
explanations in detail.

V. CONCLUSION

Given the cost and efficiency required for the prediction of
SEs during the drug discovery process, automated approaches
have been proposed to predict SEs through the application of
computational methods using data from the available large
public datasets of drugs at both the preclinical and post-
market stages. Because simply using chemical or biological
information alone may not be sufficient to capture the interac-
tions and relationships between drugs and proteins, a delib-
erate and effective approach should take into account both
types of features. In this work, we utilized a hybrid machine
learning approach to construct side effect classifiers using
an appropriate set of data features by integrating different
types of online knowledge resources. This approach utilized
the perspective of data analytics to investigate the effect of
drug distribution in the feature space and categorize side
effects into several intervals depending on the distribution of
different classes of data. Then, we adopted suitable strategies
for each interval to build data models accordingly. To verify
the presented method, a series of experiments were conducted
to demonstrate its utility in side effect prediction. The results
showed that the presented approach was able to take into
account the characteristics of different types of side effects,
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thereby leading to better predictive performance. Additional
analyses were performed to investigate task difficulty in terms
of data similarity for each side effect. Moreover, examples of
visualized networks of associations between drugs and side
effects were analyzed and discussed to further evaluate the
quantitative experimental results. These results confirmed the
feasibility and effectiveness of the developed approach.
Overall, the development of computational approaches for
the prediction of SEs based on collective drug features is
a trend that could significantly improve drug safety and
decrease attrition rates in the future. However, the results of
this study indicate that with the drug features currently used,
some side effects were more difficult to predict than others.
This result suggests that some essential targets governing the
occurrence of these side effects must be carefully analyzed,
and additional deterministic features need to be extracted and
defined. These specific features should require resources of
knowledge and reports of clinical trials of a certain disease
domain. We are investigating how to capture the features of
these essential targets to generate even more precise predic-
tions. In addition to the prediction performance, for the near
future we aim to examine the model interpretability, another
issue also important from the perspective of clinicians. All
mean to make the inferred models with their parameters
statistically relevant as well as clinically meaningful. After
coupling with specific resources of target diseases, drugs,
and side effects as mentioned in Section II, relatively simple
models with some intrinsic properties (such as the multiple
regression models and the nearest neighbor models) provide
potentials to support the capabilities of interpretability.
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