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ABSTRACT Most traditional engineered systems are designed with a passive and fixed reliability capability
and just required to achieve a possibly low level of failure occurrence. However, as the complexity at spatial-
temporal scales and integrations increases, modern complex engineered systems (CESs) are facing new
challenges of inherent risk and bottleneck for a successful and safe operation through the system life cycle
when potential expected or unexpected disruptive events happen. As a prototype for ensuring the successful
operation of inherently risky systems, resilience has demonstrated itself to be a promising concept to address
the above-mentioned challenges. A standard multi-dimensional resilience triangle model is first presented
based on the concept of the three-phase system resilience cycle, which can provide a theoretical foundation
for indicating the utility objectives of resilience design. Then, the resilience design problem for CESs is
proposed as a multi-objective optimization model, in which the three objectives are to maximize the survival
probability, to maximize the reactive timeliness and to minimize the total budgeted cost. Furthermore,
the proposed multi-objective optimization programming is solved based on the efficient multi-objective
evolutionary algorithm NSGA-II. Finally, the effectiveness of the proposed models and solving procedure
is illustrated with an engineered electro-hydrostatic aircraft control actuator resilience design problem,
a comparative analysis on the case study is also carried out with respect to previous works. This work can
provide an effective tradeoff foundation to improve the resilience of CESs.

INDEX TERMS Resilience, complex engineered systems, multi-dimensional model, multi-objective pro-
gramming, NSGA-II.

I. INTRODUCTION
In the past few years, resilience has been gradually recog-
nized as an important feature for modern complex engineered
systems (CESs) [1]–[4]. Considerable efforts have beenmade
for establishing the conceptual rationality and the measuring
framework. Traditionally, engineered systems are generally
designed with a passive and fixed reliability capability and
just required to achieve a possibly low level of failure occur-
rence. However, despite component failures and unexpected
accidents in CESs, new defining characteristics, e.g., com-
plexity at spatial-temporal scales and integrations are crit-
ically challenging the resilient operation of CESs [5]–[7].
Hence, the traditional reliability-based design (RBD) with
only redundancy allocation has encountered the bottleneck
for a successful and safe operation through the system life
cycle with potential expected or unexpected disruptive events.

The shift from passive RBD to adaptive resilience-driven
system design (RDSD) has gradually attracted the public’s
attention and the shift is proved to be effective for achieving
a more resilient CES.

The resilience problem is commonly discussed as a special
issue when people address how systems can continue to work
safely and reliably even when a disruption occurs [8]–[11].
It is generally agreed that resilience is a system-level capa-
bility to adapt to a disturbance and then recover from the
disturbance [12]–[14]. For the definition and measuring of
resilience, resilience indexes are often identified accord-
ing to system characteristics, for example, such as close-
ness centrality [15], connectivity [16], [17] and throughput
capacity [18]–[20] are often adopted for networked systems
when defining the network performance indexes. However,
the ability of a system to successfully accomplish a mission
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is often emphasized for CESs [2], [21]. Despite the different
definition ways, the most important thing is to specify the
mechanism to achieve system resilience, otherwise the defi-
nition will only be a conceptual word and cannot instruct the
resilience design of a system.

The resilience concept of CESs in the engineering
domain is relatively new in comparison to other systems
in organizational [22], [23], social [24], [25] and economic
domains [26], [27]. Representatively, Youn et al. [2] defined
the resilience of CESs as a sum of passive survival capability
and proactive survival capability and measured it based on
a function of reliability and PHM efficiency in engineering
context. Youn’s work interpreted the mechanism of CESs
by combining reliability and PHM techniques and intro-
duced a RDSD framework for CESs. However, this frame-
work discussed little about the maintenance/recovery factor
by fixing it to a constant success probability of 100% in
the later resilience optimization case. Another definition of
engineering resilience is presented by Hollnagel et al. [1] as
the intrinsic ability of a system to adjust its functionality in
the presence of disruptions, meanwhile three phases can be
divided relative to the disruption to analyze the capability of
resilience. This work demonstrated that the concept of phase
in system operation process is important for resilience design
and led a series of relevant studies. However, Hollnagel et al.
just provided a common concept foundation and did not
provide further technical details for RDSD.

To facilitate the resilience design work, a proper metric is
necessary. Deterministic approaches accounting the perfor-
mance loss are useful for the systems with explicit perfor-
mance metric [28]–[30], however, these approaches are hard
to adapt to the CESs as they barely concentrate on the system-
specific characteristics while the main concern of a CES is
usually the mission success rate but not the time-dependent
performance. Therefore, the probabilistic approaches captur-
ing the stochastic characteristics of system-specific behavior,
e.g. survival probability or success rate [2], [31], are compat-
ible to join the resilience metric of a CES. Despite the factor
of system functionality, rapidity factor represented by recov-
ery speed or rate and resourcefulness factor represented by
recovery consumption or preparedness are often incorporated
to measure the effectiveness of system resilience [32], [33].
However, most of these approaches tend to formulate all the
basic factors into one unified formulary metric which would
usually perplex the actual implication of resilience concept.
Thus, the multi-dimensional resilience metric appears to be
easily comprehended and suitable for resilience optimization
in the context of decision-makers’ preferences [34]–[36].

Currently, the multi-dimensional resilience metric is
often represented by multi-objective mathematical model.
Faturechi and Miller-Hooks [37] utilized a two-objective
mathematical model considering the expectation of road
network resilience over all possible disruption scenar-
ios (functionality) and the total travel time simultane-
ously (timeliness) to optimize the resilience of road networks.
Sahebjamnia et al. [38] proposed a multi-objective mixed

integer linear programming (MOMILP) considering the
total loss of operating level of key products (functionality)
and the total recovery time of key products (timeliness)
to find efficient resource allocation patterns for organiza-
tional resilience. According to the aforementioned literatures,
the multi-objective approaches can commendably cater dif-
ferent decision preferences and help realize the resilience
optimization work. However, there aren’t many studies focus-
ing on themulti-objective resilience optimization or RDSD of
CESs. Youn et al. [2] only considered the survival probability
like functionality factor for CESs but neglected the rapidity
factor and resourcefulness factor. Dinh et al. [3] proposed
six principles and five contributing factors to evaluate the
resilience of engineered industrial processes. However, this
identification is experiential and it can barely guide the
quantification or optimization of system resilience. Thus, it’s
necessary to establish a multi-dimensional concept for the
resilience optimization of CESs.

In this paper, we firstly propose a three-dimensional
resilience triangle model based on the concept of three-phase
system resilience cycle to clarify the framework for recogniz-
ing key resilience factors of CESs. For the resilience design,
the primary concern is the functionality requirement which is
represented by mission success rate or survival probability of
a CES. On the other hand, the rapidity performance against
the disruptions which is represented by reactive timeliness is
also of concern. In addition, the practical resilience design
is often constrained by resources which can be represented
by budgeted cost. Then, the multi-objective model expressing
the resilience design preferences is concluded. The objec-
tives of this model are to maximize the survival probability,
to maximize the reactive timeliness and to minimize the total
budgeted cost. We need to note that the formulations of these
three objectives are based on the capability recognizing work
within the framework of resilience triangle model. Hence,
the completeness can be guaranteed.

However, such optimal objectives would leave engi-
neers a confusion that is how to choose the right plan for
RDSD. Multi-objective optimization methodology based on
advanced evolutionary algorithms can be utilized to solve
this problem by generating a Pareto-optimal frontier of
solutions with the consideration of the dominant optimal-
ity among optimization objectives. Over the past decades,
numerous multi-objective evolutionary algorithms (MOEAs)
have been developed, such as multiple objective genetic
algorithm (MOGA) [39] and niched Pareto genetic
algorithm (NPGA) [40]. However, many criticisms of the
aforementioned MOEAs were raised because of high com-
putational complexity of non-dominated sorting, lack of
elitism and need for specifying the sharing parameter. A new
MOEA named NSGA-II has well addressed these problems
by generating a diverse set of solutions and converging near
the true Pareto-optimal set [41]. Many studies in both theory
and practice have proven NSGA-II to be one of the best
algorithms for solving multi-objective optimization prob-
lems [42]–[44], helping engineers achieving optimal design
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plans with multiple preferences [45]–[48] and promoting a
more efficient system [49], [50]. Therefore, NSGA-II is used
to find the Pareto-optimal solutions to RDSD of CESs in this
paper.

The rest of this paper is organized as follows. The sec-
ond section introduces the resilience triangle model based
on the concept of the three-phase system resilience cycle.
Then, the three-dimensional resilience design preferences are
concluded and the multi-objective resilience design model
for CESs is formulated in section three. Section four uti-
lizes NSGA-II to find the Pareto-optimal solutions to multi-
objective design problem. To demonstrate the effectiveness of
proposed models and solving procedure, section five presents
a case study on an engineered aircraft control actuator.
Finally, section six concludes this paper.

II. RESILIENCE TRIANGLE CONCEPT MODEL
Many aspects can be considered when evaluating the level of
system resilience. However, it can be very difficult to achieve
a comprehensive definition of resilience when there are too
many concerns, and furthermore, simple reuse or renovation
could be greatly hindered. Therefore, this section is devoted
to presenting a standard three-dimensional resilience triangle
model for CESs, which is derived from the three-phase con-
cept, i.e., the system resilience cycle encompassing the phases
before, during and after a disruptive event.

FIGURE 1. Three phases in the system performance cycle.

As a key item in the resilience definition, the disruptive
event can be embodied in a variety of forms such as attacks,
hazards, perturbations, disturbances and disasters for differ-
ent systems. As depicted in Fig. 1, the time dimension can
be divided into three phases relative to the occurrence of a
disruptive event Ed :
• Pre-disaster phase: Tpre ∈ [t0, td ], representing that the
system remains in a relatively stable state;

• During-disaster phase: Tduring ∈ [td , te], representing
that the system suffers Ed ; in particular, the performance
of the system may possibly suffer a degradation from
P(t0) to P(te), while there may be likely no degradations
for specific systems;

• Post-disaster phase: Tpost ∈ [te,∞], representing
that the system recovers from the disruptive state
with resilience actions; in particular, the time between

te and tr represents a decision-making period for
resilience actions and in this period the system is in
a disrupted stable state; on the other hand, the time
between tr and tf represents the recovery process of
the system and the system achieves a complete recovery
at tf .

In Fig. 1, we can obviously see a sequential system perfor-
mance cycle consisting of three phases, pre-disaster phase,
during-disaster phase and post-disaster phase, which are
determined by the time points t0, td , te, tr , tf . In what follows,
we will give a detailed explanation about the three phases.

In the pre-disaster phase, i.e., the time before the occur-
rence of a disruptive event, generally, two types of dis-
ruptions can impact the normal performance during system
operation—an inner component failure of the fundamental
elements and external intentional destructions. To improve
the resilience, both of these impacts should be considered;
however, the detailed approaches are beyond the scope of this
paper. In a CES, whenwe analyze this dimension of resilience
capability, both types of disruptions can be represented by
deviations of basic components for simplicity, thus they can
be summarized into the unified Defensive Capability Cd
which can be quantified by a statistic failure rate.

In the during-disaster phase, the disruptive event has
impacted the normal operation of basic devices and has
caused a holistic impact on the system. Note that a delayed
recognition of deviations may lead a spread of failure impact
and finally result in an accident. Thus, a more resilient sys-
tem should shrink the impact scope and spread probability
by applying proper approaches e.g. fault diagnosis. Here,
we define this part of ability as Adaptive CapabilityCa, which
can be measured by fault diagnosis rate and time, etc.

In the post-disaster phase, the system has come to a stable
disruptive state and has started to recover in the post-disaster
phase. Theoretically, the recovery actions can be presented
before the end of the disaster; however, this can be very risky
in reality, e.g., in an earthquake scenario, it can be dangerous
to arbitrarily conduct rescues before a credible safety esti-
mation of potential conditions is performed. Recovery efforts
attempt to repair or replace failed devices and bring a system
back to normal; however, manpower and material resources
may limit the idealized implementation of system recovery.
Therefore, the performance recover rate and time would be
different and represent a different resilience level, in another
word, the defined Recovery Capability Cr can be different in
accordance with different scenarios.

In summary, resilience is regarded as a three-dimensional
system-level capability of a system to defend against, adapt
during and recover from a disruptive event in this paper.
In addition, based on the concept of the three-phase sys-
tem resilience cycle, the three-dimensional resilience triangle
model, includingDefensive CapabilityCd , Adaptive Capabil-
ity Ca, and Recovery Capability Cr , can be derived (Fig. 2).
Examples are provided in Table. 1 to illustrate that this

three-dimensional resilience triangle model is compatible
with previous dimension-based-definition works. As we
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FIGURE 2. Three-dimensional resilience triangle model.

TABLE 1. Illustration of the fitness with previous definition works.

can see, the three-dimensional resilience triangle model can
gracefully accommodate the basic concerns of resilience
capability and provide holistic guidance for the identification
of system resilience along the three-phase operation cycle,
whereas previous dimension-based definitions simply pro-
pose detached requirements of resilience capability. Similar
to the definitions and measures of Bruneau [28], Youn [2]
and Zobel [29], they all provide minimal discussion on the
adaptive capability during a disaster; on the other hand,
although the definitions of Sterbenz [16], Dinh [3], and the
National infrastructure advisory council [51] encompass all
three dimensions, there is overlap, with poor holistic coop-
eration between them. It is widely stated that there is over-
lap between resilience and many existing concepts, such as
robustness, fault tolerance, and survivability, and this can
easily lead to confusion without careful discrimination. Thus,
this three-phase classification method can clearly indicate the
relations between them. Moreover, this unifying framework
can serve as an important foundation for indicating the util-
ity objectives of resilience design. In the following section,
we would quantify the design objectives of CESs under this
framework.

III. THREE-DIMENSIONAL RESILIENCE DESIGN MODEL
The resilience design for CESs is essentially amulti-objective
optimization problem, which aims to generate a Pareto-
optimal set of design plans by balancing betweenmaximizing
survival probability and reactive timeliness and minimizing
total budgeted cost. In this section, the resilience design
model consisting of three dimensions is introduced and the
multi-objective optimization function is proposed.

As mentioned in the above section, the three dimensions
are functionality, rapidity and resourcefulness respectively,
and the main work here is to identify the measure of these
dimensions based on the resilience triangle concept model.

A. FUNCTIONALITY DIMENSION-SURVIVAL PROBABILITY
Survival probability is generally defined to quantify the prob-
ability that a system or individual could survive through
a certain period of time under a certain condition. This
concept is comparable with the essence of resilience that
is an ideal system is expected to operate successfully and
safely even after a disruption occurs. Thus, it is reasonable
to adopt survival probability as the index of functionality
dimension. According to the mechanism analysis in section
two, the quantification of survival probability is essentially a
synthetical evaluation of the defensive, adaptive and recovery
capability.

For engineered systems, the defensive capability can be
generally treated as a synthesis of reliability, i.e., the capa-
bility to refrain from disruptive events and keep the system’s
state above the safemargin. Thus, the defensive capability can
be quantified by a probability parameter r and statistically
measured by:

r =
NP − N
NP

× 100% (1)

where NP is the potential number of failures that may occur
in a certain period and N is the number of occurred failures.
The adaptive capability of engineered systems is gener-

ally defined as the diagnostic ability to detect and isolate
adverse events once failed to defense. For the design of
engineered systems, however, diagnostic ability can be gener-
ally regarded as a synthetical capability to adapt adversities.
Therefore, this adaptive dimension of capability can be quan-
tified by a unified probability parameter ρ and statistically
measured by:

ρ =
ND
N
× 100% (2)

where ND is the number of failures that are successfully
diagnosed and N is the number of occurred failures.
After a successful diagnosis, to sustain a reliable and safe

system operation, recovery actions represented by mainte-
nance or reconfiguration should be performed. The proba-
bility of a successful recovery action can be quantified by a
parameter γ and statistically measured by:

γ =
NRe
ND
× 100% (3)
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where NRe is the number of failures that are successfully
recovered and ND is the number of failures that are success-
fully diagnosed.

After themulti-dimensional identification of survival prob-
ability, the measure can be formulated as:

9 (resilience, SP) = r + (1− r) · ρ · γ (4)

which is a joint probability of passive survival rate of defen-
sive probability r and reactive survival rate represented by
adaptive probability ρ and recovery probability γ after an
unsuccessful defense (1− r).

Typically, engineered systems often have series-parallel
feature, where a system can be divided into several sub-
systems with basic components. On the survival probability
calculating of a system with series relationship, since there is
only one path to successful survival, the system-level survival
probability should have an intersection relationship with the
subsystem-level survival probability:

9system (resilience, SP) =
∏n

i=1
9i (resilience, SP) (5)

while for the system with parallel relationship, since the
system will survive if any of the subsystems is in nor-
mal, therefore, the system-level survival probability can be
obtained by:

9system(resilience, SP)=1−
∏n

i=1
[1−9i(resilience, SP)]

(6)

B. RAPIDITY DIMENSION-REACTIVE TIMELINESS
Reactive timeliness is identified in this paper to quantify
the capability of resilience from the rapidity dimension.
Considering the performance curve in the system resilience
cycle (adopted from Fig. 1), there are four key time points
representing the resilience capability:
• td : the time point that a disruptive event Ed occurs;
• te: the time point that system performance stops declin-
ing (the system enters into a relative stable state
after Ed );

• tr : the time point that a recovery action starts;
• tf : the time point that a recovery action ends (the system
enters into a final stable state after recovery).

Accordingly, three time periods can be obtained in the time
axis of reactive timeliness (as shown in Fig. 3):
• Ta = te − td :the time period when system performance
declines or the system is just suffering the impact of Ed
with potential performance decline;

• Ts = tr − te:the time period when system stays in a
relative stable state or just waits the recovery decision;

• Tr = tf − tr :the time period when recovery actions take
effect and system performance recovers.

Need to note that, the performance of an engineered system
may be not affected by the Ed (usually a failure of unit) with
the help of redundancy. Thus, Ta can be generally represented
by the diagnosis time TD for an engineered system, repre-
senting the time of a system suffering from an undiagnosed
failure. On the other hand, Ts can be generally regarded as

FIGURE 3. Time periods in the time axis of reactive timeliness.

the decision-making time of a proper recovery action for the
engineered system, i.e., maintenance or reconfiguration, and
then Tr is correspondingly regarded as the execution time of
the recovery action. Thus, Ts and Tr are jointly represented
by the joint recovery time TRe, i.e., TRe = Ts + Tr .
Further, we can obtain the total consumption of reactive

time T = Ta + Ts + Tr and define the reactive timeliness for
rapidity dimension of resilience design model as:

9 (resilience,T ) = a
(

1
Ta

)
+ b

(
1
Ts

)
+ c

(
1
Tr

)
(7)

where the reciprocal form of timeliness factors 1/Ta, 1/Ts,
1/Tr indicates the inverse correlation between reactive timeli-
ness and time consumption. Further, considering the different
preference of timeliness factors, weighting factors a, b and c
are added with the constraint of a + b + c = 1. Note that,
in this paper, we unify the unit of timeliness factors with
per-unit value, thus the range of 9 (resilience,T ) of a basic
component can be restricted between 0 and 1.

Typically, for the system with series relationship, since
system-level performance recovery is achieved only if all sub-
systems complete the resilient recovery process, therefore,
the system-level reactive timeliness should be the sum of
subsystem-level reactive timeliness:

9system (resiilience,T ) =
∑n

i=1
9i (resilience,T ) (8)

while for the system with parallel relationship, the reactive
timeliness of a subsystem should be equal to the maximum
reactive timeliness of the parallel components since only one
completion of resilient recovery in parallel branch will help
recover the subsystem:

9i (resilience,T ) = Max[91∼mi (resilience,T )] (9)

From the definition, reactive timeliness for rapidity dimen-
sion mainly characterizes the adaptive capacity and recovery
capacity of resilience, in another word, it mainly accounts
for the extent of suffering duration after a failed defense
of disruptive event Ed which is cognitively desired to be
as short as possible. However, blind pursuit of rapidity is
bound to increase the investment of system design, therefore
the budgeted cost of resourcefulness dimension should be
considered.
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C. RESOURCEFULNESS DIMENSION-BUDGETED COST
Budgeted cost is often limited for a system resilience design
work; therefore, it should be formulated for optimization.
In this paper, based on the concept of Life Cycle Cost (LCC),
we derive the budgeted cost model by modifying an existing
LCC model presented by [52]. For a general engineered
system, the budgeted cost is allocated to the development
of defensive capability Cd represented by system reliability
vector r, adaptive capability Ca represented by system diag-
nosis vector (ρ,TD), and recovery capability Cr represented
by system recovery vector (γ ,TRe). Note that, the basic
resilience design unit for engineered systems is the compo-
nent which can be assignedwith a specific set of design vector
ηi = (ri, ρi,TDi , γi,T

Re
i ). Therefore, the budgeted cost model

can be expressed as:

9 (resilience,C) = CR + CD + CRe (10)

where CR = f (r) denotes the development cost of reliability
for defensing against disruptions, CD = f (ρ,TD) denotes the
development cost of diagnosis for adapting to disruptions and
CRe = f (γ,TRe) denotes the development cost of recovery
for recovering from disruptions. The three parts are discussed
in detail as below.

For CR = f (r), it is often assumed that there is an inverse
power relationship between cost and failure rate for binary-
state systems [53]. Thus, the cost of a system with mi parallel
components/redundancies can be expressed as:

CR
i = α

R
i

(
−

TR
ln(ri)

)βRi
×

[
mi + exp

(mi
4

)]
(11)

where TR is the required system mission time, αRi and βRi
are constant parameters representing the physical features
which can be determined by collected data or experience. The
exponent part exp (·) denotes the extra cost of interconnecting
parallel components/redundancies.

Sine a series system can be generally regarded as a sum of
multiple parallel subsystems, thus the total cost of a system
with n subsystems is:

CR =
n∑
i=1

CR
i =

n∑
i=1

αRi

(
−

TR
ln(ri)

)βRi
×

[
mi + exp

(mi
4

)]
(12)

For CD = f (ρ,TD), it is assumed that there is an inverse
power relationship between cost and diagnosis rate [2]. Since
the diagnosis capability embedded in a component is also
represented by diagnosis time TDi , therefore, we assume that
there is an extra exponential relationship between cost and
diagnosis time. And then the development cost of diagnosis
can be expressed as:

CD =
n∑
i=1

CD
i =

n∑
i=1

αDi

(
−

1
ln(ρi)

)βDi
× exp (−µDi T

D
i )× mi

(13)

where ρi and TDi are performance parameters of diag-
nostic facility equipped within a component, e.g., Built-in
Test (BIT). αDi , β

D
i and µDi are constant parameters repre-

senting physical and technical features.
For CRe = f (γ ,TRe), like CD, we assume that the CRe

has an inverse power relationship with recovery rate and an
exponential relationship with recovery time:

CRe =
n∑
i=1

CRe
i

=

n∑
i=1

αRei

(
−

1
ln(γi)

)βRei
× exp (−µRei T

Re
i )× mi (14)

where γi and T Rei are performance parameters of recovery
action. αRei , βRei andµRei are constant parameters representing
physical and technical features.

In summary, the identification relationship between capa-
bilities in the resilience triangle concept model and objectives
in the three-dimensional resilience design model is summa-
rized in Table. 2.

TABLE 2. Identification relationship between resilience capabilities and
design objectives.

Relative to the three resilience capabilities, i.e., Cd , Ca,
and Cr , in the resilience triangle concept model, the function-
ality dimension in the resilience design model is quantified
by r, ρ, and γ respectively, the rapidity dimension is quan-
tified by TD and TRe, and the resourcefulness dimension is
quantified by CR, CD, and CRe.

D. MULTI-OBJECTIVE RESILIENCE DESIGN MODEL
After the identification of objectives, the design model can be
formulated. Generally, the design variables are constrained
for resilience design plans. Thus, we should add some con-
strains on design variables: (i) the lower and upper bounds of
rate for r , ρ, γ are RL and RU ; (ii) the lower and upper bounds
of time consumption for Ta,Ts, Tr are TL and TU .

Finally, the multi-objective resilience optimization model
for resilience allocation is expressed as follows:

max 9 (resilience, SP) = r + (1− r) · ρ · γ

max 9 (resilience,T ) = a
(

1
Ta

)
+ b

(
1
Ts

)
+ c

(
1
Tr

)
min 9 (resilience,C) = CR + CD + CRe
s.t. RL ≤ r, ρ, γ ≤ RU

TL ≤ T a,Ts,Tr ≤ TU
a+ b+ c = 1

a, b, c ∈ (0, 1) (15)
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Then, the Pareto-optimal resilience design plans η∗ =(
C∗d ,C

∗
a,C

∗
r
)
= (r∗, ρ∗,T∗D, γ

∗,T∗Re) can be obtained by
solving the above model.

IV. FINDING PARETO-OPTIMAL RESILIENCE
DESIGN PLANS BASED ON NSGA-II
This section will introduce the multi-objective algorithm
NSGA-II implemented to find the Pareto-optimal resilience
design plans. Basic steps to solve the aforementioned multi-
objective resilience design model are described in what
follows.

A. INITIALIZATION
Firstly, parameters of NSGA-II including the maximum gen-
eration number Gmax , the generation counter ng, the indi-
vidual number in one population np, the proportion of
crossover Pc, the proportion of mutation Pm and the prob-
ability of mutation µ. Then, randomly generate the initial
population Pg(g = 1) with np encoded chromosomes η based
on the constrains of design variables.

B. NON-DOMINATED SORTING
Non-dominated sorting aims to sort the individuals in current
population Pg into different non-dominated fronts. Note that,
an individual of chromosome is regarded to dominate another
if all the objective functions of it is not worse than the other
and at least one of its objective functions is strictly better.
The first front denotes a completely non-dominated set of
individuals which are assigned with the rank value ηrank = 1
in current population, and the second front consists of the
individuals (ηrank = 2) just dominated by those in the first
front, and so on.

C. CROWDING DISTANCE
To distinguish the individuals in the same front, crowding
distance (ηdistance) is utilized to find the euclidian distance
between each individual based on their d objective functions
in the d dimensional hyper space. Note that, comparing the
crowding distance between two individuals in different fronts
is meaningless. Hence, the optimal individual can be selected
based on the non-dominated rank and crowding distance
together.

D. SELECTION
Once the individuals are sorted by non-dominated rank and
crowding distance, the selection process based on the binary
tournament can be carried out using the crowded comparison
operator (≺), where ηi ≺ ηj if (ηirank < η

j
rank ) or (η

i
rank =

η
j
rank and ηidistance > η

j
distance). The selection process can

be used to choose better individuals for genetic operations,
which can improve the convergence capability of algorithm.

E. GENETIC OPERATORS
Real-coded genetic algorithm (GA) often use two kinds
of genetic operators: crossover and mutation, the crossover
operator is used to vary the programming of chromosomes

from one generation to the next while the mutation operator
is used to maintain the genetic diversity. In NSGA-II, the two
genetic operators are adopted to improve the convergence
performance and help achieving the Pareto-optimal solutions.

For crossover operator, notable approaches include the
single-point, the two-point, and the uniform types. Consider-
ing of the proposed chromosome programming, we adopt the
crossover operator illustrated in Fig. 4. We firstly select two
segments, i.e., the third and the sixth gene, as the crossover
objects in parent chromosomes, and then exchange them to
generate two new offspring chromosomes.

FIGURE 4. Illustration on crossover operator.

For mutation operator, it mainly alters the gene values in
a chromosome from its initial state into entirely new values.
Different types of mutation, such as the single-point type and
the multi-point type, can be used according to the feature of
chromosome programming. The mutation operator adopted
in this paper is illustrated in Fig. 5. The genetic information
in the third and the sixth gene of the parent chromosome is
randomly changed, and then a new offspring chromosome is
generated.

F. RECOMBINATION AND SELECTION
In this part, the offspring population Qg generated by genetic
operators is firstly combined with the current population Pg,
and a temporary population is generatedRg = Pg∪Qg. Since
all the previous and current best chromosomes are included
inRg, the elitism of population can be ensured. Then, the tem-
porary population Rg is sorted based on non-dominated rank
and crowding distance. Finally, a new generation is selected
by sorting results with the limit of maximum population size.

In summary, the logical diagram of the multi-objective
algorithm NSGA-II for resilience design is shown in Fig. 6.

V. CASE STUDY AND ANALYSIS
In this section, an electro-hydrostatic aircraft control actu-
ator (EHA) case adapted from [2] and [54] is proposed to
demonstrate the approach of resilience optimization for engi-
neered systems. Note that, the EHA system has a prede-
termined structure, and the resilience optimization problem
generally refers to the parameters assignment of each com-
ponent (ri, ρi,TDi , γi,T

Re
i ) with the system-level resilience

objectives, and finally the optimal system design plan η∗ =
(r∗, ρ∗,TD∗, γ ∗,TRe∗) consisting of basic resilience param-
eters of components can be obtained.

19358 VOLUME 5, 2017



F. Ren et al.: Resilience Optimization for CESs Based on the Multi-Dimensional Resilience Concept

FIGURE 5. Illustration on mutation operator.

FIGURE 6. Logical diagram of NSGA-II for resilience design.

A. PROBLEM DESCRIPTION
The EHA system mainly consists of four subsystems in
series, they are electronic control unit (E), variable-speed
electronic motor (M), fixed-displacement hydraulic pump (P)
and hydraulic piston actuator (H). In each subsystem, some
uniform components are equipped in parallel. System block
diagram is depicted to show the structure of EHA in Fig. 7.

Basic parameters representing the physical technical fea-
tures of components in EHA are given in Table 3, and the
system mission time TR = 1000.

With preliminary analysis, this EHA is a typical series-
parallel system, hence the system-level survival probability

FIGURE 7. EHA system structure.

TABLE 3. Parameters of EHA.

has an intersection relationship with the four subsystem-level
survival probabilities:

9EHA (resilience, SP) =
∏4

i=1
9i (resilience, SP) (16)

while the subsystem will survive if any of the mi parallel
components survives:

9i (resilience, SP) = 1− (1− ri)mi (1− ρi)mi (1− γi)mi

(17)

For the reactive timeliness of rapidity dimension, the
system-level reactive timeliness is the sum of subsystem-level
reactive timeliness:

9EHA (resilience,T ) =
∑4

i=1
9i (resilience,T ) (18)

while the reactive timeliness of a subsystem is equal to the
reactive timeliness of the parallel component, since the par-
allel components are homogeneous:

9i (resilience,T ) = 91∼mi (resilience,T ) (19)

In addition, for the budgeted cost of resourcefulness
dimension, the system-level budgeted cost can be easily com-
prehended and obtained by a sum of subsystem-level costs:

9EHA (resilience,C) =
∑4

i=1
9i (resilience,C) (20)

while the subsystem-level budgeted cost is a sum of basic
component costs:

9i (resilience,C) = CR
i + C

D
i + C

Re
i (21)

Furthermore, considering the constrains on design vari-
ables from practical and solving perspectives, the lower and
upper bounds of r , ρ, γ are assigned to 0.90 and 0.99, and
the lower and upper bounds of Ta,Ts, Tr are assigned to
2 and 5 units of time with normalization. Then, the resilience
optimization problem for EHA is formulated as follows:

max 9EHA (resilience, SP)

=

∏4

i=1
[1− (1− ri)mi (1− ρi)mi (1− γi)mi ]
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TABLE 4. Optimal solutions for resilience design.

max 9EHA (resilience,T )

=

∑4

i=1

[
ai

(
1
T ai

)
+ bi

(
1
T si

)
+ ci

(
1
T ri

)]
min 9EHA (resilience,C)

=

∑4

i=1
(CR

i + C
D
i + C

Re
i )

s.t. 0.9 ≤ r, ρ, γ ≤ 0.99

2 ≤ T a,Ts, Tr ≤ 5

a+ b+ c = 1

a, b, c ∈ (0, 1) (22)

B. NUMERICAL RESULTS AND ANALYSIS
After the formulation of resilience optimization for EHA,
by performing the NSGA-II algorithm introduced in section
four, the Pareto solutions of the optimization model are
depicted in Fig. 8, and the details of these Pareto optimal
results, i.e., resilience design plans, are shown in Table. 4.
Note that, the main parameters of NSGA-II are assigned as
follows: the maximum generation number Gmax = 20, indi-
vidual number in one population np = 100, the proportion of
crossover Pc = 0.8, the proportion of mutation Pm = 0.3,
the probability of mutation µ = 0.7.
As we can see, instead of a single optimal solution, solving

optimization model based on NSGA-II gives a set of Pareto-
optimal solutions. In the absence of further information, any
of these solutions cannot be said to be better than others.
However, the Pareto solutions obtained by NSGA-II are just

FIGURE 8. Pareto solutions of the EHA resilience optimization model.

optimal from the perspective of mathematics, and the alter-
native solutions are generally too many for decision makers
to select. Thus, a further analysis is often needed for practical
engineering application.

Obviously, in this work, the optimal solutions have very
similar results of survival probability and reactive timeliness,
but the budgeted cost is dramatically different. It reveals an
obvious long-tail effect for budgeted cost when increasing
the survival probability and reactive timeliness among the
19 optimal solutions. Therefore, we can make a succinct
reduction of the mathematical Pareto-optimal solutions and
select the representative ones with less cost, namely the
4 optimal solutions with 9EHA (resilience,C) = 113.71
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are finally selected for the resilience designers (shadowed
in Table. 4).

As the electro-hydrostatic aircraft control actuator (EHA)
case is adapted from [54], therefore we make a further com-
parison with Youn’s work which is belong to the traditional
single objective optimal design methodology. Firstly, in the
top-level resilience allocation work, the single objective opti-
mal result is obtained by minimizing the only one specified
expected utility life-cycle cost (LCC) with the constraint of
a target system resilience level, the result only provides a
survival probability like design suggestion which is a func-
tion of reliability and PHM efficiency, in another word, the
information derived from the result is very limited. On the
contrary, the result we obtain from the multi-objective opti-
mization methodology encompasses more design concerns,
i.e., the rapidity factor and the resourcefulness factor, which
can serve as a more comprehensible and credible design
suggestion for decision-makers. Furthermore, the optimal
objectives we select are derived from a standard resilience
triangle concept model which gives a precise identification on
the mechanism to achieve system resilience, this can provide
a strong theoretical foundation for our resilience design work,
however, most of the previous works are weak at this part.

VI. CONCLUSION
This paper mainly presents a resilience design approachmoti-
vated by multi-objective optimization concept for complex
engineered systems (CESs). A standard multi-dimensional
resilience triangle model indicating the utility objectives of
resilience design is derived from the concept of a three-
phase system resilience cycle, which provides a theoretical
foundation for resilience design work. Three resilience capa-
bilities, the Defensive Capability Cd , the Adaptive Capabil-
ity Ca, and the Recovery Capability Cr , are summarized in
the resilience triangle model and three dimensions consisting
of functionality, rapidity and resourcefulness are indicated for
design preference. The resilience design for CESs is formu-
lated into a multi-objective optimization problem, aiming to
generate a Pareto-optimal set of design plans by maximizing
survival probability and reactive timeliness and minimizing
total budgeted cost. By solving the multi-objective model
based on NSGA-II, a set of optimal design plans instead of a
single solution is obtained for designers, practical reduction
of mathematical Pareto-optimal solutions is also considered
which can provide a more comprehensible and exercisable
suggestion for decision-makers. To demonstrate the effec-
tiveness, the above methodology is applied to an electro-
hydrostatic aircraft control actuator (EHA) system which
has typical engineered series-parallel features. A comparative
analysis on the case study is also carried out to illustrate the
significance of the proposed approach with respect to the
previous works.

In this paper, the resilience optimization work is gener-
ally restricted to the system with predetermined structure
and the main concern refers to the assignment of resilience
parameters to basic components. In the future, since structure

design is another important work for CESs, the resilience
optimization considering variable structure will be further
studied, and this resilience design approach will be applied to
more complex real systems, such as networked systems and
integrated modular systems.
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