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ABSTRACT In the last years, Internet is evolving towards the cloud-computing paradigm complemented by
fog-computing in order to distribute computing, storage, control, networking resources, and services close
to end-user devices as much as possible, while sending heavy jobs to the remote cloud. When fog-computing
nodes cannot be powered by the main electric grid, some environmental-friendly solutions, such as the use
of solar- or wind-based generators could be adopted. Their relatively unpredictable power output makes it
necessary to include an energy storage system in order to provide power, when a peak of work occurs during
periods of low-power generation. An optimized management of such an energy storage system in a green
fog-computing node is necessary in order to improve the system performance, allowing the system to cope
with high job arrival peaks even during low-power generation periods. In this perspective, this paper adopts
reinforcement learning to choose a server activation policy that ensures the minimum job loss probability.
A case study is presented to show how the proposed system works, and an extensive performance analysis
of a fog-computing node highlights the importance of optimizing battery management according to the size
of the Renewable-Energy Generator system and the number of available servers.

INDEX TERMS Fog computing, renewable energy, battery management, reinforcement learning,
Markov model.

I. INTRODUCTION
In the last years, we are assisting to a shifting process of the
Internet towards the cloud-computing paradigm. As reported
in Cisco Cloud Index (2013-2018), while since 2008 most
Internet traffic was originated or terminated in a data center,
in 2016 nearly two-thirds of total workloads in traditional
IT space was processed in the cloud.

However, cloud-only models face serious challenges in
latency, network bandwidth, geographic focus, reliability, and
security [1]. With the goal of addressing this problem, fog
computing emerged in the last years [2] as a new paradigm,
which is not competing but complementary to cloud com-
puting. More specifically, it is a horizontal architecture to
distribute, when necessary, computing, storage, control, and
networking resources and services close to end-user devices
as much as possible, while sending heavy jobs to the remote
cloud [3]–[5].

In the current literature, at the best of our knowledge,
a common assumption is that fog-computing nodes are pow-
ered by energy coming from traditional electrical energy

sources, which is always available whatever the requested
amount of it. In that context, some works, highlighting the
fog node peculiarity concerning the strict constraints on
energy conservation, propose energy-efficient management
schemes [6]–[9]. Other works limit their scope to propose
energy consumption techniques specific for fog computing as
compared with cloud computing [5]. Moreover, fog comput-
ing is combined to smart grids in [10] to provide energy man-
agement, and integrated with microgrids to support energy
saving in IoT scenarios [11].

Nevertheless, in many application scenarios, fog-
computing servers cannot be powered by the main electric
grid, while traditional energy sources (e.g. diesel) involve
environmental concerns. Therefore, the only possible power
supply can be provided by renewable energy sources, e.g.
solar or wind energy based generators. This is the case, for
example, of wide rural and sparsely populated areas where
computation is needed to elaborate data coming from sensors,
cameras and drones covering it for different services [12],
or desert, polar or marine areas to be monitored for

21126
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017

https://orcid.org/0000-0002-7432-8389


S. Conti et al.: Battery Management in a Green Fog-Computing Node

detection of dangerous situations, maintenance of integrity
of production processes in large industrial plants in Industry
4.0 scenarios [13], [14], detection of fires or epidemic at
plantations in smart farms [15], or even of emergency man-
agement scenarios in predictable (e.g., road accident, traffic
jam) or unpredictable (e.g., earthquake, flooding) events [16].

The main problem is that the power produced by
solar or wind generators is time-variable, strongly dependent
on many factors like the area and the weather conditions
where the sources are installed, the characteristics of the
energy generators, and so on. Especially to cope with this ran-
dom behavior of the power output from renewable generators,
Battery Energy Storage Systems (BESS) have gained more
and more importance in many applications of power system
operation andmanagement. In fact, the use of storage systems
typically allows reducing or avoiding the problems caused by
non-dispatchable distributed generators making their power
output more continuous and somehow predictable. This is
extremely important in isolated areas with high renewable
energy penetration [17]. Electrical energy storage enables
optimal power scheduling of renewable energy generators in
both traditional distribution networks as well as in micro-
grids [18], economic benefits in power systems operation
deriving from the optimal combination of generation, storage
and loads [19], relief of congestions in transmission power
systems [20], contribution of renewables to the ancillary mar-
ket services [21], and so on.

Another intrinsic time-variant process in a fog-computing
system is the process of job arrivals, generated by
sources (e.g. sensors, cameras) that can be installed on either
fixed (e.g. poles) or mobile positions (e.g., drones) [22].
Its behavior strongly depends on the applicative scenario,
the kind of data and the way they are delivered to the fog
servers (for example, in the case of drones, the arrival pro-
cess may depend on the time-variant position of each drone
transmitting data).

During periods when the arrivals exceed the number of
servers or the power provided by renewable generator is not
sufficient to supply all the needed servers, some jobs can be
enqueued, or they are lost if the job queue saturates.

In order to face the variability of power availability, and
avoid job queue saturation during periods of high job arrival
rates, it is necessary to include a BESS. It can be recharged
when the power provided by the generator exceeds the one
needed to supply the servers. Nevertheless, management of
the whole system, specifically the number of servers to be
maintained active along the time, constitutes a challenging
task to be optimally performed by a System Controller.

The target of this paper is to design a fog-computing node
supplied by a renewable energy generator, where the SC opti-
mally manages the BESS to minimize job loss probability.
To this aim, aMarkov-based analytical model of the system is
integrated with a reinforcement learning process to optimize
the server activation policy.

The paper is structured as follows. Section II describes
the system, focusing on the renewable-energy based

FIGURE 1. Reference System.

generator, the energy storage and the fog-computing data cen-
ter components of the entire fog-computing node. Section III
introduces two mathematical elements that play a key role in
designing the system, that is, the switched batch Bernoulli
process (SBBP) and the Reinforcement Learning (RL) pro-
cess. Section IV illustrates the systemmodel, while Section V
mathematically derives the main performance parameters.
Section VI applies the proposed system management tech-
nique to a case study and derives some numerical results.
Finally, Section VII draws some conclusions.

II. SYSTEM DESCRIPTION
The fog-computing node considered in this paper, whose
architecture is sketched in Fig. 1, is made by three main parts:
a Fog Computing Data-Center (FCDC), a Renewable-Energy
Generator (RG) system, in the following assumed to be a
wind generator without losing in generality, and a Battery
Energy Storage System (BESS). The system is assumed to
be off-grid, that is, it always works in autonomous mode of
operation because it is not connected to the main power grid.
Consequently, the BESS target is to cope time-variations of
both the RG power output and the number of servers needed
to provide computing facilities to arriving jobs.

The FCDC, constituted by NS servers, has the objective
of processing jobs that arrive according to a time-variant
process whose statistics are known. Jobs that do not find an
active server are enqueued in the job queue, in order to be
processed later. Let us indicate the maximum queue size,
that is, the maximum number of jobs that the job queue
can contain, as QMAX . If the queue is full and there is no
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sufficient power to supply an adequate number of servers to
decrease the queue length when it is full, arriving jobs are
rejected.

The behavior of the whole system is coordinated by a
System Controller (SC), whose main target is to minimize the
probability of job loss due to rejection for queue overflow.
This task is performed by deciding how many servers in
the FCDC maintaining active by means of the BESS when
the RG power output is not sufficient. To this purpose, the
SC takes into account the number of jobswaiting in the queue,
the current state of the RG, the BESS state of charge (SOC)
and the arrival process. This policy, as explained in the sequel,
is optimized by means of a RL approach.

We assume that the SC performs its decisions periodically
at each 1T seconds. Accordingly, in the following we will
characterize the whole system with discrete-time processes.
The time variable, n, represents the current time slot, whose
duration is equal to 1T seconds.

Let us indicate the nominal power absorbed by each server
as PServer . Therefore, the maximum load at the input of the
FCDC at the generic slot n depends on both the maximum
number of servers that can be activated, and the current
number, S(Q)(n), of jobs in the queue:

P(MAX )Load (n) = PServer ·min
{
NS , S(Q)(n)

}
(1)

When the BESS is in charging state, the RG Con-
troller/Charge Regulator (RCCR) block protects the BESS
from overcharging, overload and overvoltage, besides man-
aging the changes of the input voltage. On the other hand,
when the BESS is in discharging state, the RCCR avoids
‘‘deep discharging’’ and adopts discharging strategies aim-
ing at increasing battery life. The Inverter adapts the output
voltage and frequency to the load requirements.

In order to evaluate the effective power and energy avail-
able to the FCDC system, it is necessary to take into account
the efficiencies of the power system components. More
specifically, αI is the inverter efficiency, while αC is the
battery charge/discharge efficiency, whose typical values are,
respectively, αI = 0.95 and αC = 0.9. Another coefficient to
be considered is the power factor of the FCDC, αL , assumed
to be equal to 0.9.

The main effect of the presence of the inverter efficiency
and the FCDC power factor is that a portion of the power
generated by the RG, or supplied by the BESS, is unusable
by the FCDC. Such a wasted power at the generic slot nwhen
the power absorbed by the FCDC is PLoad (n), is given by:

P(FCDC)WST (n) = (1− αI αL)PLoad (n) (2)

Consequently, in order to supply the maximum FCDC load
at the generic slot n, it is necessary that the power system
provides the following power:

P(MAX )PS,OUT (n) =
P(MAX )Load (n)

αIαL
(3)

When the RG power output, S(RG)(n), is able to supply the
maximum load, that is:

S(RG)(n) ≥ P(MAX )PS,OUT (n) (4)

the BESS contribution is not required. Moreover, in this case,
if the BESS is not completely charged, the RG will charge
it with a power that depends on the BESS nominal power,
P(B)Nom, assumed as the maximum power that can enter the
BESS in one time slot, the current SOC, S(SOC)(n), expressed
in terms of amount of energy in the BESS at the beginning
of the slot n, and the residual power generated by the RG and
not used by the load:

PBCh(n) = min

{
P(B)Nom,

(
BMAX − S(SOC)(n)

)/
1T ,

S(RG)(n)− P(MAX )PS,OUT (n)

}
(5)

where BMAX is the maximum amount of energy that the
BESS can store.

By assuming a simple linear charge/discharge behavior of
the BESS, and defining δB as the number of slots needed
to fully charge the BESS at nominal power P(B)Nom when it is
completely empty, the term BMAX is given by:

BMAX = (δB ·1T ) · P
(B)
Nom (6)

During BESS charging periods, the SOC is modified as
follows:

S(SOC)(n+ 1) = S(SOC)(n)+ PBCh(n)1T (7)

The amount of power generated by the RG that exceeds the
power necessary to supply the maximum FCDC load and
recharge the BESS is delivered to the dump load and lost in
order to avoid RG damages. The corresponding wasted power
at the slot n is given by:

P(B)WST (n) = S(RG)(n)− P(MAX )PS,OUT (n)− PBCh(n) (8)

On the contrary, if the power generated by the RG is not
sufficient to supply the maximum FCDC load at time slot n,
i.e. if the condition (4) is not satisfied, additional servers
that cannot be directly supplied by the RG could be supplied
thanks to the BESS. In this case, the BESS is in discharging
state, and the maximum power that it can provide in this
condition is given by:

P(MAX )BDech (n) = min

{
P(B)Nom, αCS

(SOC)(n)
/
1T ,

P(MAX )PS,OUT (n)− S
(RG)(n)

}
(9)

Therefore, taking into account the charge/discharge effi-
ciency of the BESS, the SOC during a discharging slot is
modified as follows:

S(SOC)(n+ 1) = S(SOC)(n)−
PBDech(n)
αC

1T (10)

where PBDech(n) is the BESS power output set by the SC at
the slot n. In other words, according to the power that the
BESS can supply, P(MAX )BDech (n), the SC decides the number of
additional servers to be activated to serve jobs that are waiting
for service in the job queue. This is done through a policy
that ensures the minimum job loss probability by a long-time
point of view, as described later.
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III. MATHEMATICAL PRELIMINARIES
In this section, we introduce two key elements needed
to model the system described so far, that is, the SBBP
model (Section III.A) and the reinforcement learning
approach (Section III.B).

A. SBBP MODEL
A SBBP [23] is the most general Markov modulated process
in the discrete-time domain. It is able to model a time-variant
stochastic process whose behavior, described by a probability
density function (pdf), is modulated by an underlyingMarkov
chain. In this paper, we apply it to the job arrival process,
representing the number of arrivals that occur in one slot.

According to the SBBP model definition in [24],
an SBBP 3(X )(n) can be characterized by the set{
P(X ), B(X ), =(X ), 9(X )

}
, where:

• P(X ) is the transition probability matrix of the underlying
Markov chain of 3(X )(n). If we describe this chain with
the discrete-time process S(X )(n), the generic element of
P(X ) represents the transition probability from a state sX
to a state s′X , that is:

P(X )[sX , s′X ]
= Pr

{
S(X )(n+ 1) = s′X

∣∣∣S(X )(n) = sX
}

(11)

• B(X ) is the arrival probability matrix describing the prob-
ability distribution of the number of arrivals of the pro-
cess 3(X )(n) for each state of the underlying Markov
chain S(X )(n). Its generic element represents the prob-
ability that β jobs arrive in one slot when the state of the
underlying Markov chain of 3(X )(n) is sX , that is:

B(X )[sX , β]
= Pr

{
3(X )(n) = β

∣∣∣S(X )(n) = sX
}

(12)

• =
(X ) is the state space of the underlying Markov chain

S(X )(n);
• 9(X ) is the set of possible values that the process3(X )(n)
can assume, that is, the state space of the number of
arrivals that can occur in one slot.

B. REINFORCEMENT LEARNING
The base of the RL problem is the interaction between an
entity behaving as decision-maker, called agent, and a system,
which is the environment where the agent operates. These
two entities interact with each other continuously to achieve
a given goal, consisting in maximizing over time some
special system-specific numerical values, called rewards.
In these interactions, the agent selects actions, and the system
responds to those actions and presents new situations to the
agent [25].

Four additional elements play a fundamental role in a
RL problem: a policy, a reward function, a state-value func-
tion and the system model [25].

A policy defines the set of actions to be performed for all
the system states. A reward function accounts for the goal
of the agent. It assigns an immediate reward to an action
performed in a given state, that is, a number indicating the

intrinsic desirability of performing a given action when the
environment is in a given state. The immediate reward also
depends on the states that could be reached when this action
is performed. On the converse, a state-value function assigns
a quality measure to a state, by a long-term point of view. The
value related to a given state accounts for the overall reward
an agent could gather in the future when the system is in
that state, hence highlighting its long-term goodness. Finally,
the systemmodel enables to account for potential states before
they are actually experienced.

In this paper, the SC behaves as agent, while the action is
represented by the number of additional servers that, accord-
ing to a SC decision, are supplied by the BESS.

If the system state transitions do not depend on the previ-
ous history, but only on the current state and the performed
action, then we say that the environment satisfies the Markov
property. In this case, starting from the only knowledge of
the current state, one can completely predict both the future
behavior of the system and the respective expected rewards.
A RL process that satisfies the Markov property is called
Markov decision process (MDP). In addition, if both state and
action spaces are finite, the model is called finite MDP. In this
paper, we refer to this last kind of processes.

Let =(6) and =(A) be the sets of all the system states
and all the possible actions the agent can perform, respec-
tively. LetS(6)(n) ∈ =(6) be the state of the system at the
generic slot n, and A(n) ∈ =(A) the performed action at the
same slot. Moreover, let 0 be the policy, that is, the set of
2-tuples (action, state), each representing the action A(n) that
the agent will perform when the system is in the state S(6)(n).
RL can be used in two different ways:
1) Run-time mode: during the learning process, at each

slot the agent tries an action, and then it is reinforced
by receiving an evaluation number, that is, the reward
related to this action. In this case, the RL algorithm
selects an action according to a given probability. More
specifically, at each slot, say it n, the agent receives the
current representation of the system state, S(6)(n), and,
according to the policy0 it is using, it decides an action
A(n) ∈ =(A). At the next time slot, i.e. n+ 1, the agent
receives both a numerical reward, R(n + 1), that is a
consequence of the previous action, and the new system
state, S(6)(n + 1). To this purpose, it searches for the
optimal policy bymeans of an online process: it updates
the previously mentioned probabilities along the time
in order to find the actions that maximize the received
reward.

2) Offline mode: the optimal policy is found offline by
solving a system of equations, called Bellman optimal-
ity equations, as explained below. In this way, the policy
to decide actions for each state of the system is avail-
able to the agent since the beginning.

The first approach is used when there is no information
on the system behavior (e.g. historical data are not available
to model the RG power output and the job arrival process).
The second approach, on the other hand, can be usedwhen the
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system, the model transition probabilities and the expected
immediate rewards of the finite MDP are completely known.
Moreover, when the optimal policy is found offline by means
of the Offline mode, this policy can be used as starting point
of the Run-time mode.
In this paper, we focus on the second approach because

it assumed that the historical data are known. Therefore,
in the sequel we will focus on how to find the optimal
policy in a system where the transition probabilities are
known.

In this paper, we apply the second approach. Therefore,
in the sequel we will focus on how to find the optimal
policy.

In order to characterize a finite MDP, for each action a and
each starting state s6 at the slot n, let us define the transition
probability towards the state s′6 at the slot n + 1 and the
expected immediate reward in the same slot n + 1. These
quantities, completely specifying the most important aspects
of the dynamics of a finite MDP, are defined as follows:

p(6)(s′6 |s6, a )

= Pr
{
S(6)(n+ 1) = s′6

∣∣∣ S(6)(n) = s6, A(n+ 1) = a
}
(13)

r (6)(s6, s′6, a)

= E
{
R(n+ 1)

∣∣∣∣ S(6)(n+ 1) = s′6, S
(6)(n) = s6,

A(n+ 1) = a

}
(14)

where E{·} is the expected-value operator, while R(n + 1) is
the reward corresponding to the transition from the state s6
at the slot n to the state s′6 at the slot n + 1, when the action
a is performed.

For a given policy, 0, the related state-value function
associated to a given state s6 can be computed by summing
the expected rewards along the time, after weighting them
with a parameter d ∈ [0, 1[, referred to as discount-rate
parameter [26]. The parameter d determines the present value
of future rewards, and is used to weigh a reward received k
slots in the future with a weight dk . Of course, the smaller
the value of d , the lower the weight given to future rewards.
For example, after a huge number of numerical analy-
sis of the system considered in this paper, we decided to
use d = 0.5.

The state-value function associated to a given state s6 , rep-
resenting the value of a state s6 under a policy 0, is defined
as follows:

v0 (s6) = E

{
+∞∑
k=0

dkR(n+ k + 1)
∣∣∣S(6)(n) = s6, 0

}
(15)

The expression in (15) is called the Bellman equation for the
state s6 .

Applying the theorem of total probability to consider all the
actions a belonging to the policy 0 when the starting state
is s6 , it is easy to demonstrate that the Bellman equation
expressing the state-value function for the state s6 , can be

recursively rewritten as follows:

v0 (s6)

=

∑
a∈=(A)s6

Pr (a |s6, 0 )

·

∑
s′6∈=

(6)

p(6)(s′6 |s6, a ) ·
[
r (6)(s6, s′6, a)+ d v0(s

′
6)
]

(16)

where =(A)s6 represents the set of possible actions specified by
0 when the system is in the state s6 .The Bellman equation
in (16) expresses a relationship between the value of a state
and the values of its successive states.

Now, if we indicate the set of all possible policies that can
be defined for the system as =(0), we say that a policy8 is an
optimal policy if its state-value function is better than or equal
to the state-value function of all the other policies, for all the
states of the system, that is:

v8 (s6) ≥ v0 (s6) , ∀s6 ∈ =(6), ∀0 ∈ =(0) (17)

Let us observe that:
• it is possible to demonstrate that a finite MDP admits at
least one optimal policy [25];

• the system admits more than one optimal policy if more
than one policy give the same optimal state-value func-
tion. Let us indicate the optimal state-value function
shared by the set of optimal policies as ṽ (s6).

Therefore, using the Bellman equation in (16), the optimal
state-value function ṽ (s6) can be written as follows [25]:

ṽ (s6) = max
a∈=(A)s6

 ∑
s′6∈=

(6)

p(6)(s′6 |s6, a )

·

[
r (6)(s6, s′6, a)+ d ṽ

(
s′6
)])

(18)

The above equation is named the Bellman optimality
equation.
Assuming that all the model transition probabilities and

the expected immediate rewards of the finite MDP are com-
pletely known, we can now determine the set of optimal
policies.

First of all, we will evaluate the optimal state-value func-
tion ṽ (s6), for each s6 ∈ =

(A)
s6 . To this end, we write (18)

for each state s6 ∈ =(6), obtaining a system of N6 non-
linear equations inN6 unknowns, whereN6 is the cardinality
of =(6).
Now we can easily find an optimal policy for the system,

which aims at minimizing the job loss probability in the long-
term. Recalling that, for each state s6 ∈ =(6), there are
one or more actions giving the maximum in the Bellman
optimality equation, it follows that whatever policy assigning
a probability different from zero only to the actions that
satisfy the expression in (18) is optimal.

In this paper, among the optimal policies available at each
state, the SC chooses the one with the greatest number of
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servers at work, in order to also maximize the short-term gain
by minimizing the short-term job loss probability.

IV. SYSTEM MODEL
The time-variant behavior of the system described in the
previous section can be captured by modeling the state
of the SOC, the job arrival rate, the amount of power
produced by the RG, and the state of the job queue.
Therefore, we define the whole system state with the follow-
ing 4-dimension discrete-time Markov chain:

S(6)(n) =
(
S(SOC)(n), S(A)(n), S(Q)(n), S(RG)(n)

)
(19)

where:
• S(SOC)(n) represents the SOC. Its state space,
=
(SOC)

= {b1, . . . , bG}, is constituted by a number G
of quantized levels of charge, where bG is the maximum
amount of energy that can be stored in the BESS, that is,
bG = BMAX ;

• S(A)(n) is the state of the underlyingMarkov chain of the
SBBP 3(A)(n) modeling the job arrival rate. As said in
the previous section, it is completely described by the
set
{
p(A), B(A), =(A), 9(A)

}
;

• S(Q)(n) is the state of the job queue, i.e. the num-
ber of jobs that are waiting for a service in the
job queue. If QMAX indicates the maximum number
of jobs that the queue can contain, its state space
is =(Q) = {0, . . . , QMAX };

• S(RG)(n) represents the amount of power generated by
the RG in the slot n, as defined in Section II. Let =(RG) =
{g1, ..., gW } be its state space, constituted by W levels
of generation power. Of course, the state gW coincides
with the RG nominal power, P(RG)Nom .

In order to derive the transition probability matrix of the
considered system, we assume the following sequence of
events in the transition from the slot n to the slot n + 1,
as shown in Fig. 2:

1) System departures: jobs which are running on the
servers leave them after having received the service
during the previous slot;

2) SC decision: the SC, observing the state of the system
at the beginning of the slot n+ 1, decides the number a
of servers (besides the ones that can be supplied by the
power directly coming from the RG) to be supplied by
means of the BESS during the slot n+ 1;

3) Dequeue: a number of jobs, equal to the number of
servers at work during the slot n + 1, leave the queue
and enter the servers;

4) Job arrivals: new jobs arrive with a probability distribu-
tion determined by the state of the underlying Markov
chain S(A)(n), according to the SBBP modeling the job
arrival process;

5) Update of the BESS charge state: the state variable
S(SOC)(n), representing the SOC in the slot n, is updated
as in (7) or (10), depending on whether the condition
in (4) is true or false;

FIGURE 2. Sequence of event in each slot.

6) Update of the underlying Markov chain S(A)(n) of the
job arrival SBBP process 3(A)(n);

7) Update of the state S(RG)(n) of the power generation
Markov chain;

8) System state observation: the state S(6)(n + 1) is
observed with all the modifications due to the previous
events in the slot n+ 1.

The total number of servers that work in the generic slot n
is F = k+a, where k is the number of servers supplied by the
RG according to the current state sRG, while a is the number
of servers supplied by the BESS according to the decision
taken by the SC following the policy 0 calculated off-line by
the RL algorithm. F determines (and represents) the number
of job departures from the queue.

The number k can be easily derived as follows:

k =
⌊
sRG αIαL
PServer

⌋
(20)

where bxc represents the maximum integer contained in x.
Now, let us define the transition probability matrix of the

whole system. To this purpose, let us consider two generic
states of the system, s6 =

(
sRG, sA, sQ, sSOC

)
and s′6 =(

s′RG, s
′
A, s
′
Q, s
′
SOC

)
, representing the start and the arrival

states of a generic transition from the slot n to the slot n+ 1.
Taking into account the definition of the states s6 and s′6 ,

and applying the theorem of the total probability, we can
rewrite (13), which represents the generic element of the
transition probability matrix p(6)(a) of the state of the whole
system for a given action a, as follows:

p(6)
[s6 ,s′6 ]

(a) = p(6)(s′6 |s6, a )=p
(RG)
[sRG,s′RG]

· p(A)[sA,s′A]

·p(Q)[sQ,s′Q]
(sA, sRG, a) · p

(SOC)
[sSOC ,s′SOC ]

(
sQ, sRG, a

)
(21)

where:

• p(RG)[sRG,s′RG]
is the generic element of the transition prob-

ability matrix of the Markov chain modeling the
RG power output process, known as input of the
problem;
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• p(A)[sA,s′A]
is the generic element of the transition proba-

bility matrix of the underlying Markov chain of the job
arrival SBBP, known as input of the problem;

• p(Q)[sQ,s′Q]
(sA, sRG, a) is the generic element of the transi-

tion probability matrix of the queue state. This transition
depends on the state sA of the underlying Markov chain
of the job arrival process, the RG state, and the number
a of servers to be supplied by the BESS.

• p(SOC)[sSOC ,s′SOC ]

(
sQ, sRG, a

)
is the generic element of the

transition probability matrix of the SOC. It depends on
both the state sRG of the RG and the number a of servers
supplied by the BESS.

The term p(Q)[sQ,s′Q]
(sA, sRG, a) can be calculated by applying

the total probability theorem on the number of job arrivals in
one slot, i.e. for each β ∈ 9(A), and accounting that, in a
transition starting from the state sQ, the arrival queue state
s′Q is equal to the starting state plus the number of arrivals,
truncated to the maximum queue size QMAX , if necessary,
minus the number of departures. Therefore, we have:

p(Q)[sQ,s′Q]
(sA, sRG, a)

=

∑
∀β∈9(A)

B(A)[sA,β]
· I
(
sQ, s′Q, sRG, β, a

)
(22)

where I
(
sQ, s′Q, sRG, β, a

)
is a Boolean indicator function

of the feasibility of state transition from sQ to s′Q, defined as
follows:

I
(
sQ, s′Q, sRG, β, a

)
=

{
1 if s′Q = min

{
sQ − F + β,QMAX

}
0 otherwise

(23)

In order to evaluate p(SOC)[sSOC ,s′SOC ]

(
sQ, sRG, a

)
, first let us

evaluate the new SOC state, s′SOC , as discussed in Section II.
We distinguish between two different cases.

If the BESS is in charging state, i.e. sRG ≥ P
(MAX )
PS,OUT ,

where P(MAX )PS,OUT can be derived from (3) and (1) by setting
S(Q)(n) = sQ, according to (7) we have:

soc′ = sSOC + PBCh ·1T (24)

where PBCh can be calculated as in (5) by considering that
the SOC state and the RG state at the slot n are sSOC and sRG,
respectively, while P(MAX )PS,OUT can be expressed in terms of the
job queue state sQ as said so far. Therefore, we have:

PBCh = min

{
P(B)Nom, (BMAX − sSOC )

/
1T ,

sRG − P
(MAX )
PS,OUT

}
(25)

Otherwise, if the BESS is in discharging state, i.e.
sRG < P(MAX )PS,OUT and the SC sets the number a of servers
supplied by the BESS greater than zero, we can derive s′SOC
according to (10), that is:

soc′ = sSOC −
PBDech
αC

1T (26)

where PBDech can be calculated as:

PBDech = a
Pserver
αIαL

−

(
sRG −

k Pserver
αIαL

)
(27)

The term in parenthesis accounts for the residual power
from RG, which is not sufficient for supplying an additional
server without the BESS. Let us notice that the quantity soc′

calculated as in (24) or (26) for the two cases of BESS in
charging and discharging state, may be a value not belonging
to the set =(SOC). For this reason, to calculate the transition
probability element p(SOC)[sSOC ,s′SOC ]

(sRG, a), where s′SOC is one

of the G quantized levels of =(SOC), we will assume that the
actual SOC arrival state is one of the two closest values of
=
(SOC) to soc′ (i.e. the highest value that is lower than soc′,

indicated as s′SOCL , or the lowest value that is higher than soc
′,

indicated as s′SOCH ). The choice of the specific arrival state

of the transition between the two above values is assumed
with a probability that depends on the distances of soc′ from
them. Therefore, the generic element of the SOC transition
probability matrix can be calculated as follows:

p(SOC)[sSOC ,s′SOC ]

(
sQ, sRG, a

)

=



1−

∣∣∣s′SOCH−soc′∣∣∣∣∣∣s′SOCH−s′SOCL ∣∣∣ if soc′ ≤ bG and s′SOC = s′SOCH

1−

∣∣∣soc′−s′SOCL ∣∣∣∣∣∣s′SOCH−s′SOCL ∣∣∣ if soc′ > b1 and s′SOC = s′SOCL

1 if soc′ < b1 and s′SOC = b1
1 if soc′ > bG and s′SOC = bG
0 otherwise

(28)

where:

s′SOCH = min
(
bi ∈ =(SOC) : bi ≥ soc′

)
s′SOCL = max

(
bi ∈ =(SOC) : bi < soc′

)
(29)

Now, we have all the matrices needed to build the matrix
p(6)(a) whose generic element, for each action a, was defined
in (21). In order to apply the RL process to decide the opti-
mum policy 0, we still need to calculate the expected reward
r (6)(s6, s′6, a) associated to the transition from the state s6
to the state s′6 , for each action a , as defined in (14). To this
purpose, we have defined the reward as a function of the
job loss probability. More specifically, we define the reward
corresponding to the transition from the state s6 at the slot n
to the state s′6 at the slot n+1, when the action a is performed
as the number of the jobs that are lost, changed in sign to be
a reward and not a penalty, that is:

R(n+ 1) = −Loss(n+ 1) (30)

Therefore, the best reward is zero, and the reward worsens
as the number of lost job increases.

The expected reward associated to the transition from the
state s6 to the state s′6 , following the policy 0, can be
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computed according to (14) as follows:

r (6)(s6, s′6, a)

= −E
{
Loss(n+ 1)

∣∣∣∣ S(6)(n+ 1) = s′6, S
(6)(n) = s6

A(n+ 1) = a

}
(31)

In order to derive the number of jobs that are lost during the
transition from the state s6 to the state s′6 , let us take into
account that, according to the sequence of events illustrated
in Fig. 2, losses may occur only if the queue arrival state is
s′Q = QMAX . Such a condition is necessary but not sufficient
to cause a job loss. More specifically, if the queue starting
state is sQ, β new jobs arrive to the FCDC system, and F =
k+a servers are working, the queue can accommodate at most
QMAX − sQ+F jobs. Therefore, some job losses occur if β is
greater than this value. Specifically, the number of jobs that
are lost because no space is available in the queue for them is
β − (QMAX − sQ + F).
Thus, the expected value in (30) can be calculated as

follows:

E
{
Loss(n+ 1)

∣∣∣∣ S(6)(n+ 1) = s′6, S
(6)(n) = s6

A(n+ 1) = a

}

=



βMAX∑
β=QMAX−sQ+F+1

[
β − QMAX + sQ − F

]
· B(A)[sA,β]

if s′Q = QMAX
0
otherwise

(32)

where B(A)[sA,β]
is the element [sA, β] of the job arrival proba-

bility matrix, representing the probability that β jobs arrive
when the underlying Markov chain of the SBBP 3(A)(n)
is sA.

Now, we have all the elements to apply the reinforcement
learning in offline mode to calculate the optimum policy 0,
as described in Section III-B. Let us observe that the feasible
range for the number of servers that can be activated when the
system is in the state s6 is a subset of =(A)s6 = {0, ..., aMAX },
where aMAX can be calculated accounting for both the max-
imum power that can be provided by the BESS, and the
residual RG power which is not sufficient to supply a further
server, that is:

aMAX =

αIαL
[
P(MAX )BDech +

(
sRG − k

PServer
αIαL

)]
PServer

 (33)

bxc representing the maximum integer contained in x. The
term P(MAX )BDech can be derived from (9) as follows:

P(MAX )BDech = min

{
P(B)Nom, αCsSOC

/
1T ,

P(MAX )PS,OUT − sRG

}
(34)

Finally, once the RL has been applied, the resulting
optimum policy 8 gives us the best action a to be per-
formed for each transition from the state s6 to the state s′6 .
By substituting the values of a in (21) for each 2-tuple

s6 and s′6 , we obtain the overall transition probability matrix
of the system p̃(6).
We can now derive the steady-state probability array, π (6),

for this system when the System Controller applies the opti-
mum policy 8, whose generic element is:

π
(6)
[s6 ] = Prob

{
S(6)(n) = s6 |Optimal policy 8

}
(35)

It can be calculated, as known, by solving the following
linear equation system:π

(6)
· p̃(6)

= π (6)∑
∀s6∈=(6)

π
(6)
[s6 ] = 1 (36)

V. PERFORMANCE EVALUATION
Applying themodel described in the previous section, nowwe
derive the main performance parameters characterizing the
behavior of the system.
The main parameter is the job loss probability, since the

goal of the RL application by the SC regards theminimization
of the per-slot number of job losses. It can be calculated as the
ratio between the mean number of lost jobs in a slot and the
mean number of arrived job in a slot, that is:

PLoss =
E {Loss}

E
{
3(A)(n)

} (37)

where the numerator can be calculated as in (31), that is:

E {Loss}

=

bL∑
sSOC=b1

∑
sA∈=(A)

∑
sRG∈=(RG)

∑
β∈9(A)

QMAX∑
sQ=QMAX−β

(
sQ + β − QMAX

)
· B(6)

[sA,β]
· π

(6)

[sRG, sA,sQ, sSOC ]

(38)

while the denominator can easily be derived by the matrices
characterizing the job arrival SBBP 3(A)(n):

E
{
3(A)(n)

}
=

∑
sA∈=(A)

∑
β∈9(A)

β · B[sA,β] · π
(A)
[sA]

(39)

Another important parameter that characterizes the perfor-
mance of the considered system is the mean value of the delay
suffered by the jobs in the queueing system, usually referred
to as mean response time. It can be easily derived by means
of the Little theorem [27], as follows:

E {T } =
E
{
N (6)
Jobs

}
E
{
3(A)(n)

} (40)

where the numerator can be derived by the steady-state prob-
ability array calculated in (35) as follows:

E
{
N (6)
Jobs

}
=

bL∑
sSOC=b1

∑
sA∈=(A)

∑
sRG∈=(RG)

QMAX∑
sQ=0

sQ · π
(6)

[sRG, sA,sQ, sSOC ]

(41)
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Now, let us observe that, at the planning stage, a tradeoff
between costs and system performance is necessary. In this
perspective, increasing the size of RG and BESS reduces the
job loss probability against higher costs. However, on the
other hand, inexpensive solutions could let to poor system
performance. Optimal economic planning needs to consider
the costs of specific components, but this kind of analysis is
out of the scope of this paper. Notwithstanding, some related
general insight can be pointed out by using the following
indicator giving information about the average wasted power
with respect to the nominal power of the RG. Such a quantity
also depends on the size of RG with respect to the other
system components.

IRG =
E
{
P(B)WST (n)

}
P(RG)Nom

(42)

where P(RG)Nom is the RG nominal power, while E
{
P(B)WST (n)

}
is the mean wasted power. This last term can be derived by
averaging the wasted power defined in (8) and calculated
for each system states s6 =

(
sRG, sA, sQ, sSOC

)
, with the

respective steady-state probability derived from the solution
of the linear equation system in (35). We have:

E
{
P(B)WST (n)

}
=

∑
s6∈=(6)

P(B)WST [s6 ] · π
(6)
[s6 ] (43)

According to its definition, the indicator ranges in the
interval [0,1]. When the value is close to 1, the RG could be
oversized, causing power waste. On the other hand, for low
values of IRG, the RG size could be insufficient to supply the
system. Actually, the value strongly depends also on the RG’s
average power output. More specifically, a value close to zero
could be obtained due to a too small average power output
with respect to the load. Therefore, without other information,
the indicator value could let to misleading results. In this
perspective, when it is coupled with the value of job loss
probability, the indicator effectively supports the designer in
choosing the best tradeoff for the sizes of RG and BESS.
More specifically, for a given performance target, i.e. for an
assigned job loss probability, the solutions with minimum IRG
are the most efficient and probably (it depends on the specific
components’ cost) the most expensive ones.

VI. CASE STUDY AND NUMERICAL RESULTS
In this section, we apply the BESS management policy pro-
posed in this paper to a case study, which will be described
in Section VI.A. Numerical results will be presented
in Section VI.B.

A. SYSTEM SETUP
We consider a fog-computing node where the SC applies the
proposed RL-based management policy every1T = 15 min.
The system is loaded by a job arrival process characterized
by the pdf and the autocorrelation function shown in Fig. 3.
They were measured on the field, while generated by motion-
detection cameras deployed on a countryside populated by

FIGURE 3. Statistics of the job arrival process.

birds and other small terrestrial animals. By applying the
discrete-time inverse eigenvalue technique described in [28],
from the above functions we derived a 4-state SBBP charac-
terized by the following transition probability matrix:

P(A) =


0.754 0.203 0.032 0.011
0.049 0.746 0.157 0.048
0.032 0.164 0.759 0.045
0.017 0.054 0.187 0.742

 (44)

The rows of the job-arrival probability matrix are depicted
in Fig. 4.

As far as the FCDC is concerned, we considered a set
of INTEL Nuke MiniPCs, chosen for their reduced weight
and dimension, each with an Intel R©CoreTMi7-7567U Pro-
cessor,4M Cache, 4.00 GHz, RAM of 16 Gbyte, and char-
acterized by a power consumption of PServer = 65 W. Their
number, NS , was varied in the range [12], [36] to evaluate its
impact on the overall performance. The maximum size of the
Job Queue was fixed to QMAX = 60.

The values of the efficiency coefficients of the power sys-
tem, i.e. αC , αI and αL , are shown in Fig. 1.
The RG is a wind generator, installed on the same country-

side area. In order to calculate the power generation model,
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FIGURE 4. Job arrival probability matrix.

we measured its output at each 15 minutes in the period rang-
ing between 02/20/2015 and 05/20/2017. The samples mea-
sured in the first 48 hours of this period are plotted in Fig. 5.
Let us notice that the RG never was out of service for fault
during the whole measurement period, this occurrence has
been not considered. On the other hand, the case of lack of RG
supply due to wind absence has been considered. The mean
value of the RG power output is P̄RG = 1520 W. Therefore,
taking into account the inverter efficiency, αI = 0.95, and the
FCDC power factor, αL = 0.9, and that each server requires
a power of PServer = 65 W, the considered RG system is
able to supply an average number of P̄RG αIαL

/
PServer = 20

servers. The power generation model was derived by quan-
tizing the trace with levels of 152 W, equivalent to the power
needed to supply two servers.

FIGURE 5. Trace of the power generated by the wind in two days.

In the following, in order to analyze cases with a number
of servers, NS , different from 20, and to supply them with a
RG power generator that is able to provide a percentage, γW ,
of the power required by them, we derive the RG power
generation model by starting from a rescaled version of the

FIGURE 6. Job loss probability without BESS.

trace, calculated from the original one as follows:

ŵ(n) = γW
NS
20
w(n) (45)

The model is then obtained, as illustrated so far, by quan-
tizing it with the same quantization step of 152 W.

Finally, as far as the BESS is concerned, we will consider a
BESS whose nominal power depends on the chosen number
of servers as follows:

P(B)Nom = γB
NS · PServer
αI · αL

(46)

where γB is a coefficient that will be varied in the next
section to analyze the impact of the BESS capabilities in
supplying the active servers. Moreover, the SOC is quantized
in 20 levels, evenly spaced in the interval [0, BMAX ], with
BMAX is calculated as in (6), with δB = 4 slots, i.e. one hour.

B. NUMERICAL RESULTS
In this section, we will present some numerical results
achieved by applying the analytical model to design the opti-
mum policy for the SC, in such a way that it can decide the
number of server to be supplied by the BESS with the final
goal of minimizing job loss probability.

Numerical results have been obtained by using a value iter-
ation algorithm implemented in Matlab by the same authors.
Although not extremely optimized, thanks to the Matlab
computing toolbox it is able to obtain each point of the curves
shown in the sequel in about 13 minutes by using a DELL
PowerEdge R630 server with dual processor Intel
Xeon E5-2630L and 384 GB of RAM. It is an acceptable
time for off-line derivations.

Fig. 6 shows the job loss probability for increasing number
of servers in absence of BESS and, consequently, without
any use of the RL. The lowest curve shows results in case
of grid-connected system, where the job loss probability
only depends on the number of servers. This case has been
introduced as a reference case because it presents the best
hypotetical values the system could achieve when it oper-
ates in off-grid mode. In fact, the other curves, presenting

VOLUME 5, 2017 21135



S. Conti et al.: Battery Management in a Green Fog-Computing Node

FIGURE 7. Performance improvements achieved by using the BESS.

results for the system operating in off-grid mode, report
worse performance, whose degradation depends on the RG
size. More specifically, variuos scenarios are accounted by
considering different values for the coefficient γW , whose
effects are shown in (45). For example, the curve labeled with
γW = 75% reports results obtained in a scenario where the
mean RG power output is the 75% of the power needed to
supply NS servers. Consequently the RG in case of NS = 15
in the curve γW = 100% is the same of the one obtained for
the case NS = 30 in the curve γW = 50%. Nevertheless, the
latter outperforms the former thanks to the greater number of
servers although supplied by the same RG.

In order to evaluate performance improvement achieved
thanks to the presence of BESS, optimally managed by the
SC according to the RL application, we define a loss gain
parameter as the ratio between the loss probabilities without
and with BESS. Its values are shown in Fig. 7 for different
2-tuples of BESS and RG nominal powers. More specifically,
the first term refers to the value of γB, representing the capac-
ity of the BESS to supply the maximum number of available
servers, while the second term is γW , representing the wind
generator size, already presented above.

FIGURE 8. Wasted power indicator.

When the number of servers is equal to the average number
of arrivals (i.e.NS = 12), the addition of a BESS has no effect
on the system performance, or lead to a little improvement.
In this scenario, condition (4) is rarely satisfied, especially
when the RG size is small, then the BESS is recharged few
times and, consequently, it can be infrequently used. There-
fore, the maximum number of servers that are supplied with
the BESS differs from zero rarely, and then RL is infrequently
applied, thus its effect is neglegible.

Instead, as the number of servers increases, condition (4)
is more frequently satisfied, representing the case that the
RG power output is greater than the maximum power
absorbed by the load. Since the RG size increases propor-
tianally with the number of servers, the only reason leading
to a more frequent occurence of condition (4) satisfaction is
the increment of the probability of a job queue smaller than
the number of servers. The increment in the number of times
the BESS is recharged leads to more cases where the RL can
be adopted, and provides it with a great number of choices to
opt, that is increases the maximum number of servers that can
be supplied by the BESS.

When the number of servers is greater than the maximum
number of arrivals, which is 30 as shown in Fig. 3.a, the prob-
ability that the queque is smaller than the number of servers
increases and then condition (4) is very frequently satisfied.
This implies that the number of times the BESS is in discharge
state is reduced, then the performance impovements achieved
thanks to the use of the BESS an the application of the RL are
reduced. For example, the last subplot of Fig. 7 shows that
the RL in case of a 2-tuple (BESS, RG) given by γB = 75%
enables a greater performance improvement than the case
where the same BESS with a larger RG size is considered.
The same effect is highligheted in the fourth subplot of Fig. 7,
i.e. the one obtained for NS = 30.
In order to analyze the amount of wasted power,

in Fig. 8 we plotted the values of the index IW , defined as
in (39). The curves confirm that condition (4) is satisfied
more frequently as the number of servers incrases, and the
BESS reduces the wasted power especially for large RG size.
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FIGURE 9. Mean response time of the FCDC node.

Finally, Fig. 9 shows the mean response time of the overall
FCDC node, representing how much time a job spends in the
node to be served. Of course, we can minimize this param-
eter by increasing the number of servers, by improving the
RG system (i.e. by increasing the γW parameter). Moreover,
the figure confirms that performance is further increased
by using a BESS, and shows the importance of its design
especially in cases when the RG is well sized (see the group
of curves at the bottom of the figure).

VII. CONCLUSIONS
A common assumption in the current literature, at the best
of our knowledge, is that fog-computing nodes are pow-
ered by energy coming from traditional electrical energy
sources, which is always available whatever the requested
amount of it. Nevertheless, in many application scenarios,
fog-computing servers can be powered only by renewable
energy sources.

In order to face the variability of power availability with
this kinds of generators, and avoid job queue saturation
during periods of high job arrival rates, this paper aims
at designing a fog-computing node supplied by a renew-
able energy generator, where the SC optimally manages the
BESS to minimize job loss probability. A Markov-based
analytical model of the system is integrated with a rein-
forcement learning process to optimize the server activation
policy.

A case study is presented to show how the proposed
system works. An extensive performance analysis of a fog-
computing node highlights the importance of optimizing bat-
tery management according to the size of the Renewable-
Energy Generator system and the number of available
servers.
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